Problem 31:

(a) Apply one step of Newton's method for $x^{(0)}=(0.98,0.32)^{T}$ to solve $f(x)=0$ for (Kantorowitsch, Akilow)

$$
f(x)=\binom{3 x_{1}^{2} x_{2}+x_{2}^{3}-1}{x_{1}^{4}+x_{1} x_{2}^{3}-1}
$$

(b) Using a computer apply 4 stepa of Newton's method for (Brown, Conte)

$$
g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad g(x)=\left(\begin{array}{c}
3 x_{1}+x_{2}+2 x_{3}^{2}-3 \\
-3 x_{1}+5 x_{2}^{2}+2 x_{1} x_{3}-1 \\
25 x_{1} x_{2}+20 x_{3}+12
\end{array}\right)
$$

using $x^{(0)}=(0,0,0)^{T}$.

Problem 32:

Using the method of steepest descend without stepsize control compute two steps to minimize

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad F(x)=\|f(x)\|_{2}^{2}
$$

using $f(x)$ from the previous problem and $x^{(0)}=(0.98,0.32)^{T}$.
Problem 33:
Generate a fractal based on the solutions of the equation $z^{3}-2=0$ for $z \in \mathbb{C}$. The decomposition of $z=x+\mathbf{i} y$ as well as $z^{3}-2$ into its real and imaginary parts results in

$$
0=(x+\mathbf{i} y)^{3}-2=\left(x^{3}-3 x y^{2}-2\right)+\mathbf{i}\left(3 x^{2} y-y^{3}\right)
$$

To generate the fractal, compute the solutions of

$$
f(x, y)=\binom{x^{3}-3 x y^{2}-2}{3 x^{2} y-y^{3}}=\binom{0}{0}
$$

Use Newton's method. Define a grid with $h=0.01$ for $[-1.5,1.5]^{2}$ and use the single grid points as starting vectors for Newton's method. Now graphically represent the catchment areas of the different solutions by coloring the catchment areas.

