Problem 1.1:

Find all solutions of the following ordinary differential equations/systems:
a) $y^{\prime}(t)=\frac{2}{t} y(t)+4 t^{3}$
b) $y^{\prime}(t)=\frac{1+(y(t))^{2}}{t}$
c) $x^{\prime}(t)=y(t)+t, \quad y^{\prime}(t)=x(t)-1$

Problem 1.2:

Find all solutions $u=u(x, y)$ of the partial differential equation

$$
12 u_{y}-\frac{1}{2} u_{x y}=0
$$

Problem 1.3:

Let $z=z(x, y)$ be an unknown function. Solve the following initial value problem:

$$
2 x z_{x}+y z_{y}=0, \quad z(1, y)=y^{2}+5
$$

Problem 1.4:

Let ϕ be twice differentiable and differentiable for all real x. Further be $c \in \mathbb{R}$.
Show that

$$
u(x, t)=\frac{1}{2}(\phi(x+c t)+\phi(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} \phi(s) d s
$$

is a solution of $u_{t t}=c^{2} u_{x x}$.
Next show that this solution also satisfies the conditions $u(x, 0)=\phi(x) ; u_{t}(x, 0)=\phi(x)$ for all $x \in \mathbb{R}$.

