6. Übung zur Vorlesung "Einführung in die Mathematik für Wirtschaftswissenschaften"

Aufgabe 19:

Berechnen Sie folgende Grenzwerte

(a)
$$\lim_{x \to \infty} \frac{\ln(x)}{x}$$
,

(b)
$$\lim_{x \to 0} \frac{e^x - 1}{x},$$

(c)
$$\lim_{x \to 1} \frac{\ln(x)}{x - 1}$$
,

(d)
$$\lim_{x \to 0} \left(\frac{1}{\sin(x)} - \frac{1}{x} \right)$$
.

Aufgabe 20:

Für welchen Preis $p \in [0, 150]$ schlägt die Nachfragefunktion $N(p) = 0.04p^2 - 12p + 900$ von preisunelastisch zu preiselastisch um?

Aufgabe 21:

Berechnen Sie die Extrempunkte der Funktionen

(a)
$$f(x) = x^2 - 2x + 1$$
,

(b)
$$f(x) = \frac{1}{4}x^4 - \frac{5}{3}x^3 + 4x^2 - 4x + 1$$
,

(c)
$$f(x) = x \ln(x)$$
,

(d)
$$f(x) = \ln(x) - 2x + 1$$
.

Aufgabe 22:

Berechnen Sie zu

$$f(x) = \sin(x)$$

und zum Entwicklungspunkt $x_0 = 0$ das Taylor-Polynom bis zum Grad 5.

Aufgabe 23:

Finden Sie den Schnittpunkt der Kurven $x = N(p) = 5 \exp(-p/5)$ und $x = A(p) = \sqrt{1+p}$. Stellen Sie dazu eine geeignete Funktion auf und berechnen Sie deren Nullstelle. Nutzen Sie

- (a) das Bisektionsverfahren (führen Sie 4 Schritte aus),
- (b) das Newton-Verfahren (2 Schritte).

Wieviele Schritte des Bisektionsverfahrens wären nötig, um sicher eine Genauigkeit der Approximation (Intervallbreite) von $\varepsilon = 10^{-5}$ zu erreichen?

Aufgaben zum Selbststudium & zusätzlichen Üben zur 6. Übung

Übungsaufgabe 19:

Berechnen Sie folgende Grenzwerte

(a)
$$\lim_{x \to 0} \frac{x^2}{\sin(x)},$$

(b)
$$\lim_{x \to 0} \frac{\tan(x)}{x},$$

(c)
$$\lim_{x \to 0} \frac{\cos(x) - e^x}{x},$$

(d)
$$\lim_{x \to 0, x > 0} \ln(x) + \frac{1}{x}$$
.

Übungsaufgabe 20:

- (a) Bestimmen Sie zu der Funktion $N(p) = 10 \sqrt{p}$ mit $p \in (0, 100)$ die Elastizität $\eta(p)$. Für welche $p \in (0, 100)$ ist N(p) preiselastisch?
- (b) Berechnen Sie die Elastizität der Nachfragefunktion $N(p) = 1200 3p + 0.0012p^2$. Wo im Intervall [0, 500] ist f elastisch?

Übungsaufgabe 21:

Berechnen Sie die Extrempunkte der Funktionen

(a)
$$f(x) = \frac{1}{3}x^3 - x^2 - 3x$$
,

(b)
$$f(x) = \sqrt{x}e^{-x}$$
,

(c)
$$f(x) = \ln(x^2 + 2x - 1)$$
,

(d)
$$f(x) = x^n e^{-x}$$
.

Übungsaufgabe 22:

Berechnen Sie zu

$$f(x) = \ln(x)$$

und zum Entwicklungspunkt $x_0 = 1$ das Taylor-Polynom bis zum Grad 3.

Übungsaufgabe 23:

Gegeben seien die Angebotsfunktion A(p) und die Nachfragefunktion N(p) mit

$$A(p) = -2 + \exp(p/10)$$
, und $N(p) = 10 - \sqrt{p}$.

Gesucht sind Näherungen an p^* mit $A(p^*) = N(p^*)$. Stellen Sie zur Berechnung des Schnittpunktes eine geeignete Funktion auf und approximieren Sie deren Nullstelle. Nutzen Sie dazu

- (a) das Bisektionsverfahren zum Startintervall [15, 25], führen Sie 2 Intervallhalbierungen zur Einschachtelung aus,
- (b) das Newton-Verfahren zum Startwert $p_0 = 20$, führen Sie 2 Schritte aus.