7. Additional tasks for exercise on „Introduction to Numerical Mathematics"

Problem 28:

(a) For $k \in \mathbb{N}$ compute the value

$$
s=\lim _{n \rightarrow \infty} \underbrace{k \sqrt{\frac{3}{4} k^{2}+2 k+1+k \sqrt{\frac{3}{4} k^{2}+2 k+1+\ldots+k \sqrt{\frac{3}{4} k^{2}+2 k+1}}}}_{n \text { times root }}
$$

Specify a step function φ and an interval I such that the iteration $x_{n+1}=\varphi\left(x_{n}\right)$ converges to s for all initial values $x_{0} \in I$. Compute 5 iterations with a proper starting value.
What is the exact value of s for a fixed k ?
(b) If you enter a number $x \in(0, \pi)$ into a calculator and press the "cos" key several times, you observe numerically a convergence to a fixed-point. Analyze this behavior with Banach's fixed-point theorem (Specify an interval, check preconditions, specify Lipschitz constant).

Problem 29:

Compute the intersection of the curves $f(x)=\ln (16-x)$ and $g(x)=\sqrt{\frac{2}{3} x^{2}+4}$ in [1, 7]. To this end use a fixed-point iteration
(a) by isolating x on the left hand side of $f(x)=g(x)$,
(b) by isolating x on the right hand side of $f(x)=g(x)$.
(c) Analyze both iterations in terms of convergency.
(d) How many iterations are necessary at the latest to drop with the distance $\left|x_{i}-x^{*}\right|$ below a level of $\varepsilon=10^{-5}$?

Problem 30:
Apply Newton's method to solve $f(x)=x^{3}-2 x+2=0$. Perform three steps for each start value.
(a) Use $x_{0}=-1$.
(b) Use $x_{0}=1$.

