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Abstract. Convergence analysis of block iterative solvers for Hermitian eigenvalue problems

and the closely related research on properties of matrix-based signal filters are challenging,

and attract increasing attention due to their recent applications in spectral data clustering

and graph-based signal processing. We combine majorization-based techniques pioneered for

investigating the Rayleigh-Ritz method in [SIAM J. Matrix Anal. Appl., 31 (2010), pp.

1521–1537] with tools of classical analysis of the block power method by Rutishauser [Numer.

Math., 13 (1969), pp. 4–13] to derive convergence rate bounds of an abstract block iteration,

wherein tuples of tangents of principal angles or relative errors of Ritz values are bounded

using majorization in terms of arranged partial sums and tuples of convergence factors. Our

novel bounds are robust in presence of clusters of eigenvalues, improve some previous results,

and are applicable to most known block iterative solvers and matrix-based filters, e.g., to

block power, Chebyshev, and Lanczos methods combined with shift-and-invert approaches

and polynomial filtering.

1. Introduction

Matrix eigenvalue problems have historically appeared in computational mechanics and then

in quantum physics as a tool to approximate solutions of wave and other time-dependent differ-

ential equations. Recent applications in machine learning, e.g., for spectral clustering and image

semantic segmentation, often require numerical solution of eigenvalue problems for matrices of

large sizes and in some cases in real time, e.g., for autonomous driving. Only a fraction of

the eigenvectors is of practical interest, where the eigenvectors need to be computed just with

certain accuracy. Such computations of specific invariant subspaces can be efficiently performed

by iterative eigenvalue problem solvers (eigensolvers) that simultaneously iterate several vectors

in a block. Recently graph-based signal processing has gained attention. Therein one utilizes

signal filters that are functions, often a polynomial like Chebyshev, of a matrix with a goal of

amplifying the components of a signal corresponding to selected eigenvalues of the matrix. Such

filters can be interpreted as rudimentary eigensolvers with a fixed accuracy. Block filters and

solvers match well with modern hardware that can optimize computing matrix-matrix products,

which commonly is the main operation in block algorithms.

The convergence speed of block iterative solvers, or the reduction/amplification quality of

signal filters, determines the efficiency of calculations and needs to be estimated in advance

a priori to bound the computational time for streaming data processing. Deriving a priori

convergence rate bounds is a classical area of research. The convergence speed of block iterative

eigensolvers is determined by the quality of an initial approximation to target eigenvectors and

the distribution of eigenvalues of the given matrix. Block iterative eigensolvers are known to be

robust with respect to possible clustering of target eigenvalues – this property is called “cluster
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robustness”. Sharp bounds of convergence rates of these eigensolvers thus also need to be cluster

robust, which is the main topic of our investigation.

Majorization techniques appear naturally for cluster robust bounds involving eigenvalue ap-

proximations [12, 17]. We explore relations between Ritz value errors and principal angles in

the context of subspace iterates of block iterative eigensolvers. We refine the majorization-type

analysis of tangents of principal angles from [12] by using auxiliary vectors from the classical

analysis of the block power method by Rutishauser [22]. Our new results applied to the block

Lanczos method improve existing ones from [15, 23]. The improvement is evident due to the

cluster robustness of our majorization based approach.

1.1. Known cluster robust error bounds

The cluster robustness is a typical feature of block iterations for solving matrix eigenvalue

problems. A simple example is the block power method that aims at the largest magnitude

eigenvalues of a matrix A ∈ Cn×n and significantly improves the simple power method in

the case where the target eigenvalues are clustered. The convergence of the subspace iterates

Y(0), Y(1), . . . given by Y(`+1) = AY(`) toward an invariant subspace can be analyzed in terms

of various angle measures. Classical bounds by Rutishauser [22] and Parlett [21, Chapter 14]

can be extended to a normal A with the eigenvalue arrangement |λ1| ≥ · · · ≥ |λn|, namely,

(1.1) tan∠(xi,Y(`)) ≤
∣∣∣∣λp+1

λi

∣∣∣∣` tan∠(X ,Y(0)), i = 1, . . . , p.

Therein ∠(·, ·) denotes Euclidean angles, and the separation of targeted eigenvalues from the rest

is described by the assumption |λp| > |λp+1| for the block size p = dimY(0). Moreover, X denotes

the invariant subspace spanned by orthonormal eigenvectors x1, . . . , xp associated with the first p

eigenvalues. In the nontrivial case ∠(X ,Y(0)) < π/2, all further subspace iterates have the same

dimension p since the first p eigenvalues are nonzero due to |λp| > |λp+1| ≥ 0. Evidently, the

convergence factor |λp+1/λi| is robust with respect to possible clustering of eigenvalues indexed

by i ≤ p. In contrast, the convergence factor for computing xi with the simple power method is

|λi+1/λi| which is unimprovable and might be close to 1. If i > 1, a deflation with respect to

the first i−1 eigenvalues is required.

An essential argument by Rutishauser [22] adapted to (1.1) is that Y(`) contains a nonzero

vector which is orthogonal to an invariant subspace associated with λ1, . . . , λi−1, λi+1, . . . , λp.

Thus λi and λp+1 become the only two relevant eigenvalues in the derivation. This argument is

directly applicable to the abstract block iteration

(1.2) Y ′ = f(A)Y

that describes various practical methods. Since A and f(A) share the same eigenvectors, one

attempts to select a proper function f(·) such that the desired eigenvalues of A, if denoted by

λ1, . . . , λp, get mapped into the top p magnitude eigenvalues f(λ1), . . . , f(λp) of f(A). Then

(1.1) turns into

(1.3) tan∠(xi,Y ′) ≤
∣∣∣∣f(λp+1)

f(λi)

∣∣∣∣ tan∠(X ,Y), i = 1, . . . , p

analogously to [7, Lemma 2.3.1]. One can use a shifted Chebyshev polynomial f(·) in order

to investigate Chebyshev signal filters and the block Lanczos method. Let eigenvalues of a

Hermitian matrix A be arranged as λ1 ≥ · · · ≥ λn with the assumption λp > λp+1, and f(·) be

defined by

(1.4) f(α) = Tk−1

(
1 + 2

α− λp+1

λp+1 − λn

)
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with the Chebyshev polynomial Tk−1 of the first kind with degree k− 1. Then |f(λi)| > 1 ≥
|f(λj)| holds for arbitrary indices i ≤ p and j > p so that the values f(λ1), . . . , f(λp) are indeed

the top p magnitude eigenvalues of f(A). Thus, substituting (1.4) in (1.3) immediately leads to

(1.5) tan∠(xi,Y ′) ≤
[
Tk−1

(
1 + 2

λi − λp+1

λp+1 − λn

)]−1
tan∠(X ,Y), i = 1, . . . , p,

where the reciprocal Chebyshev term is the ratio |f(λp+1)/f(λi)|. Subsequently, since f is a

polynomial of degree k−1 by (1.4), the subspace Y ′ is a subset of the block Krylov subspace

K = Y+AY+ · · ·+Ak−1Y (spanned by k blocks) arising from the block Lanczos method. Thus

tan∠(xi,K) ≤ tan∠(xi,Y ′) holds and extends (1.5) as a bound for tan∠(xi,K). The reciprocal

Chebyshev term decreases rapidly with the degree k of K provided that λi is not close to λp+1.

