
1 Basics

Variable definitions are implemented using equal signs, such as

>> x = pi/2

x =

1.5708e+00

>> sin(x)

ans =

1

If the outputs are to be suppressed, a semicolon is placed at the end of the entry

>> x = pi/2;

>> sin(x)

ans =

1

You can work with the command windows and direct inputs and outputs or with an

*.m-file. In an *.m-file many commands can be listed, which are processed one after

the other. The *.m-file is executed from the command window, and any output or error

messages are also displayed. Furthermore an *.m-file can can also be defined as a routine

(function), see later section 4.

2 Vectors and matrices

Use square brackets to define 1- and 2D-fields:

>> A = [1 2 3;4 5 6]

A =

1 2 3

4 5 6

>> b = [8;9]

b =

8

9

>> c = [pi exp(1)]

c =

3.1416 2.7183

1



The multiplication of vectors and matrices is done by using *. If the dimensions are not

correct, the system complains:

>> c*b

ans =

49.5973

>> b*c

ans =

25.1327 21.7463

28.2743 24.4645

>> A*b

Error using *

Incorrect dimensions for matrix multiplication. Check that the number of

columns in the first matrix matches the number of rows in the second matrix.

To perform elementwise multiplication, use ’.*’.

2



To transpose a vector or a matrix use ’:

>> A'

ans =

1 4

2 5

3 6

>> A'*b

ans =

44

61

78

3 Simple m-files

If several commands (possibly still under development) are processed one after the other,

they can be combined in an *.m-file. This is executed and the commands contained in

it are processed.

A simple example:

n = 50;

h = 1/(n+1);

A = zeros(n,n);

for i=1:n

for j=1:n

if i == j

A(i,j) = -2;

elseif abs(i-j) == 1

A(i,j) = 1;

end

end

end

A = A/h^2;

b = ones(n,1);

x = A\b;

plot([0:h:1],[0; x; 0])

Or shortly:

3



n = 50;

h = 1/(n+1);

B = 1/h^2*(-2*diag(ones(n,1))+diag(ones(n-1,1),1)+diag(ones(n-1,1),-1));

b = ones(n,1);

x = B\b;

plot([0:h:1],[0; x; 0])

4 Functions

If a complex procedure is required, *.m-files are a good choice. The *.m-file contains

the name of the function and the first line is

„function RETURN(N)=FUNCTIONNAME(INPUTVALUE(E))“.

Example:

function fac = factorial(n)

% Computes n!

% A recursive function is used

if n==1

fac = 1;

else

fac = n*fakultaet(n-1);

end

Comments are inserted with the help of % signs. The procedure is called in the command

window

>> factorial(3)

ans =

6

>> factorial(6)

ans =

720

Another implementation:

function fac = factorial2(n)

% Computes n!

% Uses a for−loop

4



fac = 1;

for i=2:n

fac = fac*i;

end

Therein if- and for-loops are used. Another option is to use while loops:

function fac = factorial3(n)

% Computes n!

% Uses a while−loop

fac = n;

i = n-1;

while i>1

fac = fac*i;

i = i-1;

end

5 Graphical representations

Graphical representations are implemented as polygon chains using vectors

>> x = linspace(0,2*pi,100);

>> plot(x,f(x))

First, a vector x was defined containing 100 equidistant entries between 0 and 2π.

Plotted is the polygonal chain of x values and the values f(x). Useful options are

>> plot(x,f(x),'-.')

>> plot(x,f(x),'x')

>> plot(x,f(x),'-x')

>> plot(x,f(x),'linewidth',1)

Two or more graphical representation are separated by commas

>> plot(x,f(x),x,cos(x),x,1./(x+1),'linewidth',1)

6 Solution of systems of linear equations

The backslash can be used to solve systems of linear equations

5



>> A = [1 2 3;4 5 6;7 8 1];

>> b = [1 3 9]';

>> x = A\b

x =

-0.1667

1.3333

-0.5000

Linear least squares problems can also be solved using backslash:

>> A = [1 2;3 4;5 6]

A =

1 2

3 4

5 6

>> b = [1 3 9]';

>> x = A\b

x =

3.6667

-1.6667

>> A*x-b

ans =

-0.6667

1.3333

-0.6667

>> norm(ans,2)

ans =

1.6330

6


