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Structure of the module

Lectures:
- Tue 11.00-13.00, room 11, Albert-Einstein-Str. 2,
- Thu 9.00-11.00, room 17, Albert-Einstein-Str. 2,
- volume of 56 hours lecture and 28h tutorial,

- slides on the web page
https://www.numerik.mathematik.uni-rostock.de/sawall/

Tutorials:
- by Jiss Mariam Babu,
- Mon 13.00 - 15.00, room 111, Albert-Einstein-Str. 2.

Contact:
- mathias.sawall@uni-rostock.de,
- room 431, Ulmenstraf3e 69, Haus 3.
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Structure of the module

Exam:
- final examination of 120 min,
- allowed are 7 leaves DIN-A4, hand written on both sides, simple pocket calculator

- simple pocket calculator: no graphic, no programming, no matrix- and vector
calculus, no solution of linear systems of equations, no numerical differentiation,
no numerical integration.

Exercises:
- available on the web page,
- e. g. print them and think about them at home for your own,
- the tasks are discussed in the tutorials.

Web:
- https://www.numerik.mathematik.uni-rostock.de/sawall/
- Tutorials, slides and more.
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1. Machine computing
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Outline

1. Machine computing
1.1 Machine numbers
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Machine numbers

Machine numbers:
- Storage/representation of numbers on a computer,

- computer do not work with real numbers (for example v/2), but with a finite subset:
floating point numbers,

- for example 1/3 cannot be represented without an error in the binary system.

Normalized floating point:

- representation of a number d # 0 on a digital computer using base p,
- normalized floating point for a mantissa of length [ reads

d::to.dldzdg...d1~pe, 0§d,'<p, dl#o
—— —

mantissa

with exponente € Z, —m < e < M.
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Machine numbers

Definition 1.1

The set of machine numbers F(p, I, m) contains all numbers in normalized floating point
representation for the base p, a mantissa of length | and an exponent of length m.

Remarks:
1. The set F(p, 1, m) is an finite subset of Q.

2. Machine numbers are not equidistant. The distance between machine numbers
are related to their values. There is a ,gap“ around 0.

3. For p = 2 the first digit in normalized floating point representation is always 1.
Often this leading 1 is omitted (,hidden bit“) in the number representation on a
computer. For x = 0, a special representation is needed.
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Machine numbers

Standardization of normalized floating point numbers:
- |IEEE arithmetic (Institute of Electrical and Electronic Engineers, 1985),
- dual system p = 2 using 32bit (single) or 64bit (double)

O ood...gd O ood...d
T —————— N~ N—— ——
sign (1) exponent (8) mantissa (23) sign (1) exponent (11) mantissa (52)

representable numbers (depending on the length of the exponent)

32bit: 1.2-107%° < |x| <3.4-10%,  64bit: 22- 107" < |x| < 1.8- 107,
- rounding erors (depending on the length of the mantissa)
32bit: 272 ~ 1.19- 1077, 64bit: 272 ~2.22-1071°,

- further errors appear if the numbers are converted from decimal (classical
numbers) to binary system (storage).
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1. Machine computing

1.2 Machine arithmitics and rounding errors
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Rounding errors

Converting a number to IEEE:

- as arule, a given x € R is not a member of the set F(p, I, m),
- rounding operater (to convert an x ¢ F)

rd: R— F(p,1,m) with the property |x —rd(x)] = min |x—f],

fEF(p,l,m)
- for
—1
x = ipb Z Oékpk, ar #0
k=—o00

is

_ i(z;:l_[ Oékpk)pb if a_j—1 < p/2

rd(x) = =1 { b )
T " +p ) a1 >p/2
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Rounding errors

- if |x| is smaller than the smallest number in the system, then rd(x) = 0,
- if |x| is larger than the largest number in the system, then rd(x) = +Inf,
- for the absolute and relative rounding errors in the binary system holds

: x — rd(x)]

P_ e —1
—rd < — .
v = rd()] < 2, .

