Exam „Analysis and Numerics of Partial Differential Equations"

$\underline{\text { Problem } 1 \text { (5 points): }}$
Consider the vector field

$$
\vec{v}(x, y, z)=\left(y z, x z, x y z^{2}\right)^{T}
$$

(a) Find the integral curves of $\vec{v}(x, y, z)$.
(b) Compute the general solution of $y z u_{x}+x z u_{y}+x y z^{2} u_{z}=0$ for $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$.
(c) Solve the initial value problem $y z z_{x}+x z z_{y}=x y z^{2}$ with $z(0, y)=y^{2}$ for $z: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(d) Consider the PDE from (c) but with the initial condition $z(t, t)=t$ for $t \in \mathbb{R}$. Check whether there exists no solution, a unique solution or infinitely many solutions and justify your answer.

Problem 2 (5 points):
Consider the initial value problem

$$
\begin{aligned}
& u_{t}-\cos (t \pi) u_{x}=0 \quad \text { for } x \in \Omega=(-3,3), t>0 \\
& u(x, 0)=\frac{1}{x^{2}+1} \quad \text { for } x \in \Omega
\end{aligned}
$$

(a) Apply the Lax-Friedrich scheme with $h=0.5$ and $k=0.5$ and approximate $u(1,1)$.
(b) Apply the Lax-Wendroff scheme with $h=1$ and $k=1$ and approximate $u(1,1)$.
(c) What is the maximal stepsize for the Lax-Friedrich scheme with $h=0.5$ to get stable approximations?

Problem 3 (5 points):
Determine the type of the PDE

$$
u_{x x}+3 u_{x y}+2 u_{y y}+u_{x}=0
$$

for $u(x, y)$. Transform the PDE into canonical form with $u_{\xi \xi}=0$ and $u_{\eta \eta}=0$ and write down the transformed PDE.

Problem 4 (5 points):

Consider the boundary value problem

$$
\begin{array}{ll}
\Delta u(x, y)=\sqrt{x^{2}+y^{2}}-1 & \text { in } \Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\} \\
u(x, y)=x^{2}+y^{2}-1 & \text { for }(x, y) \in \bar{\Omega} .
\end{array}
$$

(a) Use the new coordinates $x=r \cos (\varphi)$ and $y=r \sin (\varphi)$ as well as

$$
\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\varphi \varphi}
$$

and transform the PDE and the boundary condition into polar coordinates.
(b) Apply a discretization with the stepsizes $h_{r}=0.5$ in r-direction and $h_{\varphi}=0.25 \pi$ in φ direction. Make a sketch and label all inner points.
(c) Determine the matrix of the associated linear system of equations to approximate $u(x, y)$ at the grid points using finite differences.
(d) Compute the right hand side of the system of equations for the equations associated with the two grid points $(0,0)$ and $(0.5,0)$.

Problem 5 (5 points):

Solve the boundary value problem

$$
\begin{aligned}
-\Delta u(x) & =4 & & x \in \Omega=\left\{x \in \mathbb{R}^{2}:\|x\|_{2}^{2}<3\right\} \\
u(x) & =v(x) & & x \in \partial \Omega
\end{aligned}
$$

with $v(x)=1+2 x_{1}+2 x_{2}+3 x_{1}^{2}+3 x_{1} x_{2}+3 x_{2}^{2}$. To this end
(a) compute $\Delta v(x)$ and
(b) construct the solution $u(x)$ as a sum $u(x)=v(x)+w(x)$ with a $w(x)$ that fulfills $\Delta w(x)=-4-\Delta v(x)$ in Ω and $w(x)=0$ on the boundary of Ω.

Problem 6 (5 points):
Let $\Omega=(0,2)$. Consider the initial-boundary value problem

$$
\begin{array}{ll}
u_{t}(x, t)=\Delta u(x, t) & \text { for }(x, t) \in \Omega \times[0 \\
u(x, 0)=\max (1-2|x-1|, 0) & \text { for } x \in \bar{\Omega} \\
u(x, t)=0 & \text { for } x \in \partial \Omega, t \geq 0
\end{array}
$$

Apply the method of lines with $h=0.25$ and $k=0.25$.
(a) Transform the PDE into an ODE system.
(b) Write down the iteration for Heun's method in matrix-vector notation and compute an approximation for $u(1,0.25)$.
(c) Write down the iteration for Crank-Nicolson in matrix-vector notation.

