Problem 10:

Determine the $L U$-decomposition of the following matrix

$$
A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 4 & 9 & 16 \\
1 & 8 & 27 & 64 \\
1 & 16 & 81 & 256
\end{array}\right)
$$

Solve the linear system $A x=b$ for $b=(3,1,-15,-107)^{T}$ as well as for $b=(10,20,46,116)^{T}$.
Problem 11:
Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
$$

Calculate $\operatorname{cond}_{1}(A), \operatorname{cond}_{2}(A)$ and $\operatorname{cond}_{\infty}(A)$.
Problem 12:
Which value of c leads to zero in the second pivot position of the matrix:

$$
A=\left(\begin{array}{lll}
1 & c & 0 \\
2 & 4 & 1 \\
3 & 5 & 1
\end{array}\right)
$$

For exactly that value of c, calculate a $P L U$ decomposition such that $P A=L U$!
Problem 13:
Consider a band-matrix with with α lower subdiagonals and β upper subdiagonals for $\alpha, \beta \in \mathbb{N}$. The $L U$-decomposition return two band-matrices. How many subdiagonals do not vanish if the Gaussian-elimination is done
(a) without pivot search and
(b) with pivot search?

Problem 14:
Are the following symmetric matrices positive/negative definite?

$$
H_{1}=\left(\begin{array}{ccc}
4 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right), \quad H_{2}=\left(\begin{array}{ccc}
-1 & 1 & 2 \\
1 & 2 & 2 \\
2 & 2 & 17
\end{array}\right)
$$

