## Introduction to Numerical Mathematics.

Mathias Sawall

Institut für Mathematik, Universität Rostock

WS 2025/2026

## Structure of the module

#### Lectures:

- Tue 11.00-13.00, room 11, Albert-Einstein-Str. 2,
- Thu 9.00-11.00, room 17, Albert-Einstein-Str. 2,
- volume of 56 hours lecture and 28h tutorial,
- slides on the web page https://www.numerik.mathematik.uni-rostock.de/sawall/

## Tutorials:

- by Jiss Mariam Babu,
- Mon 13.00 15.00, room 111, Albert-Einstein-Str. 2.

### Contact:

- mathias.sawall@uni-rostock.de,
- room 431, Ulmenstraße 69, Haus 3.

## Structure of the module

#### Exam:

- final examination of 120 min,
- allowed are 7 leaves DIN-A4, hand written on both sides, simple pocket calculator
- simple pocket calculator: no graphic, no programming, no matrix- and vector calculus, no solution of linear systems of equations, no numerical differentiation, no numerical integration.

## Exercises:

- available on the web page,
- e. g. print them and think about them at home for your own,
- the tasks are discussed in the tutorials.

## Web:

- https://www.numerik.mathematik.uni-rostock.de/sawall/
- Tutorials, slides and more.

## Table of contents

- 1. Machine computing
- 2. Nonlinear equations & optimization
- 3. Interpolation
- 4. Numerical integration
- 5. Ordinary differential equations
- 6. Systems of linear equations
- 7. Least squares problems
- 8. Numerical approximation of eigenvalues
- 9. Literature

## 1. Machine computing

- 2. Nonlinear equations & optimization
- 3. Interpolation
- 4. Numerical integration
- 5. Ordinary differential equations
- 6. Systems of linear equations
- 7. Least squares problems
- 8. Numerical approximation of eigenvalues
- 9 Literature

- 1. Machine computing
  - 1.1 Machine numbers
  - 1.2 Machine arithmitics and rounding errors
  - 1.3 Error analysis

## Machine numbers

#### Machine numbers:

- Storage/representation of numbers on a computer,
- computer do not work with real numbers (for example  $\sqrt{2}$ ), but with a finite subset: floating point numbers,
- for example 1/3 cannot be represented without an error in the binary system.

## Normalized floating point:

- representation of a number  $d \neq 0$  on a digital computer using base p,
- normalized floating point for a mantissa of length l reads

$$d = \pm 0 \cdot \underbrace{d_1 d_2 d_3 \dots d_l}_{\text{mantissa}} \cdot p^e, \qquad 0 \le d_i < p, \ d_1 \ne 0$$

with exponent  $e \in \mathbb{Z}$ ,  $-m \le e \le M$ .

### Machine numbers

#### Definition 1.1

The set of <u>machine numbers</u>  $\mathbb{F}(p,l,m)$  contains all numbers in normalized floating point representation for the base p, a mantissa of length l and an exponent of length m.

#### Remarks:

- 1. The set  $\mathbb{F}(p, l, m)$  is an finite subset of  $\mathbb{Q}$ .
- 2. Machine numbers are not equidistant. The distance between machine numbers are related to their values. There is a "gap" around 0.
- 3. For p=2 the first digit in normalized floating point representation is always 1. Often this leading 1 is omitted ("hidden bit") in the number representation on a computer. For x=0, a special representation is needed.

### Machine numbers

### Standardization of normalized floating point numbers:

- IEEE arithmetic (Institute of Electrical and Electronic Engineers, 1985),
- dual system p = 2 using 32bit (single) or 64bit (double)



- representable numbers (depending on the length of the exponent)

**32bit**: 
$$1.2 \cdot 10^{-38} \le |x| \le 3.4 \cdot 10^{38}$$
, **64bit**:  $2.2 \cdot 10^{-308} \le |x| \le 1.8 \cdot 10^{308}$ ,

rounding erors (depending on the length of the mantissa)

32bit: 
$$2^{-23} \approx 1.19 \cdot 10^{-7}$$
, 64bit:  $2^{-52} \approx 2.22 \cdot 10^{-16}$ ,

- further errors appear if the numbers are converted from decimal (classical numbers) to binary system (storage).

- 1. Machine computing
  - 1.1 Machine numbers
  - 1.2 Machine arithmitics and rounding errors
  - 1.3 Error analysis

# Rounding errors

## Converting a number to IEEE:

- as a rule, a given  $x \in \mathbb{R}$  is not a member of the set  $\mathbb{F}(p, l, m)$ ,
- rounding operater (to convert an  $x \notin \mathbb{F}$ )

$$\mathrm{rd}: \ \mathbb{R} \to \mathbb{F}(p,l,m) \qquad \text{with the property} \qquad |x-\mathrm{rd}(x)| = \min_{f \in \mathbb{F}(p,l,m)} |x-f|,$$