<

(SRS

p

Rounding errors:
- occur while reading a number into a computer, converting a number from one
number system to another, computing +, —, *, /,

- different numerical results for math. equivalent expressions in pseudoarithmetic,
- select suitable algorithms to reduce the lack of precision.
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Machine epsilon

Definition 1.2

We name the number »

2
Machine epsilon or roundoff unit. For IEEE arithmetic with 64 bit holds

eps = tp~! (or macheps)

2
eps = E2*52 A 22210718,

Remark:
- the machine epsilon is the number with the smallest absolute value that can still be
added to 1 so without getting 1,
- for all x with |x| < eps holds 1 & x = 1.

Computation of the machine epsilon:

1 x = 1;

2 eps = 1;

3 while x+teps>1

4 eps = eps/2;
5 end

6 2xeps

Mathias Sawall Introduction to Numerical Mathematics WS 25/26 11/242



Outline

1. Machine computing

1.3 Error analysis
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Error analysis

Errors during a calculation:

- each calculation step includes a (small) generated error and a propagated error

o= &g f(X) +[F)—f(x),
—— N

generated error  propagated error

e. g. the relative error for (x + Ax) + (y+ Ay) =x+ y+ (Ax+ Ay) is
AxxAy  x Axi y Ay

xty 7xiy7 yiy?7

- the relative error for x + y increases if |x + y| = 0 (catastrophic cancellation),

try to design algorithms avoiding catastrophic cancellation,
- backward and forward error analysis.
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Condition numbers

Definition 1.3 (Condition numbers)

The absolute condition number of the problem of calculatingy = f(x) is the multiplying
factor of the absolute initial error

acond(f) := f'(%).

The relative condition number of the problem to calculate y = f(x) is the multiplying
factor of the relative initial error

cond(f) := )’éf](‘;())?)

Approximation of the relative error of a function value y
_ O & Xf'(%)
TG R N A6

EX¥Ex  cond(x)

=&f + &, - cond(f).
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2. Nonlinear equations & optimization
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Nonlinear equations

Problem:
- given function
fiR" >R,
- determine the zeros of f(x), this means x* with f(x*) = 0, whereas
fi(x) 0
fx)=0 < =|:
4 (x) 0

Possible solutions:
- there exists no solution, for example x* + 1,
- there exists a finite number of solutions, for example x* — 1,
- there exists an infinite number of solutions, for example x* sin(1).
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2. Nonlinear equations & optimization
2.1 Banach fixed-point theorem
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Fixed-point iteration

Definition 2.1
Lety : I — I withl C R" be a function mapping the set I into itself. An x* € I is called a
fixpoint of ¢ if
P(x") = x".()
Furthermore, (x) is called a fixpoint form.

Geometric meaning:
- fixed points are the intersections of ¢ (x) with the straight line y = x.
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Banach fixed-point theorem

Definition 2.2

A mapping ¢ : I — I withI C R" is called contraction if there exists a constantL € [0, 1)
such that for all x,y € I

o) = eIl < Lilx = yll-(+)

Remarks:

- if L < 1, then images of two points are always closer to each other than the
originals (contraction),

- for differentiable f : R — R with I C R, the map f is a contraction, if

max If'(x)| <L < 1.

- ingeneral, i. e. without the restriction L < 1, one calls (x) a Lipschitz constant and
L a Lipschitz constant.
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Banach fixed-point theorem

Theorem 2.3 (Banach fixed-point theorem)

LetI be a closed subset of R" and ¢ : I — I be a self-mapping, i.e., it holds that
»(I) C I. Furthermore, let p on I be a contraction.
Then ¢ has exactly one fixed-pointx* € I and the sequence {x, }.—o,1,2,... generated by
the fixed-point iteration
Xn+1 = ‘P(xn)

converges for each starting iteration x, € I to this fixed-point.