This can be achieved by selecting an initial subspace of sufficiently high dimension.

Bound (1.5) demonstrates the quality of the shifted Chebyshev polynomial (1.4) as a filter

in (1.2) amplifying the components of a signal y ∈ Y corresponding to the p largest eigenvalues

of A. For computing these eigenvalues, one is also interested in bounds of the errors of the

Ritz values of A in Y ′, arranged as η′1 ≥ · · · ≥ η′p. Some direct bounds have been presented by

Knyazev in [8, Section 2]. In particular, applying [8, Theorem 2.5] to the specified function (1.4)

yields the bound

(1.6)
λi − η′i
η′i − λn

≤
[
Tk−1

(
1 + 2

λi − λp+1

λp+1 − λn

)]−2
tan2∠(X ,Y), i = 1, . . . , p

in the nontrivial case ∠(X ,Y) < π/2. Although the convergence factor in (1.6) is the squared

value of that in (1.5), the derivation of (1.6) is not simply based on (1.5). In addition, the relation

Y ′ ⊆ K leads to inequalities η′i ≤ ψi, i = 1, . . . , p for the p largest Ritz values ψ1 ≥ · · · ≥ ψp
of A in K according to the Courant-Fischer principles. This extends (1.6) to the block Lanczos

method. Bounds (1.5) and (1.6) are cluster robust, just as well as (1.1).

In comparison to [23, Theorems 5 and 6] by Saad, bounds (1.5) and (1.6) are much more

accurate in the case where λi belongs to an eigenvalue cluster; cf. numerical examples in [25,

Subsection 5.1] concerning a slightly modified form of (1.5). Indeed, the corresponding analysis

in [23] can also be reformulated with respect to the abstract block iteration (1.2). The specified

function f contains linear factors of the form (α − λj) or (α − ψj), j = 1, . . . , i− 1 depending

on eigenvalues or Ritz values in order to construct auxiliary vectors which are orthogonal to the

associated eigenvectors or Ritz vectors. This leads to the terms
∏i−1
j=1(λj − λn)/(λj − λi) and∏i−1

j=1(ψj − λn)/(ψj − λi) called “bulky” factors in [15], which could be very large for clustered

eigenvalues and cannot be influenced by the block size.

1.2. Tuplewise analysis using majorization

Majorization theory is a powerful tool that allows extend traditional bounds like (1.3), (1.5)

and (1.6) of individual convergence measures to bounds of the corresponding tuples such as

[tan∠(xc,Y ′), . . . , tan∠(xd,Y ′)] and [λc − η′c, . . . , λd − η′d]

for 1 ≤ c ≤ d ≤ p. Majorization theory has been first applied to analyzing some subspace

iterations and the block Lanczos method in [12], where convergence bounds involve tuples of

convergence measures and even the convergence factors can also be tuples. Similar bounds of

tuples with only scalar convergence factors have been later independently derived in [15].

Certain bounds from [12] are extendable to the convergence analysis of (1.2). For instance,

applying [12, Theorem 2.3] yields a “stationary” bound in comparison to (1.6). Let us consider

the p Ritz value errors (λi − η′i)/(η′i − λn), i = 1, . . . , p, and write them as a sorted p-tuple ε
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whose components fulfill ε1 ≥ · · · ≥ εp. For bounding ε, we use the arranged principal angles

θ′1 ≥ · · · ≥ θ′p between the subspaces X and Y ′. Skipping the majorization notation, we get∑d
j=1 εj ≤

∑d
j=1 tan2 θ′j , d = 1, . . . , p.

An extension in terms of the arranged principal angles θ1 ≥ · · · ≥ θp between X and Y reads

(1.7)
∑d
j=1 εj ≤

∑d
j=1 βj tan2 θj , d = 1, . . . , p with βj =

[
Tk−1

(
1 + 2

λp+1−j − λp+1

λp+1 − λn

)]−2
.

Because θ1 = ∠(X ,Y), the special form ε1 ≤ β1 tan2 θ1 of (1.7) for d = 1 can imply (1.6) for

i = p. Moreover, summing up (1.6) for all indices leads to the bound∑p
j=1 εj ≤

(∑p
j=1 βj

)
tan2 θ1.

The alternative bound ∑p
j=1 εj ≤ β1

∑p
j=1 tan2 θj

is analogous to [15, (8.11)] where the convergence factor is also a scalar. These two bounds can

be improved by (1.7) for d= p, especially if the maximal component tan2 θ1 or β1 is dominant.

As a motivation of the present paper, it is remarkable that the terms θj and βj in (1.7) are

defined within p-tuples concerning principal angles between two p-dimensional subspaces and the

first p eigenvalues. If (1.7) is applied to some d� p, a significant overestimation can occur since

the utilized θj and βj are the d largest components of the respective p-tuples. Therefore, we

expect to improve (1.7) by using certain terms which simply depend on d-dimensional subspaces

and the first d eigenvalues.

1.3. Aim and outline

Deriving majorization bounds for the block Lanczos method via the abstract block iteration

(1.2) is a project originated from [1]. Some previous results such as (1.7) are included in Section

4 of the technical report [11] but due to space limits removed in the final version [12]. The

published results in [12] concern relations between Ritz value errors and principal angles, but

do not depend on (1.2). These results can also be extended to Hermitian operators on infinite

dimensional spaces; cf. [12, Subsection 2.8] and a recent application in a filtered subspace it-

eration [4]. Moreover, some improvements or alternatives of the sine-based bound [12, (2.5)]

have been achieved in [17, 18] and devoted to a partial confirmation of the conjecture [12, (2.4)].