- for

$$x = \pm p^b \sum_{k=-\infty}^{-1} \alpha_k p^k, \qquad \alpha_1 \neq 0$$

is

$$rd(x) = \begin{cases} \pm (\sum_{k=-l}^{-1} \alpha_k p^k) p^b & \text{if } \alpha_{-l-1} < p/2 \\ \pm (\sum_{k=-l}^{-1} \alpha_k p^k + p^{-l}) p^b & \text{if } \alpha_{-l-1} \ge p/2 \end{cases},$$

## Rounding errors

- if |x| is smaller than the smallest number in the system, then rd(x) = 0,
- if |x| is larger than the largest number in the system, then  $rd(x) = \pm Inf$ ,
- for the absolute and relative rounding errors in the binary system holds

$$|x - \operatorname{rd}(x)| \le \frac{p^{-l}}{2} p^e, \qquad \frac{|x - \operatorname{rd}(x)|}{|x|} \le \frac{p}{2} p^{-l}.$$

### Rounding errors:

- occur while reading a number into a computer, converting a number from one number system to another, computing +, -, \*, /,
- different numerical results for math. equivalent expressions in pseudoarithmetic,
- select suitable algorithms to reduce the lack of precision.

## Machine epsilon

#### Definition 1.2

We name the number

$$eps = \frac{p}{2}p^{-l} \qquad (or macheps)$$

Machine epsilon or roundoff unit. For IEEE arithmetic with 64 bit holds

eps = 
$$\frac{2}{2}2^{-52} \approx 2.22 \cdot 10^{-16}$$
.

#### Remark:

- the machine epsilon is the number with the smallest absolute value that can still be added to 1 so without getting 1,
- for all x with  $|x| < \text{eps holds } 1 \oplus x = 1$ .

## Computation of the machine epsilon:

```
1  x = 1;
2  eps = 1;
3  while x+eps>1
4   eps = eps/2;
5  end
6  2*eps
```

- 1. Machine computing
  - 1.1 Machine numbers
  - 1.2 Machine arithmitics and rounding errors
  - 1.3 Error analysis

## Error analysis

### Errors during a calculation:

- each calculation step includes a (small) generated error and a propagated error

$$\delta_{\mathbf{y}} = \underbrace{\varepsilon_f \cdot f(\tilde{\mathbf{x}})}_{\text{generated error}} + \underbrace{f(\tilde{\mathbf{x}}) - f(\mathbf{x})}_{\text{propagated error}},$$

- e. g. the relative error for  $(x + \Delta x) \pm (y + \Delta y) = x \pm y + (\Delta x \pm \Delta y)$  is

$$\frac{\Delta x \pm \Delta y}{x \pm y} = \frac{x}{x \pm y} \frac{\Delta x}{x} \pm \frac{y}{y \pm y} \frac{\Delta y}{y},$$

- the relative error for  $x \pm y$  increases if  $|x \pm y| \approx 0$  (catastrophic cancellation),
- try to design algorithms avoiding catastrophic cancellation,
- backward and forward error analysis.

### Condition numbers

#### Definition 1.3 (Condition numbers)

The <u>absolute condition number</u> of the problem of calculating y = f(x) is the multiplying factor of the absolute initial error

$$\operatorname{acond}(f) := f'(\tilde{x}).$$

The <u>relative condition number</u> of the problem to calculate y = f(x) is the multiplying factor of the relative initial error

$$\operatorname{cond}(f) := \frac{\tilde{x} \cdot f'(\tilde{x})}{f(\tilde{x})}.$$

Approximation of the relative error of a function value y

$$\varepsilon_{y} := \frac{\delta_{y}}{f(\tilde{x})} \approx \varepsilon_{f} + \underbrace{\frac{\delta_{x}}{\tilde{x}}}_{\varepsilon_{\tilde{x}} \approx \varepsilon_{x}} \underbrace{\frac{\tilde{x}f'(\tilde{x})}{f(\tilde{x})}}_{\operatorname{cond}(x)} = \varepsilon_{f} + \varepsilon_{x} \cdot \operatorname{cond}(f).$$

- 1. Machine computing
- 2. Nonlinear equations & optimization
- Interpolation
- 4. Numerical integration
- 5. Ordinary differential equations
- 6. Systems of linear equations
- 7. Least squares problems
- 8. Numerical approximation of eigenvalues
- 9 Literature

# Nonlinear equations

### Problem:

- given function

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

- determine the zeros of f(x), this means  $x^*$  with  $f(x^*) = 0$ , whereas

$$f(x) = 0 \quad \Leftrightarrow \quad \begin{pmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

#### Possible solutions:

- there exists no solution, for example  $x^2 + 1$ ,
- there exists a finite number of solutions, for example  $x^2 1$ ,
- there exists an infinite number of solutions, for example  $x^2 \sin(\frac{1}{x})$ .

- 2. Nonlinear equations & optimization
  - 2.1 Banach fixed-point theorem
  - 2.2 Newton's method
  - 2.3 Newton's method for systems
  - 2.4 Variants of Newton's method
  - 2.5 Nonlinear least-squares
  - 2.6 Optimization

## Fixed-point iteration

#### Definition 2.1

Let  $\varphi: I \to I$  with  $I \subset \mathbb{R}^n$  be a function mapping the set I into itself. An  $x^* \in I$  is called a <u>fixpoint</u> of  $\varphi$  if

$$\varphi(x^*) = x^*.(*)$$

Furthermore, (\*) is called a fixpoint form.

