$\underline{\text { Suggested solutions for self-study \& additional practice for the 4. Tutorial }}$

Sample solution for the additional exercise 15:
The first two iterations for Jacobi's method:

$$
x^{(1)}=\left(\begin{array}{c}
0.25 \\
0.25 \\
0 \\
0
\end{array}\right), \quad x^{(2)}=\left(\begin{array}{c}
-0.1875 \\
-0.1875 \\
-0.1875 \\
0.1875
\end{array}\right) .
$$

The first two iterations for Gauss-Seidel's method:

$$
x^{(1)}=\left(\begin{array}{c}
0.25 \\
0.0625 \\
-0.234375 \\
0.1875
\end{array}\right), \quad x^{(2)}=\left(\begin{array}{c}
-0.1875 \\
-0.35546875 \\
-0.3388671875 \\
0.296875
\end{array}\right)
$$

Sample solution for the additional exercise 16:
For Jacobi's method we compute

$$
\left(I-D^{-1} A\right)=\left(\begin{array}{cccc}
0 & 0.25 & 0 & 0.25 \\
0.25 & 0 & 0.25 & 0 \\
0 & 0.25 & 0 & 0 \\
-0.25 & 0 & 0 & 0
\end{array}\right)
$$

If we choose the matrix norm induced by the vector norm $\|\cdot\|_{2}$, we get

$$
\left\|\left(I-D^{-1} A\right)\right\|_{2}=0.405<1
$$

For Gauss-Seidel's method we obtain

$$
\left(I-(L+D)^{-1} A\right)=\left(\begin{array}{cccc}
0 & 0.25 & 0 & 0.25 \\
0 & 0.0625 & 0.25 & 0.0625 \\
0 & 0.015625 & 0.0625 & 0.015625 \\
0 & -0.0625 & 0 & -0.0625
\end{array}\right)
$$

and

$$
\left\|\left(I-(L+D)^{-1} A\right)\right\|_{2}=0.385<1
$$

Hence for both methods each starting vector converges to the solution of $A x=b$. Alternatively we can use any other matrix norm induced by vector p-norms.
Sample solution for the additional exercise 17:
The a-priori estimate is given by

$$
\left\|x^{(k)}-x^{*}\right\| \leq \frac{q^{k}}{1-q}\left\|x^{(1)}-x^{(0)}\right\|
$$

where $q=\left\|I-B^{-1} A\right\|$. Using the the Euclidean norm and our results from above, we get the inequalities

$$
\begin{array}{lc}
\text { Jacobi's method: } & \frac{0.405^{k}}{1-0.405} \cdot 1.0607 \leq 10^{-5} \\
\text { Gauss-Seidel's method: } & \frac{0.385^{k}}{1-0.385} \cdot 1.904 \leq 10^{-5}
\end{array}
$$

Hence we need at least $k=14$ steps to achieve the given accuracy in both cases.

