1. Tutorial on the lecture „Introduction to Numerical Mathematics"

Problem 1:

Check for which values $n \leq 6$ the calculation of

$$
S_{n}=\sum_{i=1}^{n} \frac{1}{n}
$$

will give the correct result $S_{n}=1$. Note the floating point arithmetic $x \oplus y=\operatorname{rd}(x+y)$, that is, floating point numbers are first added exactly and then the rounding operator is applied.

Problem 2:

Sum up at least ten billion terms of the harmonic series. Compare the results for summation in forward and backward direction and explain the difference.

Problem 3:

Calculate the value of the polynomial

$$
y(x)=1.0837 x^{4}+2.7911 x^{3}+0.75149 x^{2}-5.8205 x-7.6123
$$

for $x=1.4935$ using the following two algorithms:

Algorithm 1	Algorithm 2
$y_{1}=x$	$y_{1}=1.0837 x$
$y_{2}=x y_{1}$	$y_{2}=\left(y_{1}+2.7911\right) x$
$y_{3}=x y_{2}$	$y_{3}=\left(y_{2}+0.75149\right) x$
$y_{4}=x y_{3}$	$y_{4}=\left(y_{3}-5.8205\right) x$
$y=1.0837 y_{4}+2.7911 y_{3}+0.75149 y_{2}-5.8205 y_{1}-7.6123$	$y=y_{4}-7.6123$

Compare both algorithms according their computation expense and memory consumption.

Problem 4:

a) Show that the inequality

$$
\frac{1}{1+2 x}-\frac{1-x}{1+x}>0
$$

holds for each positive real number, $x \in \mathbb{R}, x>0$. Calculate the left-hand side of the inequality for $x=10^{-10}$ and provide a numerically stable form of the inequality.
b) Show that the function

$$
f(x):=x\left(\exp \left(x^{-1}\right)-1\right)
$$

has the limit 1 for $x \rightarrow \infty$. Use a calculator to evaluate the function $f(x)$ for $x=10^{j}$ $(j=5, \ldots, 15)$. Provide a numerically stable form using a series expansion.

Problem 5:

Let the number $x>0$ be assigned a relative measurement error of at most 10%. How do the relative errors for

$$
\begin{array}{ll}
\text { (a) } \quad f(x)=\frac{1}{x}, & \text { (b) } \quad f(x)=\ln (x) ?
\end{array}
$$

At which points x does a particularly large gain occur in (b)?