## Geometric meaning:

- fixed points are the intersections of  $\varphi(x)$  with the straight line y = x.



# Banach fixed-point theorem

#### Definition 2.2

A mapping  $\varphi: I \to I$  with  $I \subset \mathbb{R}^n$  is called <u>contraction</u> if there exists a constant  $L \in [0,1)$  such that for all  $x, y \in I$ 

$$\|\varphi(x) - \varphi(y)\| \le L\|x - y\|.(*)$$

### Remarks:

- if L < 1, then images of two points are always closer to each other than the originals (contraction),
- for differentiable  $f: \mathbb{R} \to \mathbb{R}$  with  $I \subset \mathbb{R}$ , the map f is a contraction, if

$$\max_{x \in I} |f'(x)| \le L < 1.$$

- in general, i. e. without the restriction L < 1, one calls (\*) a <u>Lipschitz constant</u> and L a Lipschitz constant.

# Banach fixed-point theorem

## Theorem 2.3 (Banach fixed-point theorem)

Let I be a closed subset of  $\mathbb{R}^n$  and  $\varphi: I \to I$  be a self-mapping, i.e., it holds that  $\varphi(I) \subset I$ . Furthermore, let  $\varphi$  on I be a contraction.

Then  $\varphi$  has exactly one fixed-point  $x^* \in I$  and the sequence  $\{x_n\}_{n=0,1,2,...}$  generated by the fixed-point iteration

$$x_{n+1}=\varphi(x_n)$$

converges for each starting iteration  $x_0 \in I$  to this fixed-point.

## Therefore, the following must be checked:

- Is I complete?
- Does  $\varphi(I) \subset I$  apply?
- Holds  $\|\varphi(x) \varphi(y)\| \le L\|x y\|$  for all  $x, y \in I$  as well as L < 1?

# Fixed-point problem by logistic map

## Example:

- consider the iteration  $Y_{n+1} = \varphi(Y_n)$  with  $Y_0 = 0.1$  and

$$\varphi(y) = (1+r)y - ry^2,$$

- fixed points and alternating points after a short start-up phase of at least 10 steps







## Analysis of the fixed points:

- fixed-point form  $y_{i+1} = \varphi(y_i) = (1+r)y ry^2$ ,
- fixed-points are  $y_1 = 0$ ,  $y_2 = 1$ , the first value  $y_1$  is not of interest,
- for  $y_2$  holds  $\varphi'(y_2) = 1 r$ , thus  $y_2$  is stable only for r < 2.

# Fixed-point problem by logistic map

## Bifurcation diagram (Feigenbaum constants):

- using the iterations  $\varphi(y) = (1+r)y ry^2$ ,
- plot the iterations  $Y_i$  for  $r \ge 150$ ,
- several alternating situations.



# Fixed-point problem by logistic map

#### Alternations between two values:

- fixed-points for

$$\varphi^{2}(y) = y \cdot (1 + (1 - y)r) \cdot (1 + (y^{2} - y)r^{2} + (1 - y)r)$$
$$y_{1} = 0, \ y_{2} = 1, \ y_{3,4} = \frac{0.5r + 1 \pm 0.5\sqrt{r^{2} - 4}}{r}$$

- stability analysis by  $(\varphi^2)'(y)$ , e. g. for r=2.2 only  $y_3$  and  $y_4$  are stable fixed points.



### Fixed-points of period 4:

- thus  $y = \varphi^4(y)$ , e. g. for r = 2.5 there are four stable points

$$v_3 = 0.6$$
,  $v_4 = 0.7012$ ,  $v_6 = 1.1576$ ,  $v_7 = 1.2$ .

## 2. Nonlinear equations & optimization

- 2.1 Banach fixed-point theorem
- 2.2 Newton's method
- 2.3 Newton's method for systems
- 2.4 Variants of Newton's method
- 2.5 Nonlinear least-squares
- 2.6 Optimization

## Newton's method

## Idea:

- put a tangent to  $f(x_i)$ ,
- the zero of the tangent as a new iterate  $x_{i+1}$ .



## Iteration of Newton's method:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}.$$

## Newton's method

#### Definition 2.4

Let  $(x_i)_{i=0,1,2,...}$  be a sequence with  $x_i \in \mathbb{R}^n$ , which converges to  $x^* \in \mathbb{R}^n$  and let  $x_i \neq x^*$  for all i. Further let  $\|\cdot\|$  be a vector norm for  $\mathbb{R}^n$ .

The sequence is called convergent to  $x^*$  with at least the <u>convergence order p</u> if there is a c>0 with

$$||x_{i+1} - x^*|| \le c||x_i - x^*||^p$$

for all sufficiently large  $i \in \mathbb{N}$ .