The remaining results in [11] actually enable a majorization-type generalization of bound (1.6).

Furthermore, the intermediate bound [11, (4.1)] is comparable with [3, Theorem 2.1] concerning

block Krylov subspace methods for solving singular value problems. Another potential applica-

tion is the convergence analysis of a subspace iteration for polynomial eigenvalue problems [5].

The present paper extends [11] and makes further progress concerning certain biorthogonal vec-

tors which have been utilized implicitly for investigating the block power method by Rutishauser;

cf. Lemma 3.1.

In the remaining part of this paper, we extend the existing convergence theory of the abstract

block iteration (1.2) by majorization arguments. In Section 2, we introduce basic settings and

necessary definitions. Section 3 provides main results after discussing some previous results that

provide some motivation for our investigation. Applications to concrete methods are formulated

in Section 4. We mainly consider the block Lanczos method and compare our new bounds

with those from [15]. Further applications are related to shift-and-invert eigensolvers for certain

discretized partial differential operators. In Section 5, several numerical examples illustrate the

accuracy of the new bounds, followed by concluding remarks. Section 6 (Appendix) presents

some detailed proofs.
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2. Preliminaries

This section serves as preparation for our majorization-type convergence analysis of block

iterative eigensolvers. Subsection 2.1 contains some basic settings which are consistently required

in the analysis. In Subsection 2.2, we introduce principal angles and their tangent definition as

a useful tool for deriving majorization-type bounds. Subsection 2.3 provides tuple notations and

majorization statements for some singular value tuples. An overview of frequently used symbols

is as follows.

Subsection 2.1: matrices A, Id, eigenpairs (λi, xi) of A, subspaces X , Y, Y ′.
Subsection 2.2: principal angles, notation ∠(·, ·) for some special forms.

Subsection 2.3: tuple a↓ with arranged components, majorization relations ≺w, ≺,

singular value tuple S(·), eigenvalue tuple Λ(·), principal angle tuple Θ(·, ·).

2.1. Basic settings

We consider a normal matrix A ∈ Cn×n with the eigenvalues λ1, . . . , λn and the associated

orthonormal eigenvectors x1, . . . , xn. Identity matrices are denoted by Id with the corresponding

dimension d ∈ {1, . . . , n}. Some column vectors or “tall” block matrices are represented with

their components or submatrices separated by “;” within a row as in MATLAB/Octave notation.

The abstract block iteration Y ′ = f(A)Y introduced in (1.2) serves to compute a moderate

number of the first eigenvalues of A.

It is possible to frame our analysis with a Hermitian operator A in a finite dimensional inner

product spaceH together with orthogonal projectors of subspaces avoiding introducing any bases

and thus shortening the notation; cf. Remark 2.1. An extension to the infinite dimensional case

can be made as in [12, Subsection 2.8]. We choose the matrix-based formulation since the new

results in this paper are devoted to the convergence theory of matrix eigensolvers where the

standard notation usually begins with matrices (even if the implementation is actually matrix-

free). In addition, the resulting new bounds can easily be compared with some existing ones for

the block Lanczos method, e.g., those from [15, 23].

In practical applications, the dimension p of the initial subspace Y ⊂ Cn is larger than the

number of the target eigenvalues, and much smaller than n. We define the invariant subspace

X = span{x1, . . . , xp}, and assume that the eigenvalue sets {λ1, . . . , λp} and {λp+1, . . . , λn} are

disjoint so that X is unique. Moreover, we assume ∠(X ,Y) < π/2 in order to exclude trivial

terms such as tan∠(X ,Y) =∞. We reuse the following assumption on the function f made in

[7, 8],

(2.1) maxj∈{p+1,...,n}|f(λj)| < minj∈{1,...,p}|f(λj)|,

i.e., f serves as a filter enlarging the components with i ≤ p relative to those with i > p and

thus ensures that the corresponding convergence factors are smaller than 1.

Our Ritz value analysis deals with a Hermitian A and the approximation of its largest eigen-

values. Therein we arrange the eigenvalues as λ1 ≥ · · · ≥ λn and simply assume λp > λp+1 to

ensure the uniqueness of X . The analysis can easily be transformed by the substitution A→ −A
to the consideration of the smallest eigenvalues.

2.2. Principal angles

We use principal angles to measure the distance from-to or between subspaces of the invariant

subspace X and the initial subspace Y. In general, for two subspaces U , V ⊂ Cn with dimU ≤
dimV and their arbitrary orthonormal basis matrices U and V , the cosine values of the principal
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angles from U to V are defined by the singular values of V HU . Therein the largest principal

angle is the Euclidean angle ∠(U ,V) which can also be defined by maxu∈U\{0}minv∈V\{0}∠(u, v)

with angles between nonzero vectors.

In the case dimU = dimV, one also says the principal angles “between U and V” and uses

∠(U ,V) = ∠(V, U) for denoting the largest principal angle. In the case dimU = 1 ≤ dimV,

there is only one principal angle. This coincides with the angle ∠(u,V) = minv∈V\{0}∠(u, v) for

arbitrary u ∈ U\{0}. If also dimV = 1, the associated cosine and tangent values are actually

| cos∠(u, v)| and | tan∠(u, v)| for arbitrary v ∈ V\{0}.

For constructing majorization bounds in Section 3, we utilize tangent values of principal

angles where an angle equal to π/2 would cause a trivial infinity bound. Therefore we restrict

the consideration to the case where V HU has full rank. Then all singular values of V HU are

nonzero so that all principal angles from U to V are smaller than π/2.

Remark 2.1. A general consideration of tangent values of principal angles within an operator-

based formulation has been presented in [27, Theorem 3.1]. Alternatively, one can apply the

elegant form PV⊥(PVPU )† with the corresponding orthogonal projectors; cf. [27, Theorem 4.1].

Nevertheless, the following description with a matrix product V H⊥ Ũ(V H Ũ)† is more appropriate

for estimating error reductions with respect to tangent values in a concise way without additional

zero components.

Lemma 2.1. Consider the subspace V ⊂ Cn and its orthogonal complement V⊥ with their

arbitrary orthonormal basis matrices V ∈ Cn×t and V⊥ ∈ Cn×(n−t). Let Ũ ∈ Cn×s with

s ≤ min{t, n−t} be an arbitrary (but not necessarily orthonormal) basis matrix of the subspace

U ⊂ Cn for which V H Ũ has full rank. Then the s largest singular values of the (n−t)×t matrix

V H⊥ Ũ(V H Ũ)† coincide with the tangent values of the principal angles from U to V where the sym-

bol † denotes the Moore-Penrose pseudoinverse. In particular, ‖V H⊥ Ũ(V H Ũ)†‖ = tan∠(U ,V)

holds with the 2-norm ‖ · ‖.

