Exam „Analysis and Numerics of Partial Differential Equations"

Problem 1 (5 points):
(a) Find the integral curves of $\vec{v}(x, y, z)=\left(x, x^{2} / y, x z\right)^{T}$.
(b) Give the general solution of $x u_{x}+x^{2} / y u_{y}+x z u_{z}=0$ for $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$.
(c) Solve the initial value problem $x z_{x}+x^{2} / y z_{y}=x z$ with $z(0, y)=1+y^{2}$ for $z: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(d) Consider the PDE from (c) but with the initial condition $z(t, t)=\exp (t)$ for $t \in \mathbb{R}$. Check whether there exists no solution, a unique solution or infinitely many solutions and justify your answer.

Problem 2 (5 points):
Write down the Lax-Friedrich scheme to approximate the solution of

$$
\begin{aligned}
& u_{t}+0.5(t+1) u u_{x}=0 \quad \text { for } x \in \Omega=(0,5), t>0 \\
& u(x, 0)=\max \left(0,1-(x-2)^{2}\right) \quad \text { for } x \in \Omega
\end{aligned}
$$

using $h=0.5$. Use the scheme as well as $k=0.5$ and calculate the approximation for $u(2.5,1)$. What is the maximal time step size to calculate approximation for $t \in[0,1]$ in a stable way?

Problem 3 (4 points):
Transform the PDE

$$
u_{x x}+2 u_{x z}+2 u_{y y}+2.5 u_{x y}+u_{z}=0
$$

for $u(x, y, z)$ into canonical form. To this end calculate a proper coordinate transformation. Write down the transformed PDE.

Problem 4 (5 points):
Consider the domain $\Omega=(0,3)^{2} \backslash[1,2]^{2}$ and the initial boundary value problem

$$
\begin{aligned}
-\Delta u & =2 \quad \text { on } \Omega \\
u(x, y) & =|x-1.5|+|y-1.5| \quad \text { on } \partial \Omega
\end{aligned}
$$

(a) Make a sketch of the domain and the grid using $h_{x}=h_{y}=0.5$ and number the grid points.
(b) Give the matrix of the associated linear system of equations to approximate $u(x, y)$ at the grid points using finite differences. Is the matrix irreducible?
(c) Compute the right hand side of the system of equations for the equations associated with the three grid points

$$
(0.5,0.5), \quad(1,0.5), \quad(2.5,1.5)
$$

Problem 5 (6 points):
Calculate the solution $u(x, t)$ of the following initial value problem analytically in form of an infinte sum (Fourier)

$$
\begin{array}{ll}
u_{t t}-u_{x x}=0, & 0<x<1, t>0 \\
u(0, t)=u(1, t)=0, & t \geq 0 \\
u(x, 0)=1-2\left|x-\frac{1}{2}\right|, u_{t}(x, 0)=0, & 0<x<1
\end{array}
$$

Hint: Reformulate the integration to use $2 x$ instead of $1-2\left|x-\frac{1}{2}\right|$.
Problem 6 (5 points):
Consider the parabolic PDE, the boundary and the initial conditions

$$
\begin{array}{ll}
u_{t}(x, y, t)=\Delta u(x, y, t) & \text { in } \Omega=(0,1)^{2}, t>0 \\
u(x, y, t)=0 & \text { for }(x, y) \in \partial \Omega, t \geq 0 \\
u(x, y, 0)=\sin (\pi x) \sin (\pi y) & \text { for }(x, y) \in \bar{\Omega}
\end{array}
$$

Transform the PDE into an ODE-system using $h_{x}=h_{y}=0.25$ in terms of the method of lines. Give also the initial values for the ODE-system.

Write down the schemes for Euler explicit, Euler implicit and Crank-Nicholson for arbitrary time step size $k>0$. Give formulas for Y_{i+1} in matrix-vector notation for all three schemes.