#### Theorem 2.5

Let  $x^*$  be a simple zero of f and further let  $U \subset \mathbb{R}$  be an open neighbourhood around  $x^*$  as well as f be two times continuous differentiable on U. In a neighbourhood of  $x^*$  holds

$$x_{k+1} - x^* = \frac{1}{2} \frac{f''(\xi)}{f'(x_k)} (x_k - x^*)^2, \quad \text{ for an } \xi \in U.$$

## 2. Nonlinear equations & optimization

- 2.1 Banach fixed-point theorem
- 2.2 Newton's method
- 2.3 Newton's method for systems
- 2.4 Variants of Newton's method
- 2.5 Nonlinear least-squares
- 2.6 Optimization

# Newton's method for systems

#### Newton's iteration:

$$x_{k+1} = x_k + \Delta = x_k - (J_f(x_k))^{-1} f(x_k), \qquad k = 0, 1, 2, \dots$$

## Jacobian matrix of partial derivatives of first order of f:

$$J_f(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}.$$

## Stopping criterion:

$$\|f(x_k)\|_2 \le \varepsilon_f$$
 and/or  $\|\Delta\|_2 < \varepsilon_x$   
with  $\varepsilon_f, \varepsilon_x > 0$ , e.g.  $\varepsilon_f = 10^{-6}$  and  $\varepsilon_x = 10^{-4}$ .

# Newton's method for systems

## Example (fractal):

-  $2 \times 2$  system of equations

$$f(x) = \begin{pmatrix} x_1^3 - 3x_1x_2^2 - 1\\ 3x_1^2x_2 - x_2^3 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

- three solutions

$$(1,0), \qquad (-1/2, \sqrt{3}/2), \qquad (-1/2, -\sqrt{3}/2),$$

- iteration converges to one of the solutions, depending on the starting vector,
- application for starting vectors in  $[-2,2] \times [-2,2]$ .



# Newton's method for systems

## Example:

- consider the problem of Rosenbrock (with the solution  $x^* = (1, 1)^T$ )

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \quad f(x_1, x_2) = \begin{pmatrix} 1 - x_1 \\ 10(x_2 - x_1^2) \end{pmatrix} \quad \text{with} \quad J_f = \begin{pmatrix} -1 & 0 \\ -20x_1 & 10 \end{pmatrix},$$

- applying Newton's method to  $x_1 = (0,0)^T$  we get

$$x^{(1)} = x^{(0)} - J_f(x^{(0)})^{-1} f(x^{(0)}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 & 0 \\ 0 & 10 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$x^{(2)} = x^{(1)} - J_f(x^{(1)})^{-1} f(x^{(1)}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 & 0 \\ -2 & 0.1 \end{pmatrix} \begin{pmatrix} 0 \\ -10 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$





## 2. Nonlinear equations & optimization

- 2.1 Banach fixed-point theorem
- 2.2 Newton's method
- 2.3 Newton's method for systems
- 2.4 Variants of Newton's method
- 2.5 Nonlinear least-squares
- 2.6 Optimization

# Damped Newton's method

## Damped Newton's method:

- do not take the full step, but only a part,
- for  $0 < \lambda \le 1$  and n = 1 this means

$$x_{i+1} = x_i - \lambda \frac{f(x_i)}{f'(x_i)},$$

- the same for systems

$$x_{k+1} = x_k - \lambda \big(J_f(x_k)\big)^{-1} f(x_k),$$

- e. g. divide  $\lambda$  by 2 until

$$||f(x_k - \lambda(J_f(x_k))^{-1}f(x_k))|| \le (1 - \frac{\lambda}{2})||f(x_k)||.$$

# Simplified Newton's method

## Simplified Newton's method:

- update the computation/approximation of  $J_f(x_k)$  not in each step,
- work with the computed  $J_f(x_k)$  for a number of  $m_{fix}$  iterations,
- use LU-decomposition.

## Advantage:

- less computations of  $J_f(x_k)$  (high effort).

## Disadvantage:

- linear convergence only.

## 2. Nonlinear equations & optimization

- 2.1 Banach fixed-point theorem
- 2.2 Newton's method
- 2.3 Newton's method for systems
- 2.4 Variants of Newton's method
- 2.5 Nonlinear least-squares
- 2.6 Optimization

## Nonlinear least-squares problems

### Nonlinear least-squares problem:

$$F(x) = \frac{1}{2} \sum_{i=1}^{m} (f_i(x))^2 \to \min, \qquad f: \mathbb{R}^n \to \mathbb{R}^m, \ m \ge n.$$

#### Necessary condition for a local minimum:

$$\nabla F(x) = \left(J_f^T f\right)(x) = 0. \tag{1}$$

### Gauss-Newton step:

$$x_{k+1} = x_k - (J_f^T(x_k)J_f(x_k))^{-1} (J_f^T(x_k)f(x_k)).$$

## Nonlinear least-squares problems

### Levenberg-Marquardt procedure:

- additional regularization of the solution,
- iteration reads

$$x_{k+1} = x_k - \alpha \left( J_f^T(x_k) J_f(x_k) + M \right)^{-1} \left( J_f^T(x_k) f(x_k) \right),$$

- regularization by  $M \in \mathbb{R}^{n \times n}$  e.g.  $M = \beta I$ ,
- for  $\beta=0$  and  $\alpha=1$  we get Gauss-Newton's method,
- otherwise the additional term acts regulating e.g. to avoid too large steps.