Proof. → Subsection 6.1.

The condition s ≤ min{t, n−t} in Lemma 2.1 is consistent with the analysis in further sec-

tions. Therein the subspace iterates or their subsets are considered as U , whereas an invariant

subspace of the same or higher dimension corresponds to V, i.e., s ≤ t. This leads to reasonable

characteristics of bounds such as the gap ratio (λs − λt+1)/(λt+1 − λn) > 0 in a Chebyshev

term. Moreover, s ≤ n−t is naturally fulfilled in the context of computing several eigenvalues of

a large matrix or a matrix pair.

2.3. Majorization

We use majorization arguments for deriving bounds in terms of certain tuples of real numbers

concerning tangent values of principal angles and Ritz value errors. For notational convenience

we treat these tuples as row vectors, e.g., a = [a1, . . . , ad] with the corresponding dimension d.

In addition, we consider a rearrangement of the components of a in (not strictly) decreasing

order and denote the resulting vector by a↓, i.e., a↓1 ≥ · · · ≥ a↓d. Let b be another tuple with

dimension d. If the components of a↓ and b↓ fulfill∑k
i=1 a

↓
i ≤

∑k
i=1 b

↓
i ∀ k ∈ {1, . . . , d},

one says that b weakly majorizes (submajorizes) a. The weak (additive) majorization is denoted

by a ≺w b. The corresponding strong majorization with the notation a ≺ b additionally means

that the sum inequality for k = d is actually an equality. For nonnegative tuples a and b with
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dimension d, the weak multiplicative majorization is defined by∏k
i=1 a

↓
i ≤

∏k
i=1 b

↓
i ∀ k ∈ {1, . . . , d}

and denoted by log a ≺w log b. The strong version log a ≺ log b requires the additional condition∏d
i=1 a

↓
i =

∏d
i=1 b

↓
i . Moreover, nonnegative tuples with different dimensions can be compared

by adding zeros to the shorter tuple.

Specific tuples in our analysis mostly consist of singular values or eigenvalues of matrices.

We generally consider a matrix B ∈ Cd×s, and denote by S(B) the tuple of arranged singular

values of B in decreasing order. Multiple singular values are counted repeatedly so that S(B)

has dimension min{d, s}. Similarly, we denote by Λ(C) the tuple of arranged eigenvalues of a

Hermitian matrix C ∈ Ct×t in decreasing order. In particular, it holds that S(B) =
√

Λ(BHB)

for d ≥ s and S(B) =
√

Λ(BBH) for d ≤ s with componentwise square roots.

The arranged principal angles θ1 ≥ · · · ≥ θs from U to V give the angle tuple Θ(U ,V) =

[θ1, . . . , θs]. The corresponding tangent tuple tan Θ(U ,V) = [tan(θ1), . . . , tan(θs)] is the lead-

ing s-subtuple of S
(
V H⊥ Ũ(V H Ũ)†

)
according to Lemma 2.1. In addition, by using an arbi-

trary orthonormal basis matrix U of U , the cosine-type definition of principal angles shows(
cos Θ(U ,V)

)↓
= S(V HU).

We complete this subsection by a basic argument for the majorization-type analysis.

Lemma 2.2. Consider the matrices B1 ∈ Cd1×d2 , B2 ∈ Cd2×d3 and B3 ∈ Cd3×d4 . Let St(B)

be the leading t-subtuple of the singular value tuple S(B) for B ∈ {B1, B2, B3, B1B2B3} and

t ≤ min{d1, d2, d3, d4}. Then it holds with componentwise multiplication, division and power for

c ∈ N of tuples, that Sct (B1B2B3) ≺w Sct (B1)Sct (B2)Sct (B3) and

Sct (B1B2B3)/Sct (B2) ≺w Sct (B1)Sct (B3) for St(B2) > 0.

Proof. Applying [12, Theorem 4.4] shows the expression

logS(B1B2B3)− logS(B2) ≺ log
(
S(B1)S(B3)

)
which means that the singular value inequality∏k

j=1 σij (B1B2B3) ≤
∏k
j=1

(
σj(B1)σj(B3)

)
σij (B2)

holds for each k ∈ {1, . . . , d} with d = max{d1, d2, d3, d4} and for each index set {i1, . . . , ik} ⊆
{1, . . . , d} with i1 < · · · < ik. Therein zeros are occasionally added to shorter singular value

tuples to match the sizes, and the equality is attained for k = d. By considering this singular

value inequality to the cth power for k ∈ {1, . . . , t} and {i1, . . . , ik} = {1, . . . , k}, we get the

weak multiplicative majorizations logSct (B1B2B3) ≺w log
(
Sct (B1)Sct (B2)Sct (B3)

)
and

log
(
Sct (B1B2B3)/Sct (B2)

)
≺w log

(
Sct (B1)Sct (B3)

)
for St(B2) > 0.

These imply the weak (additive) majorizations in the claim of Lemma 2.2 by applying the

exponential function “exp” which is convex and increasing; see [16, Proposition 4.B.2]. �

In the above proof, the composition “exp ◦ log” is only applied to positive components whereas

zero components remain unchanged as they lead to a trivial case. Alternatively, one can derive

the underlying additive inequality directly by the corresponding multiplicative inequality; cf. [6,

Corollary 3.3.10] and [2, Example II.3.5].
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3. Main results

We motivate our new analysis of the abstract block iteration (1.2) by introducing some aux-

iliary terms and arguments. The basic ingredients are certain biorthogonal vectors from X and

Y inspired by the classical analysis of the block power method by Rutishauser [22, Theorem 2]

(do not confuse these biorthogonal vectors with those mentioned before [22, Section 1] which

form two sets of iterates). We note that the corresponding biorthogonality is represented by a

submatrix in [22, (10)] after some substitutions and results in an asymptotic bound. Indeed,

this biorthogonality also enables a simpler proof of the nonasymptotic bound [21, (14.11)] by

Parlett. A similar argument in [23, Lemma 4] by Saad is the starting point of an analysis of the

block Lanczos method.

