,

11. Tutorial on the lecture "Analysis and Numerics of Partial Differential Equations"

Problem 11.1:

Let the following parabolic initial-boundary value problem be given

$u_t(x, y, t) = 2\Delta u(x, y, t)$	for $(x,y) \in \Omega = (-1,1)^2, t \in (0,10),$
$u(x, y, 0) = \max\left(0, (1 - x^2)(1 - y^2)\right)$	for $(x, y) \in \Omega$,
u(x, y, t) = 0	for $(x, y) \in \partial \Omega$, $t \in (0, 10)$.

Use the explicit Euler-method and set up the discretization matrix with $h_x = h_y = 0.25$ and k = 0.03. Calculate the approximations for the first time layer.

<u>Problem 11.2:</u> Solve the following hyperbolic initial-boundary value problem

$u_{tt}(x,t) = 4u_{xx}(x,t)$	for $x \in \Omega = (0, 1), t \in (0, 10),$
$u(x,0) = \exp(-40(x-0.5)^2)$	for $x \in \Omega$,
$u_t(x,0) = 0$	for $x \in \Omega$,
$u(0,t) = u(1,t) = 0$ for $x \in \partial\Omega, t \ge 0$.	

Use finite differences with $h_x = 0.2$ and k = 0.05. Compare your approximation with the analytical solution.

Problem 11.3:

What can be said about the numerical stability of problem 12.2? What is the maximal stepsize in time direction regarding stability?

Problem 11.4:

Implement a code to approximate the solution of the initial-boundary value problem

$u_{tt} - \Delta u = 0$	for $x \in \Omega = (-1, 1)^2$
$u(x, y, 0) = \exp\left(-20(x^2 + y^2)\right)$	for $x \in \Omega$,
$u_t(x, y, 0) = 0$	for $x \in \Omega$,
u(t,x) = 0	for $x \in \partial \Omega$, $t > 0$.

Use a grid with N = 31 nodes in each direction. Compute approximations for $t \in [0, 5]$ with k = 0.05. Use a number of 100 eigen modes to approximate the initial displacement.