### Outline

#### 2. Nonlinear equations & optimization

- 2.1 Banach fixed-point theorem
- 2.2 Newton's method
- 2.3 Newton's method for systems
- 2.4 Variants of Newton's method
- 2.5 Nonlinear least-squares
- 2.6 Optimization

#### Gradient descent

#### Problem:

- find the minimum of  $f: \Omega \to \mathbb{R}$ ,
- unconstrained if  $\Omega = \mathbb{R}^n$  otherwise constrained.

#### Gradient/steepest descent:

- for a differentiable f(x) the gradient  $\nabla f(x_k)$  is the direction of steepest ascent,
- use  $v_k = -\nabla f(x_k)$  to get the steepest descent,
- the function  $s \mapsto f(x_k + s\nu_k)$  is monotonously decreasing for  $s \in [0, \tilde{s})$  for some positive  $\tilde{s}$ ,
- start with s = 1 and divide s by 2 until

$$f(x_k + sv_k) < f(x_k),$$

- use  $x_{k+1} = x_k + sv_k$ .

### Curve-fitting problem:

- measured values for c(t) are

approach

$$g(t) = g(t;x) = x_1 \exp(x_2 t),$$

- compute the parameters  $x_1$  and  $x_2$  by minimizing the error

$$f(x) = \frac{1}{2} ||g(t, x) - c||_2^2,$$

- the optimum is at  $x^*(8.8551, -0.4722)^T$ .

#### Curve fitting problem and cost function:





## A number of 100 steps of steepest descent for $x_0 = (7, -1)^T$ :





#### Gauss-Newton's:

- proper method of curve fitting,
- starting vector  $x_0 = (7, -1)^T$ ,
- after 6 iterations we get an approximation with

$$||x_6 - x^*||_2 = 3.6 \cdot 10^{-4}$$



### Outline

- Machine computing
- 2. Nonlinear equations & optimization

### 3. Interpolation

- 4. Numerical integration
- 5. Ordinary differential equations
- 6. Systems of linear equations
- Least squares problems
- 8. Numerical approximation of eigenvalues
- 9 Literature

## Polynomial interpolation

Given:

$$(x_i,f_i), \quad i=0,\ldots,n.$$

<u>To compute:</u> Polynomial p(x) of degree smaller than or equal to n with

$$p(x_i) = f_i, \quad i = 0, \ldots, n.$$

Interpolation condition: The nodes  $x_0, \ldots, x_n$  have to be pairwise different.

#### Theorem 3.1

For pairwise different grid points the interpolation polynomial is unique.

## Polynomial interpolation

#### A simple approach to compute the polynomial:

$$p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$$
.

System of linear equations (Vandermonde's matrix):

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}.$$
 (2)

with

$$\det(V_{n+1}) = \prod_{0 \le i < j \le n} (x_i - x_j).$$

<u>But</u>: The problem is ill-conditioned. Use other approaches.

## Outline

#### 3. Interpolation

- 3.1 Lagrange interpolation
- 3.2 Newton interpolation
- 3.3 Error or the interpolation
- 3.4 Hermite Interpolation
- 3.5 Splines
- 3.6 Numerical differentiation

# Lagrange interpolation

#### **Definition 3.2**

According to  $x_0, \ldots, x_n$  the <u>Lagrange basis functions</u> are

$$l_i(x) = \prod_{j=0, j\neq i}^n \frac{x - x_j}{x_i - x_j}.$$

Obviously holds

$$l_i(x_\ell) = \prod_{j=0, j \neq i}^n \frac{x_\ell - x_j}{x_i - x_j} = \left\{ egin{array}{ll} 1 & ext{for } \ell = i \\ 0 & ext{otherwise.} \end{array} 
ight.$$

# Lagrange interpolation

#### Definition 3.3

The construction

$$p(x) = \sum_{i=0}^{n} f_i l_i(x) = \sum_{i=0}^{n} f_i \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

is called Lagrange polynomial.

### Outline

### 3. Interpolation

- 3.1 Lagrange interpolation
- 3.2 Newton interpolation
- 3.3 Error or the interpolation
- 3.4 Hermite Interpolation
- 3.5 Splines
- 3.6 Numerical differentiation

