Exam "Analysis and Numerics of Partial Differential Equations"

Problem 1 (5 points):

- (a) Find the integral curves of $\vec{v}(x, y, z) = (x, x^2/y, xz)^T$.
- (b) Give the general solution of $xu_x + x^2/yu_y + xzu_z = 0$ for $u : \mathbb{R}^3 \to \mathbb{R}$.
- (c) Solve the initial value problem $xz_x + x^2/yz_y = xz$ with $z(0, y) = 1 + y^2$ for $z : \mathbb{R}^2 \to \mathbb{R}$.
- (d) Consider the PDE from (c) but with the initial condition $z(t,t) = \exp(t)$ for $t \in \mathbb{R}$. Check whether there exists no solution, a unique solution or infinitely many solutions and justify your answer.

Problem 2 (5 points):

Write down the Lax-Friedrich scheme to approximate the solution of

$$u_t + 0.5(t+1)uu_x = 0 \quad \text{for } x \in \Omega = (0,5), \ t > 0,$$

$$u(x,0) = \max(0, 1 - (x-2)^2) \quad \text{for } x \in \Omega$$

using h = 0.5. Use the scheme as well as k = 0.5 and calculate the approximation for u(2.5, 1). What is the maximal time step size to calculate approximation for $t \in [0, 1]$ in a stable way?

Problem 3 (4 points): Transform the PDE

$$u_{xx} + 2u_{xz} + 2u_{yy} + 2.5u_{xy} + u_z = 0$$

for u(x, y, z) into canonical form. To this end calculate a proper coordinate transformation. Write down the transformed PDE.

Problem 4 (5 points):

Consider the domain $\Omega = (0,3)^2 \setminus [1,2]^2$ and the initial boundary value problem

$$\begin{aligned} -\Delta u &= 2 \quad \text{on } \Omega, \\ u(x,y) &= |x - 1.5| + |y - 1.5| \quad \text{on } \partial \Omega \end{aligned}$$

- (a) Make a sketch of the domain and the grid using $h_x = h_y = 0.5$ and number the grid points.
- (b) Give the matrix of the associated linear system of equations to approximate u(x, y) at the grid points using finite differences. Is the matrix irreducible?
- (c) Compute the right hand side of the system of equations for the equations associated with the three grid points

(0.5, 0.5), (1, 0.5), (2.5, 1.5).

Problem 5 (6 points):

Calculate the solution u(x,t) of the following initial value problem analytically in form of an infinite sum (Fourier)

$$\begin{split} & u_{tt} - u_{xx} = 0, & 0 < x < 1, t > 0, \\ & u(0,t) = u(1,t) = 0, & t \ge 0, \\ & u(x,0) = 1 - 2|x - \frac{1}{2}|, \ u_t(x,0) = 0, & 0 < x < 1. \end{split}$$

HINT: Reformulate the integration to use 2x instead of $1 - 2|x - \frac{1}{2}|$.

Problem 6 (5 points):

Consider the parabolic PDE, the boundary and the initial conditions

$u_t(x, y, t) = \Delta u(x, y, t)$	in $\Omega = (0,1)^2, t > 0$
u(x, y, t) = 0	for $(x,y) \in \partial \Omega, t \ge 0$
$u(x, y, 0) = \sin(\pi x)\sin(\pi y)$	for $(x, y) \in \overline{\Omega}$.

Transform the PDE into an ODE-system using $h_x = h_y = 0.25$ in terms of the method of lines. Give also the initial values for the ODE-system.

Write down the schemes for Euler explicit, Euler implicit and Crank-Nicholson for arbitrary time step size k > 0. Give formulas for Y_{i+1} in matrix-vector notation for all three schemes.