Lemma 3.1. With the settings from Subsection 2.1, consider the orthonormal basis matrix

X = [x1, . . . , xp] of the invariant subspace X together with an arbitrary orthonormal basis matrix

Ỹ ∈ Cn×p of Y. Then the p×p matrix XH Ỹ is invertible, and the vectors

yi = Ỹ ci, i = 1, . . . , p with the columns c1, . . . , cp of (XH Ỹ )−1

are evidently linearly independent and form a basis matrix Y = [y1, . . . , yp]. Moreover, x1, . . . , xp
and y1, . . . , yp are biorthogonal, i.e.,

(3.1) xHi yj = δij for i, j ∈ {1, . . . , p}.

Proof. The smallest singular value of XH Ỹ coincides with cos∠(X ,Y) which is nonzero because

∠(X ,Y) < π/2. Thus XH Ỹ is invertible. The biorthogonality is verified by

xHi yj = (Xei)
H Ỹ cj = eHi X

H Ỹ
(
(XH Ỹ )−1ej

)
= eHi ej = δij

with the columns e1, . . . , ep of Ip. �

We introduce some single-angle bounds in Subsection 3.1 and present the corresponding multi-

angle majorization-type bounds in Subsection 3.2. Some relatively long proofs are given in

Section 6.

3.1. Single-angle bounds

In [21, 22], the auxiliary vectors defined in Lemma 3.1 are utilized separately. The simple

power method applied to them can be observed within proper invariant subspaces according

to the biorthogonality (3.1). An essentially analogous approach with the tangent description

introduced in Lemma 2.1 leads to the following single-angle bound which corresponds to an

abstract form of (1.5).

Lemma 3.2. (cf. [7, Lemma 2.3.1]) With the settings from Subsection 2.1 and Lemma 3.1, it

holds that

tan∠(xi,Y ′) ≤ σi tan∠(xi, yi) ≤ σi tan∠(X ,Y)

with σi =
maxj∈{p+1,...,n}|f(λj)|

|f(λi)|
, i = 1, . . . , p.

(3.2)

Proof. → Subsection 6.2.

For the angle-dependent bound (1.6) on the Ritz values η′1 ≥ · · · ≥ η′p of A in Y ′, an abstract

form reads

(3.3)
λi − η′i
η′i − λn

≤
maxj∈{p+1,...,n}|f(λj)|2

minj∈{1,...,i}|f(λj)|2
tan2∠(X ,Y), i = 1, . . . , p.
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Therein dimY ′ = p is ensured by the common assumption (2.1); see Lemma 3.3 below. For

deriving (3.3), we can put several auxiliary vectors from Lemma 3.1 together in order to con-

struct proper auxiliary subspaces. This improves the approach by Saad [23, Theorem 6] which

constructs auxiliary vectors with Ritz values and causes less convenient terms in the bound.

The first step of the derivation of (3.3) produces an angle bound for auxiliary subspaces.

Lemma 3.3. (cf. [7, Lemma 2.3.1]) With the settings from Subsection 2.1 and Lemma 3.1,

consider for an index i ∈ {1, . . . , p} the subspace Xi with the orthonormal basis matrix Xi =

[x1, . . . , xi] and the subspace Yi with the basis matrix Yi = [y1, . . . , yi]. Then the matrix Y ′i =

f(A)Yi has rank i so that the subspace Y ′i = span{Y ′i } has dimension i. In particular, the

subspace iterate Y ′ of (1.2) coincides with Y ′p and thus has dimension p. Moreover, it holds that

(3.4) tan∠(Xi,Y ′i) ≤
maxj∈{p+1,...,n}|f(λj)|

minj∈{1,...,i}|f(λj)|
tan∠(Xi,Yi).

Proof. → Subsection 6.3.

The next step of the derivation of (3.3) is to verify a direct relation between the convergence

measures tan∠(Xi,Y ′i) and (λi − η′i)/(η′i − λn).

Lemma 3.4. (cf. [7, Lemmas 2.2.5 and 2.2.6]) With the settings from Subsection 2.1, Lemma

3.1 and Lemma 3.3, consider the Ritz values η′1 ≥ · · · ≥ η′p of A in Y ′. Then

(3.5)
λi − η′i
η′i − λn

≤ tan2∠(Xi,Y ′i)

holds for each i ∈ {1, . . . , p}.

Proof. → Subsection 6.4.

Based on (3.4) and (3.5), we get the bound

(3.6)
λi − η′i
η′i − λn

≤
maxj∈{p+1,...,n}|f(λj)|2

minj∈{1,...,i}|f(λj)|2
tan2∠(Xi,Yi), i = 1, . . . , p.

If the auxiliary subspaces Xi and Yi need to be eliminated, one can extend (3.6) as (3.3); see

Subsection 6.5.

3.2. Multi-angle majorization-type bounds

Our new bounds for the abstract block iteration (1.2) are generalizations of those introduced

in Subsection 3.1. We use partial sums of certain tuples containing (squared) tangent values of

principal angles instead of the corresponding maxima.

We first generalize the single-angle bound (3.2) to principal angles concerning a possible

eigenvalue cluster in the eigenvalue set {λ1, . . . , λp}.

Theorem 3.5. With the settings from Subsection 2.1 and Lemma 3.1, consider an index set

τ = {i1, . . . , it} ⊆ {1, . . . , p} with i1 < · · · < it as well as the subspaces

Xτ = span{xi1 , . . . , xit} and Yτ = span{yi1 , . . . , yit}.

By using the notations from Subsection 2.3 for tuples and majorization, it holds that

(3.7) tan Θ(Xτ ,Y ′) ≺w Φτ Φ̂t tan Θ(Xτ ,Yτ )

with Φτ =
[
|f(λi1)|−1, . . . , |f(λit)|−1

]↓
, Φ̂ =

[
|f(λp+1)|, . . . , |f(λn)|

]↓
and Φ̂t = Φ̂(1 : t).
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Proof. → Subsection 6.6.

Theorem 3.5 is especially suitable for the case where the eigenvalues λi1 , . . . , λit are consecu-

tive and clustered. The components of the tuplewise convergence factor Φτ Φ̂t can be bounded

away from 1 by selecting a proper f such that maxj∈{p+1,...,n}|f(λj)| � minj∈{1,...,p}|f(λj)|. An

application to nonconsecutive eigenvalues is also feasible, but not of practical interest.

Remark 3.1. A direct application of Lemmas 2.1 and 2.2 implies the more abstract bound

(3.8) tan Θ(F U ,V) ≺w Ss
(
(V HFV )−1

)
Ss
(
V H⊥ FV⊥

)
tan Θ(U ,V)

for a normal matrix F ∈ Cn×n provided that V and V⊥ are invariant subspaces of FH and that

V HFV is invertible; see Subsection 6.7 for the derivation.