Therefore, the following must be checked:
- Is I complete?
- Does ¢(I) C I apply?
- Holds [lo(x) — ()| < L|jx — y|| forallx,y € Taswellas L < 1?
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Fixed-point problem by logistic map

Example:
- consider the iteration Y,41 = ¢(¥,) with Yo = 0.1 and

() = (1+r)y—nr,

- fixed points and alternating points after a short start-up phase of at least 10 steps

; ‘; Iterations for r = 1.8 1 Iterations for r = 2.2 15 Iterations for r = 2.5
o | o IO A
os | | ARANHRH RN AR
o] g = A

Analysis of the fixed points:
- fixed-point form y, .1 = () = (1+r)y — ry?,
- fixed-points are y, = 0, y» = 1, the first value y, is not of interest,
- for y» holds ¢’(y2) = 1 — r, thus y» is stable only for r < 2.
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Fixed-point problem by logistic map

Bifurcation diagram (Feigenbaum constants):
- using the iterations p(y) = (1 + r)y — 17,
- plot the iterations Y; for r > 150,
- several alternating situations.

Bifurcation diagram for r € [1.8, 3]

1.2
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Fixed-point problem by logistic map

Alternations between two values:
- fixed-points for

GO =y 1+ 1 =y)r) - 1+ 7=+ (1 —y)r)

0.5r+14+0.5vr2 —4
n=0,y=1 y4= p
- stability analysis by (%) (y), e. g. for r = 2.2 only y; and y, are stable fixed points.

. Analysis for ¢*(y) and r = 2.2

\

2L\
3 - ,X,,
2 \\\
-4

Fixed-points of period 4:

- thus y = *(y), e. g. for r = 2.5 there are four stable points

y3 =06, yi=0.7012, ye=1.1576, y; =12.
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2. Nonlinear equations & optimization

2.2 Newton’s method
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Newton’s method

Idea:
- put atangent to f(x;),
- the zero of the tangent as a new iterate x4 .

lteration of Newton’s method:

f(x)

Xi41 = Xi —

1)
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Newton’s method

Definition 2.4

Let (x;)i=0,1,2,... be a sequence with x; € R", which converges to x* € R" and let x; # x*
for alli. Further let || - || be a vector norm for R".

The sequence is called convergent to x* with at least the convergence order p if there is
ac> 0 with

b =" < cllx = 2|

for all sufficiently large i € N.

Theorem 2.5

Letx* be a simple zero of f and further let U C R be an open neighbourhood around x*
as well as f be two times continuous differentiable on U.
In a neighbourhood of x* holds

Xkpl — X = L) (e —x*)*, foran¢ e U.
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Outline

2. Nonlinear equations & optimization

2.3 Newton’s method for systems
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Newton’s method for systems

Newton’s iteration:

Xk+1 :xk+A:xk— (Jf(xk))_lf(xk), k:O,l,Z,....

Jacobian matrix of partial derivatives of first order of f:

on on
Ox| e Oxp
Jr(x) =1 : .
fn Ofn
Ox| e Oxp

Stopping criterion:
If(xe)l2 < e andlor A2 < ex

wither, e, > 0, €.0.6f = 10"% and e, = 107*.
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Newton’s method for systems
Example (fractal):

- 2 x 2 system of equations
3 2
_(x—=3xixz—1\ _ (0
flx) = ( 3xix — X3 ) o (0)

(1’0)’ (_1/2’ \/§/2)7 (_1/27_\/§/2)a

- iteration converges to one of the solutions, depending on the starting vector,
- application for starting vectors in [—2,2] x [-2,2].

- three solutions
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Newton’s method for systems

Example:
- consider the problem of Rosenbrock (with the solution x* = (1, 1)")

2 2 _ L= i _( ! 0
[R =R, [l xn) = (10(x2—x%)> with  Jy = (— 0x; 10)’

- applying Newton’s method to x; = (0,0)” we get

0\ (-1 o\ '/1\_[1

0 0 10 0)~ \o

1 -1 0 0\ (1
0/ \-2 o01)\-10)  \1/"

Rosenbrock function n = 2 Contour plot n =2

D = O _ Jf(x(o))flf(x(o))

@ — —Jf(x(l))flf(x(l))
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Outline

2. Nonlinear equations & optimization

2.4 Variants of Newton’s method
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Damped Newton’s method

Damped Newton’s method:
- do not take the full step, but only a part,
- for0 < A <1 andn = 1 this means

o L)
)

Xit1 =

- the same for systems
e = 2 — (I () T f (),
- e. g. divide A by 2 until

I (o = AU () ")) || < (1 — %)Ilf(xk)ll-
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Simplified Newton’s method

Simplified Newton’s method:
- update the computation/approximation of J¢(xx) not in each step,
- work with the computed J¢(x¢) for a number of my, iterations,
- use LU-decomposition.

