Example 1. Compute the solution of the pde

$$yz_x - xz_y = 0.$$

Example 2. Compute the solution of the pde

$$z_x + yz_y = 0.$$

Example 3. Compute the solution of the pde

$$\sqrt{1-x^2}z_x + z_y = 0, \qquad z(0,y) = y.$$

Example 4. Find the integral surfaces of the vector field $(x^2, y^2, (x+y)z)^T$ containing the line

Example 5. Compute the solution of the pde $zu_x + yu_y + xu_z = 0$.

Example 6. Compute the solution of the pde $x^2u_x + y^2u_y + (x+y)zu_z = 0$.

Example 7. Solve the pdes

- $(a) az_x + bz_y = -cz,$
- (b) $xz_x + (y-1)z_y = xz$.

Example 8. Solve the initial value problem

$$xz_x + (y-1)z_y = xz$$
$$z(x,0) = g(x).$$

Example 9. Find the general solution u(x, y, z) of the equation

$$xu_x + (y - 1)u_y + xzu_z = 0.$$

Additional problems, week 5

Example 10. Classify $u_{xx} + u_{xy} + u_{yy} = u_x + u_y + u$ as elliptic, parabolic or hyperbolic.

Example 11. Classify $8u_{xx} + 6u_{yy} + 4u_{zz} + u_{xy} + 2u_{xz} + u_{yz} = 0$ as elliptic, parabolic or hyperbolic.

Example 12. Classify $2u_{xy} - 2u_{xz} + 2u_{yz} + 3u_x - u = 0$ as elliptic, parabolic or hyperbolic.

Example 13. Compute the principal part and solve the characterictic equation for

- (a) $u_{xx} 4u_{xy} + 4u_{yy} + 2u_y + u = 0$,
- (b) $u_{xx} + 2u_{xy} 3u_{yy} + 3u_x u = 0$,
- (c) $e^{2y}u_{xx} e^{2x}u_y y = 0$

Example 14. Transform the pde

 $u_{xx} + 2u_{xz} + u_{yy} + 2u_{yz} + 2u_{zz} = 0$

into the canonical form.

Additional problems, week 6

Example 15. Solve the wave equation for $u(x, 0) = e^x$, $u_t(x, 0) = \sin(x)$.

Example 16. Solve the wave equation for $u(x, 0) = \ln(1 + x^2)$, $u_t(x, 0) = x - 4$.

Example 17. Solve the wave equation $u_{tt} - u_{xx} = 0$ for 0 < x < 1, t > 0 for the initial conditions $u(x, 0) = \sin(\pi x)$, $u_t(x, 0) = \sin(2\pi x)$.

Example 18. Solve the wave equation

 $u_{tt} - \Delta u = 0, \ t > 0,$ u(x, 0) = 0, $u_t(x, 0) = p(x).$

for $x \in \mathbb{R}^3$ with $p(x_1, x_2, x_3) = x_1 x_2$ using Kirchhoff's formula.

Example 19. Compute the solution for a circle with radius 1 and the boundary condition $g(\varphi) = \pi^2 - \varphi^2$ for $-\pi \le \varphi \le \pi$.

Example 20. Compute the solution for a circle with radius 1 and the boundary condition $g(x,y) = x^2 - y^2 - x$.