#### Newton interpolation (1)

- successive structure, start with one interpolation point, then 2, 3, etc.
- degree of the polynomial increases by one per step,
- initialisation  $p_0(x) = y_0$
- first iteration step

$$p_1(x) = p_0(x) + c_1(x - x_0),$$
 with  $c_1 = \frac{y_1 - y_0}{x_1 - x_0}.$ 

### Newton interpolation (2)

- further iteration from  $p_{m-1}(x)$  to  $p_m(x)$  by

$$p_m(x) = p_{m-1}(x) + c_m \prod_{i=0}^{m-1} (x - x_i),$$

- to have  $p_m(x_m) = y_m$  next to  $p_m(x_j) = y_j$  for  $j = 0, \dots, m-1$  use

$$c_m = \frac{y_m - p_{m-1}(x_m)}{\prod_{i=0}^{m-1} (x_m - x_i)}.$$

#### Definition 3.4

 $Using f[x_0] = y_0$  the <u>divided difference</u> are

$$f[x_m,\ldots,x_0]:=c_m=rac{y_m-p_{m-1}(x_m)}{\prod_{i=0}^{m-1}(x_m-x_i)}, \qquad m=1,2,\ldots,n.$$

The representation of  $p_m(x)$  in Newton's form is

$$p_m(x) = \sum_{i=0}^m f[x_i, \dots, x_0] \prod_{j=0}^{i-1} (x - x_j).$$

#### Theorem 3.5

Let  $x_0, \ldots, x_m$  be pairwise different and  $f[x_0] = y_0, \ldots, f[x_m] = y_m$ . We can apply the recursion

$$f[x_m,\ldots,x_0] = \frac{f[x_m,\ldots,x_1] - f[x_{m-1},\ldots,x_0]}{x_m - x_0}.$$

#### Computation of coefficients using Newton's scheme:

- initialisation  $f[x_i] = y_i$  for i = 0, ..., n,
- triangle scheme

the interpolation polynomial reads

$$p(x) = f[x_0] + f[x_1, x_0](x - x_0) + f[x_2, x_1, x_0](x - x_0)(x - x_1) + \dots$$

#### Example:

interpolation of

$$(-1,5)$$
,  $(0,4)$ ,  $(1,-3)$ ,  $(2,3)$ ,

- polynomial of degree  $\leq 3$ ,
- Newton's scheme by divided differences

- interpolating polynomial is

$$p(x) = 5 - 1(x+1) - 3(x+1)x + \frac{19}{6}(x+1)x(x-1)$$
$$= 4 - \frac{43}{6}x - 3x^2 + \frac{19}{6}x^3.$$

## Newton and Lagrange interpolation

The single Newton steps (left) as well as the single Lagrange basis functions (right)



Both approaches result in the same polynomial

$$p(x) = 5 - 1(x+1) - 3(x+1)x + \frac{19}{6}(x+1)x(x-1)$$

$$= 5\frac{x(x-1)(x-2)}{-6} + 4\frac{(x+1)(x-1)(x-2)}{2} + (-3)\frac{(x+1)x(x-2)}{-2} + 3\frac{(x+1)x(x-1)}{6}$$

$$= 4 - \frac{43}{6}x - 3x^2 + \frac{19}{6}x^3.$$

#### Extension:

- consider that we add (-2,5) as additional point to the previous example,
- the extended scheme is

- the new polynomial is

$$\tilde{p}(x) = 5 - 1(x+1) - 3(x+1)x + \frac{19}{6}(x+1)x(x-1) + (x+1)x(x-1)(x-2).$$

## Outline

#### 3. Interpolation

- 3.1 Lagrange interpolation
- 3.2 Newton interpolation
- 3.3 Error or the interpolation
- 3.4 Hermite Interpolation
- 3.5 Splines
- 3.6 Numerical differentiation

## Error or the interpolation

How about  $\max_{x \in [a,b]} |f(x) - p(x)|$  for a function f(x)?

#### Theorem 3.6

Let f(x) be (n+1) times continously differentiable on the interval [a,b]. Further let  $a \le x_0 < x_1 < \cdots < x_n \le b$  and p(x) be the interpolating polynomial for  $(x_i, f(x_i))$ ,  $i = 0 \dots, n$ . Then it holds

$$|f(\tilde{x}) - p(\tilde{x})| \le \frac{|w(\tilde{x})|}{(n+1)!} \max_{\xi \in [a,b]} |f^{(n+1)}(\xi)|$$

for

$$w(x) = \prod_{j=0}^{n} (x - x_j).$$

58 / 242

## Limits of polynomial interpolation

#### Runge, 1901:

- interpol. of  $(1+x^2)^{-1}$ , polynomials of *n*th degree, equidistant nodes in [-5,5],
- very bad approximations for large *n*, oscillations at the boundary.



# Limits of polynomial interpolation

#### Sesitivity for noise:

- interpolation of  $f(x) = \sin(2\pi x)$  using 22 equidistant knots on [-1, 1],
- comparison of p(x) for noisy and noise free data  $\tilde{y}_i = (1 + \varepsilon)f(x_i)$  with  $\varepsilon = 10^{-4}$ ,
- large differences for the polynomial and high oscillations at the boundaries.