Advantage:
- less computations of Jy(xx) (high effort).

Disadvantage:
- linear convergence only.
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Outline

2. Nonlinear equations & optimization

2.5 Nonlinear least-squares
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Nonlinear least-squares problems

Nonlinear least-squares problem:

F(x) = %Z (fi(®)’ = min, f:R"=>R", m>n
i=1

Necessary condition for a local minimum:

VF(x) = (J/f) (x) = 0. (1)

Gauss-Newton step:

e = x — (I a)dr()) ™ (I (a)f () -
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Nonlinear least-squares problems

Levenberg-Marquardt procedure:
- additional regularization of the solution,
- iteration reads

e = — o (] ()dr(u) + M)~ (I (u)f ()

regularization by M € R"*" e.g. M = I,
- for 3 =0 and a = 1 we get Gauss-Newton’s method,
- otherwise the additional term acts regulating e.g. to avoid too large steps.
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2. Nonlinear equations & optimization

2.6 Optimization
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Gradient descent

Problem:
- find the minimum of f: Q@ — R,
- unconstrained if Q2 = R" otherwise constrained.

Gradient/steepest descent:
- for a differentiable f (x) the gradient Vf(x«) is the direction of steepest ascent,
- use vy = —Vf(x) to get the steepest descent,

- the function s — f(xx + svk) is monotonously decreasing for s € [0, 5) for some
positive 3,

start with s = 1 and divide s by 2 until

S+ svi) < f(x),

- US€ Xj41 = Xk + SVk.
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Optimization

Curve-fitting problem:
- measured values for c(r) are

- approach
g(t) = g(t;x) = x1 exp(xat),

- compute the parameters x; and x, by minimizing the error
1
£ = 5 lg(t,x) = el

- the optimum is at x*(8.8551, —0.4722)".
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Optimization

Curve fitting problem and cost function:

Curve fitting

2 * data
—Isq fit
8 q

Concentration
o

Time Growth rate zo Linear coeff. x;
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Optimization

A number of 100 steps of steepest descent for xo = (7, —1)":

Iters & contour gradient method Iters & contour gradient method
= | -0.3
-0.35
g -04
-0.45
-0.5
7
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Optimization

Gauss-Newton’s:
- proper method of curve fitting,
- starting vector xo = (7, —1)7,
- after 6 iterations we get an approximation with

llxs — x*[]2 =3.6-107*

ions & contour Gauss-Newton

-0.2

-0.4

T

-0.6

-0.8
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Outline

3. Interpolation
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Polynomial interpolation

Given:
(xi, i), i=0,...,n

To compute: Polynomial p(x) of degree smaller than or equal to n with

pxi)=fi, i=0,...,n.

Interpolation condition: The nodes xo, . . . , x, have to be pairwise different.

Theorem 3.1
For pairwise different grid points the interpolation polynomial is unique.
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Polynomial interpolation

A simple approach to compute the polynomial:

p(x) = ao + arx + ax’ + ...+ ax".

System of linear equations (Vandermonde’s matrix):

1 xo xé

2
I x1 x
1 x x,

with

X0 ao Y0
X\ ai i
. =1 (2)
X, an Y

det(Var) = ] (x—x).

0<i<j<n

But: The problem is ill-conditioned. Use other approaches.

