University of Rostock Institute of Mathematics PD Dr. M. Sawall M.Sc. T. Andersons

1. Tutorial on the lecture "Analysis and Numerics of Partial Differential Equations"

Problem 1.1:

Find all solutions of the following ordinary differential equations/systems:

a)
$$y'(t) = \frac{2}{t}y(t) + 4t^3$$

b) $y'(t) = \frac{1 + (y(t))^2}{t}$
c) $x'(t) = y(t) + t$, $y'(t) = x(t) - 1$

<u>Problem 1.2:</u> Find all solutions u = u(x, y) of the partial differential equation

$$12u_y - \frac{1}{2}u_{xy} = 0.$$

<u>Problem 1.3:</u> Let z = z(x, y) be an unknown function. Solve the following initial value problem:

$$2xz_x + yz_y = 0, \quad z(1,y) = y^2 + 5$$

Problem 1.4:

Let ϕ be twice differentiable and differentiable for all real x. Further be $c \in \mathbb{R}$. Show that

$$u(x,t) = \frac{1}{2}(\phi(x+ct) + \phi(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} \phi(s) ds$$

is a solution of $u_{tt} = c^2 u_{xx}$.

Next show that this solution also satisfies the conditions $u(x,0) = \phi(x)$; $u_t(x,0) = \phi(x)$ for all $x \in \mathbb{R}$.