We note that bound (3.8) can directly lead to bound (3.7) only in the special case τ = {1, . . . , p}
because the biorthogonality (3.1) concerning the index set τ cannot be added to (3.8) afterwards.

Alternatively, we can formulate a restricted form of (3.8) with respect to an invariant subspace

of A associated with the eigenvalues λi1 , . . . , λit , λp+1, . . . , λn. Nevertheless, we prefer the easily

understandable formulation in Theorem 3.5.

In order to eliminate Yτ , bound (3.7) can be modified as

(3.9) tan Θ(Xτ ,Y ′) ≺w Φτ Φ̂t tan Θt(X ,Y)

with the leading t-subtuple Θt(X ,Y) of Θ(X ,Y). Therein Lemma 2.1 shows

tan Θ(Xτ ,Yτ ) = S(G̃) for G̃ = [xHp+1Yτ ; . . . ; xHn Yτ ] ∈ C(n−p)×t

and tan Θ(X ,Y) = S(Ĝ) for Ĝ = [xHp+1Y ; . . . ; xHn Y ] ∈ C(n−p)×p

as in Subsection 6.5. Moreover, the Courant-Fischer principles ensure the tuple inequality

S(G̃) =

√
Λ
(
G̃HG̃

)
=

√
Λ
(
EHτ Ĝ

HĜEτ
)
≤
√

Λt
(
ĜHĜ

)
= St(Ĝ),

where Eτ is a p×t orthonormal matrix consisting of the columns of Ip with indices in τ , and

Λt or St denotes the leading t-subtuple of the corresponding eigenvalue tuple or singular value

tuple. This leads to Φτ Φ̂t tan Θ(Xτ ,Yτ ) ≤ Φτ Φ̂t tan Θt(X ,Y) and verifies (3.9).

For deriving a majorization version of the angle-dependent bound (3.3), we proceed in two

steps as in Subsection 3.1. The first step gives an intermediate multi-angle bound for auxiliary

subspaces, and the second step enables a combination between two convergence measures.

We formulate the first step as a generalization of Lemma 3.3 in square form.

Lemma 3.6. (majorization update of [7, Lemma 2.3.1]) With the settings from Subsection 2.1,

Lemma 3.1 and Lemma 3.3, it holds that

(3.10) tan2 Θ(Xi,Y ′i) ≺w Φ2
i Φ̂2

i tan2 Θ(Xi,Yi)

with Φi =
[
|f(λ1)|−1, . . . , |f(λi)|−1

]↓
, Φ̂ =

[
|f(λp+1)|, . . . , |f(λn)|

]↓
and Φ̂i = Φ̂(1 : i).

Proof. Bound (3.10) is derived by adapting the proof of Theorem 3.5 (see Subsection 6.5) to

τ = {1, . . . , i} and t = i. Most arguments before the intermediate bound (6.4) are used in the

same way. Only the application of Lemma 2.2 is slightly different, namely, by using c = 2 instead

of c = 1. �

The second step corresponds to a generalization of Lemma 3.4.
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Lemma 3.7. (majorization update of [7, Lemmas 2.2.5 and 2.2.6]) With the settings from

Subsection 2.1, Lemma 3.1, Lemma 3.3 and Lemma 3.4,

(3.11)

[
λ1 − η′1
η′1 − λn

, . . . ,
λi − η′i
η′i − λn

]
≺w tan2 Θ(Xi,Y ′i)

holds for each i ∈ {1, . . . , p}.

Proof. → Subsection 6.8.

Now the majorization version of (3.3) can be shown.

Theorem 3.8. With the settings from Subsection 2.1, Lemma 3.1, Lemma 3.3 and Lemma 3.4,

it holds that[
λ1 − η′1
η′1 − λn

, . . . ,
λi − η′i
η′i − λn

]
≺w Φ2

i Φ̂2
i tan2 Θ(Xi,Yi) ≤ Φ2

i Φ̂2
i tan2 Θi(X ,Y)

with Φi =
[
|f(λ1)|−1, . . . , |f(λi)|−1

]↓
, Φ̂ =

[
|f(λp+1)|, . . . , |f(λn)|

]↓
, Φ̂i = Φ̂(1 : i) and the

leading i-subtuple Θi(X ,Y) of Θ(X ,Y).

Proof. The weak majorization is verified by combining (3.10) with (3.11). The tuple inequality

is shown analogously to the derivation of (3.9). �

Theorem 3.8 additionally provides a majorization bound with Φ2
i Φ̂2

i tan2 Θi(X ,Y) which does

not depend on auxiliary subspaces.

Remark 3.2. A more abstract bound concerning Lemma 2.1 in the case dimU = s = t = dimV
can be derived by combining (3.8) with an analogue of (3.11). Therein V is assumed to be an

invariant subspace of A associated with the t largest eigenvalues λ1 ≥ · · · ≥ λt. Then it holds

that

(3.12)

[
λ1 − ψ1

ψ1 − ψ
, . . . ,

λt − ψt
ψt − ψ

]
≺w S2

(
(V HFV )−1

)
S2
t

(
V H⊥ FV⊥

)
tan2 Θ(U ,V)

for the Ritz values ψ1 ≥ · · · ≥ ψt of A in F U and the smallest Ritz value ψ of A in F U +V. Prov-

ing Theorem 3.8 based on (3.12) is only feasible for i = p since the terms |f(λi+1)|, . . . , |f(λp)|
cannot easily be dropped afterwards.

Furthermore, we can use [12, Theorem 2.1] for formulating an alternative bound under the

weaker assumption that V is an invariant subspace of A but not necessarily associated with the

t largest eigenvalues. More precisely, we reformulate [12, (2.2)] as

ζ−1
∣∣Λ (V HAV )− Λ

(
WHAW

)∣∣ ≺w sin2 Θ(F U ,V).

with an orthonormal basis matrix W of F U and the spread ζ of the Ritz value set of A in F U +V.

Subsequently, we apply the convex and increasing function α/(1−α) defined for α ∈ [0, 1) to the

tuples in the above majorization-type bound. Then∣∣Λ (V HAV )− Λ
(
WHAW

)∣∣
[ζ, . . . , ζ]− |Λ (V HAV )− Λ (WHAW )|

≺w tan2 Θ(F U ,V).

