Additional problems, week 1-4

Example 1. Compute the solution of the pde

$$
y z_{x}-x z_{y}=0 .
$$

Example 2. Compute the solution of the pde

$$
z_{x}+y z_{y}=0 .
$$

Example 3. Compute the solution of the pde

$$
\sqrt{1-x^{2}} z_{x}+z_{y}=0, \quad z(0, y)=y
$$

Example 4. Find the integral surfaces of the vector field $\left(x^{2}, y^{2},(x+y) z\right)^{T}$ containing the line
(a) $x=y=z$,
(b) $x=1, y=z$,
(c) $x=y, z=x^{2}$.

Example 5. Compute the solution of the pde $z u_{x}+y u_{y}+x u_{z}=0$.

Example 6. Compute the solution of the $p d e x^{2} u_{x}+y^{2} u_{y}+(x+y) z u_{z}=0$.

Example 7. Solve the pdes
(a) $a z_{x}+b z_{y}=-c z$,
(b) $x z_{x}+(y-1) z_{y}=x z$.

Example 8. Solve the initial value problem

$$
\begin{aligned}
& x z_{x}+(y-1) z_{y}=x z \\
& z(x, 0)=g(x) .
\end{aligned}
$$

Example 9. Find the general solution $u(x, y, z)$ of the equation

$$
x u_{x}+(y-1) u_{y}+x z u_{z}=0 .
$$

Additional problems, week 5

Example 10. Classify $u_{x x}+u_{x y}+u_{y y}=u_{x}+u_{y}+u$ as elliptic, parabolic or hyperbolic.

Example 11. Classify $8 u_{x x}+6 u_{y y}+4 u_{z z}+u_{x y}+2 u_{x z}+u_{y z}=0$ as elliptic, parabolic or hyperbolic.

Example 12. Classify $2 u_{x y}-2 u_{x z}+2 u_{y z}+3 u_{x}-u=0$ as elliptic, parabolic or hyperbolic.

Example 13. Compute the principal part and solve the characterictic equation for
(a) $u_{x x}-4 u_{x y}+4 u_{y y}+2 u_{y}+u=0$,
(b) $u_{x x}+2 u_{x y}-3 u_{y y}+3 u_{x}-u=0$,
(c) $\mathbf{e}^{2 y} u_{x x}-\mathbf{e}^{2 x} u_{y} y=0$

Example 14. Transform the pde

$$
u_{x x}+2 u_{x z}+u_{y y}+2 u_{y z}+2 u_{z z}=0
$$

into the canonical form.

Additional problems, week 6

Example 15. Solve the wave equation for $u(x, 0)=\mathbf{e}^{x}, u_{t}(x, 0)=\sin (x)$.

Example 16. Solve the wave equation for $u(x, 0)=\ln \left(1+x^{2}\right), u_{t}(x, 0)=x-4$.

Example 17. Solve the wave equation $u_{t t}-u_{x x}=0$ for $0<x<1, t>0$ for the initial conditions $u(x, 0)=\sin (\pi x), u_{t}(x, 0)=\sin (2 \pi x)$.

Example 18. Solve the wave equation

$$
\begin{aligned}
& u_{t t}-\Delta u=0, t>0, \\
& u(x, 0)=0 \\
& u_{t}(x, 0)=p(x)
\end{aligned}
$$

for $x \in \mathbb{R}^{3}$ with $p\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}$ using Kirchhoff's formula.

Example 19. Compute the solution for a circle with radius 1 and the boundary condition $g(\varphi)=\pi^{2}-\varphi^{2}$ for $-\pi \leq \varphi \leq \pi$.

Example 20. Compute the solution for a circle with radius 1 and the boundary condition $g(x, y)=x^{2}-y^{2}-x$.