Mathias Sawall
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Outline

3. Interpolation
3.1 Lagrange interpolation
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Lagrange interpolation

Definition 3.2

According to xo, - . . , x, the Lagrange basis functions are

=[] ~—*

Xi— X
j=04#i "

Obviously holds

o mex [ 1 fore=i
lilxe) = H e { 0 otherwise.
J=0,jF#i
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Lagrange interpolation

Definition 3.3
The construction .,
X — X
px) = Zfili(x) = Zfi H ﬁ
i=0 i=0  j=0,i " J

is called Lagrange polynomial.
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Outline

3. Interpolation

3.2 Newton interpolation
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Newton interpolation

Newton interpolation (1)
- successive structure, start with one interpolation point, then 2, 3, etc.
- degree of the polynomial increases by one per step,

initialisation po(x) = yo

- first iteration step

Y1 — Yo

pi(x) =po(x) +ci(x —x0), with ¢ = .
X1 — X0
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Newton interpolation

Newton interpolation (2)
- further iteration from p,,—1(x) to p.(x) by

m—1

Pu() = o1 () + en [ [ (= ),

i=0
- to have pm(xm) = ym Next to pu(x;) =y forj =0,...,m — 1 use

Ym — Pm—1 (xm)

T2 Gon — i)

Cm =
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Newton interpolation

Definition 3.4
Using fxo] = yo the divided difference are

flxm, - ., x0] ::c,,,:ymmtlpmifl(xm)7 m=1,2,...,n.
[TZ (o — xi)
The representation of p,,(x) in Newton’s form is
m i—1
pm(x) = Zf[xiv- ,XO]H(X—Xj)
i=0 Jj=0

Theorem 3.5

Letxo, ..., xn be pairwise different and f[xo] = yo, . ..,f[xu] = yn. We can apply the
recursion

] :f[x,,,,...,)ﬂ] — flm=1, -, x0]

SXms -5 x0
Xm — X0

Mathias Sawall Introduction to Numerical Mathematics WS 25/26 52 /242



Newton interpolation

Computation of coefficients using Newton’s scheme:

- initialisation f[x;] = y; fori =0,...,n,

- triangle scheme

X0

X1

X2

X3

flxo)
fal
flx2]
flxs)

flal=flx] _. flx1, %)

X1 —X

flol—fla] _. flox]=flxix] . ¢
o =il o =P, X, x0)

% =:flx3, %] j%iwzif[xmxz,m Slxs, %2, %1, X0]

- the interpolation polynomial reads

Mathias Sawall

p(x) = flxo] +flxr, xo] (x — x0) + f[x2, x1, x0] (x — x0) (x —x1) + ...
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Newton interpolation

Example:
- interpolation of

(_1’5)7 (Ov4)7 (17_3)7 (273)7
- polynomial of degree < 3,
- Newton’s scheme by divided differences
—-11] 5
0 4 -1
1 |-3 -7 -3
213 6 B ¢

- interpolating polynomial is

px) =5—-1(x+1) =3(x+ )x+ %(x—i— Dx(x—1)
19 3

_ 43 5
=4 6x 3x+6x.
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Newton and Lagrange interpolation

The single Newton steps (left) as well as the single Lagrange basis functions (right)

niw) 2160)
L(z) Ip()
6 6 15 { 15 (
4 4
2 2 1 1
0 0 05 05
2 -2
0 0

-4 -4 ]/

-2 [} 2 2 0 2 05 05

2 0 2 2 0 2
( :
pa(z) pa(x) Iy(x) Iy(z)

6 6 15 15
4 4 1 1
2 2
o 0 05 05
2 -2 0 0
4 -4

2 o 2 2 o 2 0%, 0 2 0%, 0 2

Both approaches result in the same polynomial
1
p) =5 — 10+ 1) =3+ 1)x + ;(x—I— Dx(x — 1)

x(x —1)(x —2) x+1DEx—-1)(x—2) (x+ Dx(x —2) x4+ Dx(x—1)
— +4 . +(=3) - +3 :

43 19
=4 Zx-32 4+ =5
6)C X 6X

=5
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Newton interpolation

Extension:

- consider that we add (-2, 5) as additional point to the previous example,
- the extended scheme is

—-1| 5
0 4 —1
1 -3 -7 -3
213 6 B 2
s 1 E
- the new polynomial is
- 19
p(x):5—1(x+1)—3(x—|—1)x+g(x—&—l)x(x—l)—k(x—&—l)x(x—1)(x—2).
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Outline

3. Interpolation

3.3 Error or the interpolation
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Error or the interpolation

How about max,c, 4 [f(x) — p(x)| for a function f(x)?

