6. Tutorial on the lecture „Introduction to Numerical Mathematics"

Problem 24:

Apply the power method as well as the inverse power method to

$$
A=\left(\begin{array}{ccc}
6 & 1 & 2 \\
1 & 3 & 1 \\
2 & 1 & -4
\end{array}\right)
$$

Calculate three steps starting from $x^{(0)}=\sqrt{1 / 3} \cdot(1,1,1)^{T}$ for the power method as well as one step starting from $z^{(0)}=\sqrt{1 / 2} \cdot(1,-1,0)^{T}$ for the inverse vector iteration. Give the approximations for the largest and smallest eigenvalues of A as well as the eigenvectors. Compare the approximations to the values

$$
\lambda_{1}=-4.4708, \quad \lambda_{2}=2.7149, \quad \lambda_{3}=6.7559
$$

Problem 25:

Apply 3 steps of the shifted inverse power method for $\mu=-4$ to A from task 24 . Use the starting vector $x^{(0)}=\sqrt{1 / 3} \cdot(1,1,1)^{T}$ and the $L U$-decomposition of $A-\mu I$ with

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.5 & 1 & 0 \\
1 & 0 & 1
\end{array}\right), \quad U=\left(\begin{array}{ccc}
2 & 1 & 2 \\
0 & -1.5 & 0 \\
0 & 0 & -10
\end{array}\right)
$$

Problem 26:
Consider once again the matrix A from task 24 . Use a computer and
(a) apply 3 steps of the QR-algorithm,
(b) apply 3 steps of Jacobi's iteration.

Problem 27:

(a) Apply the QR-algorithm to find all eigenvalues of the matrix $E=\left(E_{i j}\right) \in \mathbb{R}^{6 x 6}$ defined by

$$
E_{i j}= \begin{cases}8-i & \text { if } i=j \\ -1 & \text { if }|i-j|=1, \quad, \quad i, j=1, \ldots, 6 \\ 0 & \text { otherwise } .\end{cases}
$$

Determine the eigenvectors as well!
(b) Apply Jacobi's method to compute the eigenvalues and eigenvectors of the matrix

$$
A=(n+1)^{2} \operatorname{tridiag}(1,-2,1) \in \mathbb{R}^{n \times n}
$$

for $n=30$. Plot the eigenvectors associated to $\lambda_{i}, i \in\{1,2,29,30\}$, against

$$
x \in \mathbb{R}^{n}, \quad x_{i}=\frac{i}{(n+1)^{2}}
$$