## Outline

### 3. Interpolation

- 3.1 Lagrange interpolation
- 3.2 Newton interpolation
- 3.3 Error or the interpolation
- 3.4 Hermite Interpolation
- 3.5 Splines
- 3.6 Numerical differentiation

#### Modified problem:

- interpolation also for values of derivates of f(x),
- nodes  $x_0 < x_1 < \dots < x_m$  and values  $f_i^{(j)} = f^{(j)}(x_i)$  for  $j = 0, \dots, n_i 1$ ,
- compute an interpolation polynomial p(x) with

$$\deg(p(x)) \le n, \quad n+1 = \sum_{i=0}^m n_i$$

such that

$$p^{(j)}(x_i) = f_i^{(j)}, \qquad j = 0, \dots, n_i - 1, \ i = 0, \dots, m.$$
 (3)

- the interpolating polynomial is unique as n+1 degrees of freedom equals the number of conditions.

#### Scheme for a block to one node:

Interpolating polynomial

$$p(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

### Example:

- interpolation of (-1,2), (0,1), (1,3) with the additional condition p'(0)=1.5,
- Newton's scheme

interpolation polynomial

$$p(x) = 2 - (x+1) + 2.5(x+1)x - 1(x+1)x^{2}.$$



## Example:

- interpolation polynomial for f(x) = 1/x using  $x_0 = 1$ ,  $x_1 = 2$ ,
- conditions

$$f(x_0) = 1, f'(x_0) = -1, f''(x_0) = 2, f'''(x_0) = -6$$
  
 $f(x_1) = 0.5, f'(x_1) = -0.25$ 

- Newton's scheme

interpolation polynomial

$$p(x) = 1 - (x - 1) + (x - 1)^{2} - (x - 1)^{3} + \frac{1}{2}(x - 1)^{4} - \frac{1}{4}(x - 1)^{4}(x - 2).$$

### Outline

### 3. Interpolation

- 3.1 Lagrange interpolation
- 3.2 Newton interpolation
- 3.3 Error or the interpolation
- 3.4 Hermite Interpolation
- 3.5 Splines
- 3.6 Numerical differentiation

### Splines:

- many interpolating points,
- local interpolations for a few neighboring points instead of a global polynomial,
- piecewise composed polynomial using smoothness requirements at transitions.

#### Definition 3.7

The <u>cubic splines</u> are defined as follows: For the pairs  $(x_i, y_i)$ , i = 0, ..., n, compute a spline S that interpolates these points such that

$$S_{|[x_i, x_{i+1}]}(x) := p_i(x)$$
 is a polynomial of degree 3

and to make sure that the function is twice continously differentiable at the transition points. This means S has to fulfill the four conditions

$$p_i(x_i) = y_i, \quad p_i(x_{i+1}) = y_{i+1}, \quad p'_i(x_i) = p'_{i+1}(x_i), \quad p''_i(x_i) = p''_{i+1}(x_i).$$

For the first and the last polynomial there are no boundary conditions. The selection

$$S''(a) = S''(b) = 0$$

results in the natural splines.

#### Computation of the splines:

- a linear system of equations (moment equations) to calculate the cubic splines,
- quite technical, see the following theorem.

#### Theorem 3.8

If the twice continuously differentiable cubic spline S satisfies the interpolation condition

$$S(x_j) = f_j, \quad j = 0, \ldots, n,$$

then on  $[x_i, x_{i+1}]$  its form reads

$$S(x) = f_j \frac{x_{j+1} - x}{x_{j+1} - x_j} + f_{j+1} \frac{x - x_j}{x_{j+1} - x_j}$$

$$- \frac{1}{6} S''(x_j) \frac{(x_{j+1} - x)(x - x_j)}{x_{j+1} - x_j} ((x_{j+1} - x) + (x_{j+1} - x_j))$$

$$- \frac{1}{6} S''(x_{j+1}) \frac{(x_{j+1} - x)(x - x_j)}{x_{j+1} - x_j} ((x - x_j) + (x_{j+1} - x_j)).$$

#### Theorem 3.9

Under the conditions of Thm. 3.8 it holds for the moments  $S''(x_j)$  for j = 1, ..., n-1 that

$$\begin{split} &\frac{x_{j+1} - x_j}{x_{j+1} - x_{j-1}} S''(x_{j+1}) + 2S''(x_j) + \frac{x_j - x_{j-1}}{x_{j+1} - x_{j-1}} S''(x_{j-1}) \\ &= \frac{6}{x_{j+1} - x_{j-1}} \left( \frac{f_{j+1} - f_j}{x_{j+1} - x_j} - \frac{f_j - f_{j-1}}{x_j - x_{j-1}} \right) \\ &= 6f[x_{j-1}, x_j, x_{j+1}]. \end{split}$$

#### Theorem 3.10

Together with the two conditions, e.g.  $S''(x_0) = S''(x_n) = 0$  for the natural splines, the system of linear equations has a unique solutions. The matrix of the system has a condition not larger then 3.

