4. Tutorial on the lecture „Introduction to Numerical Mathematics"

Problem 15:

(a) Apply Jacobi's method and Gauss-Seidel's method to solve $A x=b$ with

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right), \quad b=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Use $x^{(0)}=(1,1,1)^{T}$ as starting vector and compute 2 steps for each method.
(b) Does the iteration converge for each starting vector?
(c) Apply an a-priori estimation of the error in order to determine how many steps are necessary to reach an approximation with $\left\|x^{*}-x^{(k)}\right\|_{2}<10^{-4}$.
(d) Apply Jacobi's method to solve $A x=b$ with

$$
A=\operatorname{tridiag}(1,-2,1) \in \mathbb{R}^{n \times n}, \quad b=(1, \ldots, 1)^{T} \in \mathbb{R}^{n}
$$

for $n=101$. Use $\left\|A x^{(i)}-b\right\|_{2} \leq 10^{-6}$ as stopping criterion and $x^{(0)}=-b$ as initial guess. How many iterations are necessary for the Gauss-Seidel iteration?

Problem 16:

Regard the system of linear equations $A x=b$ with

$$
A=\left(\begin{array}{ccc}
1 & 0 & \gamma \\
\alpha & 1 & 0 \\
0 & \beta & 1
\end{array}\right) \quad \text { mit } \alpha, \beta, \gamma \in \mathbb{R}, \quad b \in \mathbb{R}^{3}
$$

Under which conditions at α, β and γ does the Gauss-Seidel method converge for this A and all starting vectors? Determine the error propagation matrices F_{J} and $F_{G S}$ and their characteristic polynomials $p_{J}(\lambda)$ and $p_{G S}(\lambda)$. Calculate the zeros of $p_{J}(\lambda)$ and estimate the magnitudes of the zeros of $p_{G S}(\lambda)$ and use a theorem from the lecture.

Show that for this A, the Gauss-Seidel method converges for all starting vectors if and only if Jacobi's method converges for all starting vectors.

Problem 17:

Let $n \in \mathbb{N}$. The Hilbert-matrix

$$
A=\left(a_{i j}\right)_{i, j=1, \ldots, n} \quad \text { with } \quad a_{i j}=\frac{1}{i+j-1}, 1 \leq i, j \leq n
$$

is regular bad bad conditioned. The system of linear equation $A x=b$ with $b_{i}=\sum_{j=1}^{n} a_{i j}$ has the solution $x=(1, \ldots, 1)^{T}$.
Use the Gaussian-elimination to solve the system. Up to which n the algorithm returns reasonable results?

Problem 18:
Apply under and over relaxation to solve the system of linear equations from problem 15 . Use $\omega \in\{0.5,2 / 3,1,1.5\}$ and count the steps for Jacobi's method and for Gauss-Seidel iteration.