Theorem 3.6

Letf(x) be (n+ 1) times continously differentiable on the interval [a, b]. Further let
a<x<x <---<x, <bandp(x) be the interpolating polynomial for (x;,f (x:)),
i=0...,n. Then it holds

G — ()] < (wai')! ma [0 (g)

for

n

w(x) = H(x —Xx).

j=0
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Limits of polynomial interpolation

Runge, 1901:
- interpol. of (1 +x*)~"', polynomials of nth degree, equidistant nodes in [—5, 5],
- very bad approximations for large n, oscillations at the boundary.

pa(x) ps(z)
! 7N ! N
/AN [\
05 /0 N\ 05 R
”
ot 7 V-9 of~ )4
\ \ /
05— 05
5 0 5 5 0 5
pi(z) ] ps(z)
/
1 r /N

5 0 5 5 0 5
pio(z pu(z)
R 10(x) 11
0
10
1
2 5
4 0 o o66e
5 0 5 5 0 5 5 0 5
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Limits of polynomial interpolation

Sesitivity for noise:

- interpolation of f(x) = sin(27x) using 22 equidistant knots on [—1, 1],
- comparison of p(x) for noisy and noise free data 3 = (1 + ¢)f(x;) with e = 107%,
- large differences for the polynomial and high oscillations at the boundaries.

2 T -
) o y; =sin(2mz;)
15 J p(z) for (zi,y;) 1
i () for (wi, (1 +€)yi)
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3. Interpolation

3.4 Hermite Interpolation
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Hermite Interpolation

Modified problem:
- interpolation also for values of derivates of f(x),

- nodes xo < x1 < -+ < x, and values £V = £ (x,) forj = 0,... . n — 1,
- compute an interpolation polynomial p(x) with

deg(p(x)) <n, n+1=> m
i=0

such that
pU)(xi):ﬁO), j=0,....,n—1,i=0,...,m. (3)

- the interpolating polynomial is unique as n + 1 degrees of freedom equals the
number of conditions.
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Hermite Interpolation

Scheme for a block to one node:

Interpolating polynomial
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Hermite Interpolation

Example:
- interpolation of (—1,2), (0, 1), (1, 3) with the additional condition p’(0) = 1.5,
- Newton’s scheme

—_

—oco !l

- interpolation polynomial

p(x) =2 — (x+ 1) +2.5x+ Dx— 1(x + 1)x*.
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Hermite Interpolation

Example:
- interpolation polynomial for f(x) = 1/x using xo = 1, x1 = 2,
- conditions
fxo) =1, f'(x0) = =1, f(x0) =2, f" (x0) = —6
flx1) =05, f(x)) = —0.25

- Newton’s scheme
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- interpolation polynomial

P = 1= (= 1)k (= 17 = (= D 4 (e D' = 1= 1) = 2).
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3. Interpolation

3.5 Splines
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Splines

Splines:
- many interpolating points,
- local interpolations for a few neighboring points instead of a global polynomial,
- piecewise composed polynomial using smoothness requirements at transitions.
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Splines

Definition 3.7

The cubic splines are defined as follows: For the pairs (xi,y:), i =0, ...,n, compute a
spline S that interpolates these points such that

St xipa] (%) := pi(x) is a polynomial of degree 3

and to make sure that the function is twice continously differentiable at the transition
points. This means S has to fulfill the four conditions

pi(x) =y, pilxiq1) =vyir1, pi(x) =piyi(x), pi(x) = pipi(x).
For the first and the last polynomial there are no boundary conditions. The selection
§"(a) =S"(b) =0

results in the natural splines.
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Splines

Computation of the splines:
- alinear system of equations (moment equations) to calculate the cubic splines,
- quite technical, see the following theorem.