Combining this with (3.8) results in

(3.13) ∣∣Λ (V HAV )− Λ
(
WHAW

)∣∣
[ζ, . . . , ζ]− |Λ (V HAV )− Λ (WHAW )|

≺w S2
(
(V HFV )−1

)
S2
t

(
V H⊥ FV⊥

)
tan2 Θ(U ,V).

The weaker assumption on V enables the application of (3.13) to interior eigenvalues. However,

it is somewhat challenging to select an optimal filter F without knowing good approximations

to undesired eigenvalues for polynomial filters and/or to desired eigenvalues for rational filters.
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The well-known Chebyshev terms for this type of bounds actually require that V corresponds to

the contiguous set of the t largest eigenvalues.

4. Applications to specific filters

We apply our new bounds presented in Subsection 3.2 to the convergence analysis of the block

Lanczos method and its inverted version. The construction of the specified bounds essentially

consists of specifying the filter f in the abstract block iteration (1.2) and adapting intermediate

bounds to explicit convergence measures based on subspace inclusions. The practical choices of

f are normally limited to polynomials and rational functions. The polynomial version of (1.2)

is easier to implement, since its essential part is the multiplication of vectors or basis matrices

by A. For implementing the rational version of (1.2), one requires linear system solvers which

make a single step more expensive with respect to computational time and storage requirements.

Nevertheless, the total computational time can significantly be reduced.

In Subsection 4.1, we specify the filter f as various shifted Chebyshev polynomials so that

(1.2) simulates certain underlying iterations with almost optimal convergence rates within the

block Lanczos method. This is comparable with the standard approach from [7, 21, 23] and the

recent approach from [15]. A remarkable feature of our majorization-type bounds is that the

convergence factors are tuples instead of scalars as in the existing bounds. In Subsection 4.2, we

introduce an adaption of the main results to some shift-and-invert eigensolvers.

4.1. Block Lanczos method

With the settings from Subsection 2.1, the block Lanczos method constructs block Krylov

subspaces of the form K = Y + AY + · · · + Ak−1Y. Thus the abstract block iteration (1.2),

with an arbitrary real polynomial of degree k−1 as f , produces a subset Y ′ of K. The inclusion

Y ′ ⊆ K leads to simple inequalities for principal angles and Ritz values.

In order to specify f as a reasonable polynomial, we consider the multi-angle bound (3.7) as

an example. Ideally, we want to construct f in an optimal way, namely, minimizing the tuplewise

convergence factor Φτ Φ̂t defined by

Φτ =
[
|f(λi1)|−1, . . . , |f(λit)|−1

]↓
, Φ̂ =

[
|f(λp+1)|, . . . , |f(λn)|

]↓
and Φ̂t = Φ̂(1 : t)

with respect to the included eigenvalues. Following the standard approach from [7, 21, 23], we

simplify this minimization problem with respect to the eigenvalue interval [λn, λp+1]. Therein

we begin with the tuple inequality

(4.1) Φτ Φ̂t ≤ Φτ ϕ =
[
|f(λi1)|−1ϕ, . . . , |f(λit)|−1ϕ

]↓
with ϕ = maxλ∈[λn,λp+1]|f(λ)|

and then determine an f minimizing the upper bound Φτ ϕ. Fortunately, a shifted Chebyshev

polynomial simultaneously minimizes all the components of Φτ ϕ as shown in the following lemma

inspired by [7, Lemma 2.4.1].

Lemma 4.1. Every component of the tuple Φτ ϕ in (4.1) is minimized in the class of real

polynomials of degree k−1 at

(4.2) f(α) = Tk−1

(
2α− λp+1 − λn
λp+1 − λn

)
= Tk−1

(
1 + 2

α− λp+1

λp+1 − λn

)
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where Tl with l ∈ N denotes the Chebyshev polynomials (of the first kind). With this choice of

f , we have Φτ ϕ = [σit , . . . , σi1 ] where

σj =

[
Tk−1

(
1 + ξj
1− ξj

)]−1
= [Tk−1(1 + 2γj)]

−1

with ξj =
λj − λp+1

λj − λn
and γj =

λj − λp+1

λp+1 − λn
.

(4.3)

Proof. The absolute value of the Chebyshev polynomial Tl is bounded above by 1 on the interval

[−1, 1] and exceeds 1 outside of this interval where the growth is faster in comparison to any

other polynomial of degree l whose absolute value is also bounded above by 1 on [−1, 1]. In

our context, after mapping the interval [−1, 1] linearly to the interval [λn, λp+1], the above well-

known property indicates that function (4.2) solves the minimization problem described in the

lemma. The verification of Φτ ϕ = [σit , . . . , σi1 ] is straightforward where the arrangement of the

components is based on the monotonicity of Tl on (1,∞). �

Several implementations of subspace iterations directly using Chebyshev polynomials are

available; see, e.g., [21] for the three-term recurrence and [8] for the two-term recurrence it-

erative formulas. Therein reasonable quality bounds of λp+1 and λn are normally required.

The convergence theory of subspace iterations using Chebyshev polynomials is a standard

way to derive the convergence rate bounds for the block Lanczos method. We note that the

ξj-notation and the γj-notation of the Chebyshev term (4.3) are suggested in [8] and [23], re-

spectively. In the γj-notation, one can easily see that the bound decreases if the so-called gap

ratio γj increases. The sharpness of scalar Chebyshev bounds for the single-vector version of the

Lanczos method has been discussed in [14, 24]. Some more accurate bounds are constructed by

interpolating polynomials in [24] and adapted to the block Lanczos method in [25].

We continue with the reformulation of majorization bounds. Based on Lemma 4.1, we specify

the bounds from Subsection 3.2 for the block Lanczos method as follows.

Theorem 4.2. With the settings from Subsection 2.1 and Lemma 3.1, consider an index set

τ = {i1, . . . , it} ⊆ {1, . . . , p} with i1 < · · · < it as well as the subspaces

Xτ = span{xi1 , . . . , xit}, Yτ = span{yi1 , . . . , yit} and K = Y +AY + · · ·+Ak−1Y.

By using the notations from Subsection 2.3 for tuples and majorization, and the parameter

definition (4.3), it holds that

(4.4) tan Θ(Xτ ,K) ≺w [σit , . . . , σi1 ] tan Θ(Xτ ,Yτ ) ≤ [σit , . . . , σi1 ] tan Θt(X ,Y)

with the leading t-subtuple Θt(X ,Y) of Θ(X ,Y).

