Sample solution for the additional exercise 28:
a) We use the function $\varphi(x)=k \sqrt{0.75 k^{2}+2 k+1+x}$. For the exact value we solve

$$
s=k \sqrt{0.75 k^{2}+2 k+1+s} \Rightarrow s_{1}=\frac{k}{2}(3 k+2), s_{2}=-\frac{k}{2}(k+2)
$$

The value s_{2} is not of interest any more, thus $s=\frac{k}{2}(3 k+2)$.
For the analysis we get

$$
\begin{aligned}
\varphi^{\prime}(x) & =\frac{k}{2 \sqrt{0.75 k^{2}+2 k+1+x}}=\frac{k}{\sqrt{3 k^{2}+8 k+4+4 x}} \\
\varphi^{\prime}\left(x_{1}\right) & =\frac{k}{\sqrt{9 k^{2}+12 k+4}} \in[0,1) \forall k \in \mathbb{N}
\end{aligned}
$$

and we select e. g. the interval $I=[\alpha, \beta]$ with $-\frac{k^{2}}{2}-2 k-1<\alpha<\frac{k}{2}(3 k+2)$ and $\beta>\frac{k}{2}(3 k+2)$. Thus $\left|\varphi^{\prime}(x)\right|<1 \forall x \in I$.
b) We have to analyze the iteration $x^{(k+1)}=\varphi\left(x^{(k)}\right)$ with $\varphi(x)=\cos x$.

The intervall $I=[0,1]$ is closed and it holds $\varphi(I) \subseteq I$ as cos is monotonously falling on I and $\cos (0)=1 \in I$ as well as $\cos (1)<0.6 \in I$. Further holds $\max _{x \in I}|-\sin (x)|<0.85=$ L. So the conditions of Banach's fixed-point theorem are satisfied and there exists an unique fixed-point in I and the iteration converges for all starting values $x_{0} \in I$.
Sample solution for the additional exercise 29:
a) Isolating x on the left hand side, we get

$$
\ln (16-x)=\sqrt{\frac{2}{3} x^{2}+4} \quad \Leftrightarrow \quad x=16-\exp \left(\sqrt{\frac{2}{3} x^{2}+4}\right)
$$

hence the iteration is given by

$$
\varphi_{1}(x)=16-\exp \left(\sqrt{\frac{2}{3} x^{2}+4}\right)
$$

b) Isolating x on the right hand side, we get

$$
\ln (16-x)=\sqrt{\frac{2}{3} x^{2}+4} \quad \Leftrightarrow \quad x= \pm \sqrt{\frac{3}{2}\left((\ln (16-x))^{2}-4\right)} .
$$

Since we are looking for an intersection in the interval [1, 7], it is sufficient to choose the
iteration

$$
\varphi_{2}(x)=\sqrt{\frac{3}{2}\left((\ln (16-x))^{2}-4\right)}
$$

c) We compute the Lipschitz constants for φ_{1} and φ_{2} :

$$
\begin{aligned}
& \left|\varphi_{1}^{\prime}(x)\right|=\underbrace{\left|\exp \left(\sqrt{\frac{2}{3} x^{2}+4}\right)\right|}_{\geq \exp \left(\sqrt{\frac{2}{3} 1^{2}+4}\right)} \cdot \underbrace{\left|\left(\frac{2}{3} x^{2}+4\right)^{-\frac{1}{2}}\right|}_{\geq\left(\frac{2}{3} 7^{2}+4\right)^{-\frac{1}{2}}} \cdot \underbrace{\left|\frac{4}{3} x\right|}_{\geq \frac{4}{3}} \geq 1.9097>1, \\
& \left|\varphi_{2}^{\prime}(x)\right|=\underbrace{|3 \ln (16-x)|}_{\leq 3 \ln (16-1)} \cdot \underbrace{\left|\frac{1}{16-x}\right|}_{(16-7)^{-1}} \cdot \underbrace{\left|\left(\frac{3}{2}\left((\ln (16-x))^{2}-4\right)\right)^{-\frac{1}{2}}\right|}_{\leq\left(\frac{3}{2}\left((\ln (16-7))^{2}-4\right)\right)^{-\frac{1}{2}}} \leq 0.81008<1 .
\end{aligned}
$$

Since $[1,7]$ is a closed subspace of \mathbb{R} and $\varphi([1,7]) \subset[1,7]$, we are allowed to apply Banach's fixed-point theorem. Hence the second fixed-point iteration converges to $x=2.095856$, whereas the first one does not.
d) For the iteration φ_{2} a possible Lipschitz constant L is given by $L=0.81008$. The a-priori estimate is

$$
\left|x_{i}-x^{*}\right| \leq \frac{L^{i}}{1-L}\left|x_{1}-x_{0}\right|
$$

hence we get the inequality

$$
10^{-5} \leq \frac{0.81008^{i}}{0.18992} 1.033163
$$

We need at least 63 iterations to drop the distance $\left|x_{i}-x^{*}\right|$ below 10^{-5}.
Sample solution for the additional exercise 30:
a) We get the iteration

$$
x_{k+1}=x_{k}-\frac{x_{k}^{3}-2 x_{k}+2}{3 x_{k}^{2}-2}
$$

and we obtain the following results

$$
x_{0}=-2, \quad x_{1}=-1.666667, \quad x_{2}=-1.864583, \quad x_{3}=-1.712489
$$

b) Starting at $x_{0}=1$, the first three iterations are given by

$$
x_{0}=1, \quad x_{1}=0, \quad x_{2}=1, \quad x_{3}=0
$$

Therefore the sequence is periodical and does not converge to the zero of f.