Theorem 3.8
If the twice continuously differentiable cubic spline S satisfies the interpolation condition
S(Xj) :ﬁ‘, j:o,...,}’l7

then on [x;, xj+1] its form reads

Xji+1 — X L=
S(x) = fi~L -
(x) ﬁxj--H — Xj +ﬁ+1xj+l — X
1 Xit1 — X)(x — x;
Lsr ey = DE0) (0 4 (- 5)
Xji+1 — X
1 Xjit1 — X)(x — x;
- gs”(le)(’H_—)_(_’)((x = x;) + (%41 — X))
Xj+1 — Xj
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Splines

Theorem 3.9
Under the conditions of Thm. 3.8 it holds for the moments S” (x;) forj =1,...,n— 1 that

Xji+1 — Xj  on 7 Xj — Xj—1
—S5"(x; + 28" () + —————
X4l — X1 ( J+1) ( J) Xit1 — X1
6 <ﬁ+1 —fi S Ji- >

X1 — Xj—1

= Of [xj—1, %), %i11].

8" (x-1)

il =X X = X

Theorem 3.10

Together with the two conditions, e.g. S” (xo) = S (x.) = 0 for the natural splines, the
system of linear equations has a unique solutions. The matrix of the system has a
condition not larger then 3.
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Splines

Example:
- consider once again the example of Runge
1
flx) = T2

- cubic splines for equidistant nodes and [—5, 5] using MatLab,
- much better results than for polynomials, maximal error

S(x) — £(x)| ~ 0.022.
max, |S) —f(x)]

Splines vs. polynomials

T

O points
—— polynomial
——splines

-5 0 5
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Splines

Splines in MatLab:
f=@(x) 1./(1+x."2);
X =-5:5;
Y = f(X);
xx = linspace(-5,5,401);
yy = spline(X,Y,xx);
plot(X,Y,0’,xx,yy)
max(abs(yy-f(xx)))
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3. Interpolation

3.6 Numerical differentiation
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Numerical differentiation

Definition 3.11 (Finite differences)

The approximations
by = LN 1),
b9 = =S,
Dy — L+ ) —fe =)

2h

forf'(x) are called forward difference, backward difference and central difference.

Theorem 3.12 (Approximation orders)
For the finite differences holds

f(x) = DYf(x) = O(h), (order 1)
f'(x) =D f(x) = O(h), (order 1)
f'(x) = D (x) = O(h?), (order 2).
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Numerical differentiation

Example:

- approximation of f'(xo) for f(x) = arctan(x) and xo = 0.5
- approximations errors for different 4

h | ID*f(x0) —f'(x0)]

ID”f(x0) = f'(x0)|__|D"f (x0) —f'(x0)|

0.1 321072 3.1-1072 43-107*
0.01 3.2-1073 3.2-107° 43.107°
1073 3.2-107° 3.2-107° 4.8-107"2
10°
—%—D*f(x0) —
—-Df(x0)
Df (x0)
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Numerical differentiation

Example:
- approximation of f'(xo) for f(x) = arctan(x) and xo = 0.5
- but we cannot reduce & arbitrarily, as

h | ID¥f(x) —f'(x)|  ID7f(x0) —f'(x0)| D% (x0) —f"(x0)]

10~ 27-107° 29-107° 1.0-107°
10~ 6.4-107* 6.4-107* 6.4-107%.
10°

10—10

10710 10°
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Numerical differentiation

Definition 3.13 (Finite differences)

The approximation

fe=h) =2 +f(x+h)
h2

Df(x) =

forf" (x) is called central difference of second order.

The error of the second order central difference is in O(h?), so D?f is an approximation
second order, thus
f"(x) = D’f(x) + O(K).
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Numerical differentiation

Partial derivatives of higher order in 2D:
- mixed partial derivatives for hy = hy = h

e A u(x +hyy+h) —ulx+hyy—h)—ulx—~hy+h)+ulx—hy—nh)

412
- central difference of second order for h, = h

Uew 22 u(x—|—h,y)—2u(x,y)+u(x—h,y)
xx ~ 2

- for the Laplace operator or Laplacian for i, = h, = h we get

Au = e + Uyy

ul ot hyy) 4 u(x — hyy) + ulx,y )+ u(,y — h) — du(x,y)
~ "
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9. Literature
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