Sample solution for the additional exercise 19:
We are locking for a function $p(x)=a+b x$ resp. $q(x)=a+b x+c x^{2}$. The measures are

$$
\begin{array}{c|cccccc}
x & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline y & 225 & 230 & 230 & 200 & 160 & 110
\end{array}
$$

For a quadratic function:

$$
\begin{array}{ll}
y(x)=a_{0}+a_{1} x+a_{2} x^{2} \\
(0,225): & 225=a_{0}+0 \cdot a_{1}+0^{2} \cdot a_{2} \\
(0,230): & 230=a_{0}+1 \cdot a_{1}+1^{2} \cdot a_{2} \\
(0,230): & 230=a_{0}+2 \cdot a_{1}+2^{2} \cdot a_{2} \\
\vdots \\
(0,110): & 110=a_{0}+5 \cdot a_{1}+5^{2} \cdot a_{2}
\end{array}
$$

Linear least-squares problem $A x=b$ with

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 4 & 16 \\
1 & 5 & 25
\end{array}\right), \quad b=\left(\begin{array}{c}
225 \\
230 \\
230 \\
200 \\
160 \\
110
\end{array}\right)
$$

Equations:

$$
\begin{aligned}
& A^{T} A=\left(\begin{array}{ccc}
6 & 15 & 55 \\
15 & 55 & 225 \\
55 & 225 & 979
\end{array}\right) A^{T} b=\left(\begin{array}{c}
1056 \\
1985 \\
5785
\end{array}\right) \\
& A^{T} A\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=A^{T} b
\end{aligned}
$$

Solution:

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{c}
214.21 \\
45.61 \\
-16.61
\end{array}\right)
$$

Polynomial of degree 2:

$$
y(x)=214.21+45.61 x-16.61 x^{2}
$$

A graphic for the quadratic function:

Sample solution for the additional exercise 20:
Gershgorin's disks are

$$
\begin{aligned}
& A: K_{1}=K_{3}=\{z:|z+4| \leq 1\}, \quad K_{2}=\{z:|z+4| \leq 2\}, \\
& B: K_{1}=\{z:|z-1| \leq 5\}, \quad K_{2}=\{z:|z-5| \leq 10\}, K_{3}=\{z:|z-9| \leq 15\}, \\
& C: K_{1}=\{z:|z-1| \leq 1.2\}, K_{2}=\{z:|z+1| \leq 0.1\} .
\end{aligned}
$$

As for A holds $0 \notin \cup K_{i}$ the matrix A is invertible for sure, for B and C this is not sure as $0 \in \cup K_{i}$ in both cases. Estimations for the eigenvalues of A^{-1} can be computed as follows: A is symmetric and all eigenvalues are real, thus we can use inverses of the extremal elements of K_{i} and get

$$
\tilde{K}_{1}=\left[\frac{1}{9}, \frac{1}{3}\right], \quad \tilde{K}_{2}=\left[\frac{1}{5}, 1\right], \quad \tilde{K}_{3}=\left[-1,-\frac{1}{7}\right],
$$

