7. Tutorial on the lecture „Introduction to Numerical Mathematics"

Problem 28:

For a fixed $k \in \mathbb{N}$ we want to compute the value

$$
s=\lim _{n \rightarrow \infty} \underbrace{k \sqrt{k+1+k \sqrt{k+1+\ldots+k \sqrt{k+1}}}}_{n \text { roots }} .
$$

Specify a step function φ and an interval I such that the iteration $x_{n+1}=\varphi\left(x_{n}\right)$ converges to s for all initial values $x_{0} \in I$. What is the exact value of s depending on k ?

Problem 29:

If you enter a number $x \geq 0$ in a calculator and press the root-key $(\sqrt{ })$ several times, you observe numerically a convergence to a fixed-point. Analyze this behavior in terms of Banach's fixed-point theorem, check the preconditions and determine Lipschitz constant.

Problem 30:

The function $f(x)=\cos ^{2} x$ has exactly one fixed-point. Specify a largest possible interval (a, b) such that the conditions of Banach's fixed-point theorem are satisfied for any closed $I \subset(a, b)$.
Consider once again problem 30. Let $x_{0}=0.6$. Give an a-priori estimation for the error after k steps as accurate as possible. Determine for this, starting from x_{0}, a Lipschitz constant L as small as possible so that a contraction is present, and use L for the estimation. After how many steps is x_{k} certainly not further away from the fixed-point than $\varepsilon=10^{-2}$?
Compute three steps and an a-posteriori error estimation for the last two iterations.

Problem 31:

Use Newton's method on the example of calculating $\sqrt{2}$ as solution of $f(x)=x^{2}-2=0$. Use as starting values $x_{0}=2$ and $x_{0}=100$ and as stopping criterion the error of the residual norm dropping below 10^{-6}.

[^0]
[^0]: The tasks are intended both for processing in the seminars and for independent practice. Especially the 90 minutes of an exercise are sometimes not sufficient to discuss and work on all tasks.

