2. Tutorial on the lecture „Introduction to Numerical Mathematics"

Problem 6:

At $x=\sqrt{2}$, consider the three functions

$$
f_{1}(x)=(x-1)^{6}, \quad f_{2}(x)=99-70 x, \quad f_{3}(x)=\frac{1}{99+70 x}
$$

Show analytically that

$$
f_{1}(\sqrt{2})=f_{2}(\sqrt{2})=f_{3}(\sqrt{2})
$$

Calculate the absolute and relative condition numbers for each of the expressions.

Problem 7:

Consider the system of linear equations $A x=b$ with

$$
A=\left(\begin{array}{ccc}
\alpha & 1 & 0 \\
1 & 0 & 1 \\
2 & \alpha & 1
\end{array}\right), \quad b=\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right)
$$

for a parameter $\alpha \in \mathbb{R}$.
(a) Calculate the solution x depending on the parameter α.
(b) For which values α does no solution exists?
(c) Which values α cause a Gaussian elimination that requires pivoting?
(d) Determine a right-hand-side $b \neq(0,0,0)^{T}$ such that there exists a solution for any choice of the parameter α.

Problem 8:

Write a program using Gaussian elimination (with pivotization) to solve systems of linear equations. Test your implementation of the Gaussian algorithm on systems of the form $A x=b$ with

$$
A_{i j}=(1+|i-j|)^{-1}, \quad b_{i}=1, \quad i, j=1 \ldots n
$$

Count the numbers of flops and plot them against n for $n=1,2,3, \ldots 12$!

Problem 9:

Consider an electric circle with 5 resistors placed on the edges of the square $A B C D$ and on its diagonal $B D$. Resistor $R_{1}=3 \Omega$ connects A with B, resistor $R_{2}=8 \Omega$ connects B with C, resistor $R_{3}=3 \Omega$ connects C with D, resistor $R_{4}=8 \Omega$ connects D with A and resistor $R_{5}=3 \Omega$ connects B with D. A current of 1 A enters the electric circle at A and leaves it at C.

Use Kirchhoff's laws to derive a system of linear equations to calculate the five currents passsing the resistors and compute the solution using the program from task 8.