#### Example:

- consider once again the example of Runge

$$f(x) = \frac{1}{1 + x^2},$$

- cubic splines for equidistant nodes and [-5, 5] using MatLab,
- much better results than for polynomials, maximal error

$$\max_{x \in [-5,5]} |S(x) - f(x)| \approx 0.022.$$



### Splines in MatLab:

```
f = @(x) 1./(1+x.^2);

X = -5:5;

Y = f(X);

xx = linspace(-5,5,401);

yy = spline(X,Y,xx);

plot(X,Y,'o',xx,yy)

max(abs(yy-f(xx)))
```

### Outline

### 3. Interpolation

- 3.1 Lagrange interpolation
- 3.2 Newton interpolation
- 3.3 Error or the interpolation
- 3.4 Hermite Interpolation
- 3.5 Splines
- 3.6 Numerical differentiation

#### Definition 3.11 (Finite differences)

The approximations

$$D^{+}f(x) = \frac{f(x+h) - f(x)}{h},$$

$$D^{-}f(x) = \frac{f(x) - f(x-h)}{h},$$

$$D^{0}f(x) = \frac{f(x+h) - f(x-h)}{2h}$$

for f'(x) are called <u>forward difference</u>, <u>backward difference</u> and <u>central difference</u>.

### Theorem 3.12 (Approximation orders)

For the finite differences holds

$$f'(x) - D^{+}f(x) = \mathcal{O}(h), \qquad \text{(order 1)}$$
  
$$f'(x) - D^{-}f(x) = \mathcal{O}(h), \qquad \text{(order 1)}$$

$$f'(x) - D^0 f(x) = \mathcal{O}(h^2), \qquad (order 2).$$

### Example:

- approximation of  $f'(x_0)$  for  $f(x) = \arctan(x)$  and  $x_0 = 0.5$
- approximations errors for different  $\boldsymbol{h}$

| h         | $ D^+f(x_0)-f'(x_0) $ | $ D^-f(x_0)-f'(x_0) $ | $ D^0f(x_0) - f'(x_0) $ |
|-----------|-----------------------|-----------------------|-------------------------|
| 0.1       | $3.2 \cdot 10^{-2}$   | $3.1 \cdot 10^{-2}$   | $4.3 \cdot 10^{-4}$     |
| 0.01      | $3.2 \cdot 10^{-3}$   | $3.2 \cdot 10^{-3}$   | $4.3 \cdot 10^{-6}$     |
| $10^{-5}$ | $3.2 \cdot 10^{-6}$   | $3.2 \cdot 10^{-6}$   | $4.8 \cdot 10^{-12}$ .  |



#### Example:

- approximation of  $f'(x_0)$  for  $f(x) = \arctan(x)$  and  $x_0 = 0.5$
- but we cannot reduce h arbitrarily, as

| h          | $ D^+f(x_0)-f'(x_0) $ | $ D^-f(x_0)-f'(x_0) $ | $ D^0f(x_0)-f'(x_0) $ |
|------------|-----------------------|-----------------------|-----------------------|
| $10^{-12}$ | $2.7 \cdot 10^{-5}$   | $2.9 \cdot 10^{-5}$   | $1.0 \cdot 10^{-6}$   |
| $10^{-14}$ | $6.4 \cdot 10^{-4}$   | $6.4 \cdot 10^{-4}$   | $6.4 \cdot 10^{-4}$ . |



#### Definition 3.13 (Finite differences)

The approximation

$$D^{2}f(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^{2}}$$

for f''(x) is called central difference of second order.

The error of the second order central difference is in  $\mathcal{O}(h^2)$ , so  $D^2f$  is an approximation second order, thus

$$f''(x) = D^2 f(x) + \mathcal{O}(h^2).$$

#### Partial derivatives of higher order in 2D:

- mixed partial derivatives for  $h_x = h_y = h$ 

$$u_{xy} \approx \frac{u(x+h,y+h) - u(x+h,y-h) - u(x-h,y+h) + u(x-h,y-h)}{4h^2},$$

- central difference of second order for  $h_x = h$ 

$$u_{xx} \approx \frac{u(x+h,y) - 2u(x,y) + u(x-h,y)}{h^2}$$

- for the Laplace operator or Laplacian for  $h_x = h_y = h$  we get

$$\Delta u = u_{xx} + u_{yy}$$

$$\approx \frac{u(x+h,y) + u(x-h,y) + u(x,y+h) + u(x,y-h) - 4u(x,y)}{h^2}.$$

### Outline

- 1. Machine computing
- 2. Nonlinear equations & optimization
- Interpolation
- 4. Numerical integration
- 5. Ordinary differential equations
- 6. Systems of linear equations
- Least squares problems
- 8. Numerical approximation of eigenvalues
- 9. Literature

#### Literature



Atkinson, K.: Elementary Numerical Analysis, John Wiley & Sons, 1993.



Burden, R., Faries, J. D.: Numerical Analysis, Brooks Cole Publishing Company, 1997.



Friedmann, M., Kandel, A.: Fundamentals of Computer Numerical Analysis, CRC Press, 1993.



Golub, G. H., Ortega, J. M.: Scientific Computing and Differential Equations: An Introduction to Numerical Methods, Academic Press, 1992.



Kharab, A., Guenther, R. B.: An Introduction to Numerical Methods: A Matlab Approach, Chapman & Hall / CRC, 2002.



Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, Springer, 2007.



Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, Springer, 2002.



Süli, E., Mayers, D.: An Introduction to Numerical Analysis, Cambridge University Press, 2003.