10. Tutorial on the lecture "Analysis and Numerics of Partial Differential Equations"

Problem 10.1:

Determine whether the following matrices are irreducible or not.

(a) $A =$	/1	7	3	-0/		/3	-3	5	9 \
	0	-1	2	0	(b) $B =$	0	1	0	-2
	9	0	0	5		9	3	7	2
	0	3	0	8/		$\left(0 \right)$	7	0	6 /

(c) The discretization matrix of $\Delta u = 0$ for $\Omega = (0, 1)^2$ with h = 0.2.

Problem 10.2:

Let be given the following parabolic PDE with initial and boundary conditions:

$$u_t - u_{xx} = 3 \text{ in } (0,1) \times (0,20),$$
$$u(x,0) = \begin{cases} 2x, & x \in (0,0.5], \\ 2(1-x), & x \in (0.5,1), \end{cases}$$
$$u(0,t) = u(1,t) = 0.$$

Calculate the first time layer with h = 0.25 and k = 0.06.

- (a) Use the explicit Euler-method
- (b) Use the Crank-Nicolson-method.
- (c) Use the implicit Euler-method.

Problem 10.3:

- (a) Are the solutions of Problem 11.2 stable?
- (b) What are the conditions that the solutions are stable for h = 0.1?

Problem 10.4:

Let the following initial boundary value problem be given

$$u_t - u_{xx} = 5$$
 in $(-1, 1) \times (0, 10)$,
 $u(x, 0) = 10x^2$, for $x \in (-1, 1)$,
 $u(-1, t) = u(1, t) = 10$.

Calculate the first time layer with h = 0.25 and k = 0.01.