Next, consider the p largest Ritz values ψ1 ≥ · · · ≥ ψp of A in K together with the subspaces

Xi = span{x1, . . . , xi} and Yi = span{y1, . . . , yi} for an index i ∈ {1, . . . , p}. Then

(4.5)

[
λ1 − ψ1

ψ1 − λn
, . . . ,

λi − ψi
ψi − λn

]
≺w [σ2

i , . . . , σ
2
1 ] tan2 Θ(Xi,Yi) ≤ [σ2

i , . . . , σ
2
1 ] tan2 Θi(X ,Y)

holds with the leading i-subtuple Θi(X ,Y) of Θ(X ,Y).

Proof. For any real polynomial f of degree k−1 we have Y ′ = f(A)Y ⊆ K and thus

tan Θ(Xτ ,K) ≤ tan Θ(Xτ ,Y ′), λj ≥ ψj ≥ η′j ∀ j ∈ {1, . . . , p},

where the tangent tuple inequality can be proved analogously to the end of the proof of Theorem

3.5, and the Ritz value inequalities are ensured by the Courant-Fischer principles. Then the left-

hand sides of the bounds from Theorem 3.5, its supplement (3.9) and Theorem 3.8 can be
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extended as the left-hand sides of the corresponding specified bounds. The extension of the

right-hand sides is justified by Lemma 4.1. �

Remark 4.1. The multi-angle bound (4.4) is a majorization-type generalization of the single-

angle bound [25, (15)] which corresponds to (1.5) and improves [23, (3.4)]. A similar multi-angle

bound reads

(4.6)
∑l
j=1 tan θj(Xτ ,K) ≤

∑l
j=1 σit tan θj(Xτ ,Yτ ), l = 1, . . . , t

by applying [15, Theorem 8.1] where the underlying unitarily invariant norm is specified as the

Ky Fan l-norm for l = 1, . . . , t, i.e., the sum of the l largest singular values; cf. [2, (IV.33)]. In

comparison to (4.6), the new bound (4.4) is more accurate by considering that σit is the maximal

component of the tuplewise convergence factor [σit , . . . , σi1 ].

Remark 4.2. We can modify (4.4) by restricting its derivation to an invariant subspace which

is orthogonal to the eigenvectors associated with a number of the largest eigenvalues and occa-

sionally also the smallest eigenvalues; cf. [23] and [21, Section 12.5]. Then additional terms

like
∏i−1
j=1(λj − λn)/(λj − λi) occur in the bound so that this modification is only meaningful for

well-separated eigenvalues. If the target eigenvalues are clustered and the initial subspace in the

block Lanczos method is relatively small, we can interpret (4.4) in another way, namely, let Y be

a block Krylov subspace K̃ = Ỹ+AỸ+ · · ·+Al−1Ỹ (therein dimK̃ ≤ l dimỸ holds, not necessarily

with equality), then K = Y + AY + · · · + Ak−1Y is related to a block Krylov subspace with the

initial subspace Ỹ and degree k+l−1. This improves the applicability of (4.4) concerning small

initial subspaces; cf. [15, Section 8].

In addition, the Ritz vector bounds [15, (4.10) and (8.8)] are generalizations of [23, (2.15)]

related to subspaces spanned by Ritz vectors with a unitarily invariant norm. We note that a

generalization with a standard operator norm is presented in [9, Theorem 4.3]. This bound type

requires Ritz values. A drawback is that the bound can decrease if some estimated Ritz values

are utilized instead of the corresponding exact Ritz values so that a combination with Ritz value

bounds is not meaningful. For this reason, we recommend bound [8, (2.7)]. Moreover, direct and

concise Ritz vector bounds are perhaps only known for the single-vector version of the Lanczos

method; see [19, (3.3)]. Improving Ritz vector bounds is a potential topic in our future research.

We now turn our attention to the angle-dependent Ritz value bound (4.5). Similarly to

Remark 6.1, a slightly sharper form of (4.5) with the smallest Ritz value of A in X +K instead

of λn can be constructed by a restricted analysis in X +K. Indeed, also the parameter definition

(4.3) can be modified for (4.5) by using certain Ritz values of A in X +K instead of λp+1 and

λn. This is enabled by the following fact: With an arbitrary orthonormal basis matrix V of

X +K, the relation

V HAjY = V HA(Aj−1Y) = V HA(V V H)(Aj−1Y)

= (V HAV )V HAj−1Y = · · · = (V HAV )j(V HY)

holds for each j ∈ {1, . . . , k−1} by using the orthogonal projector V V H . Thus

V HK = V HY + V HAY + · · ·+ V HAk−1Y

= V HY + (V HAV )(V HY) + · · ·+ (V HAV )k−1(V HY)

is a block Krylov subspace with respect to V HAV , and analogous bounds can be achieved with

eigenvalues of V HAV , i.e., Ritz values of A in X +K. This fact is a direct generalization of that

for Krylov subspaces; cf. [7, pp. 36] and [19, Lemma 3.3].
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Remark 4.3. Bound (4.5) generalizes [8, (2.20)] which can be reformulated as (1.6) or [25,

(19)] and improves [23, (3.10)]. A similar bound based on [15, Theorem 8.2] reads

(4.7)
∑l
j=1

λj − ψj
λ1 − λn

≤
∑l
j=1 σ

2
i tan2 θj(Xi,Yi), l = 1, . . . , i.

Comparing the new bound (4.5) with (4.7) indicates a twofold improvement because (λ1−λn)−1 ≤
(ψj − λn)−1 and σ2

i ≥ σ2
j ∀ j ∈ {1, . . . , i}.

In addition, setting auxiliary vectors orthogonal to the Ritz vectors associated with a number of

the largest Ritz values leads to an alternative bound with terms like
∏i−1
j=1(ψj−λn)/(ψj−λi) which

are suboptimal for clustered eigenvalues. Furthermore, the interpretation of (4.4) in Remark 4.2

concerning small initial subspaces also fits (4.5).

4.2. Shift-and-invert eigensolvers

We consider a generalized eigenvalue problem Lv = αSv arising from the finite element

discretization of an operator eigenvalue problem. Therein L and S are n×n Hermitian matrices,

and S is positive definite. This formally includes the case of the finite difference discretization

with S = In. Usually one only needs to compute a moderate number of eigenvalues.

By using a proper shift β, the shifted matrix Lβ = L−βS is invertible, and computing eigen-

values of (L, S) close to β corresponds to computing extremal eigenvalues of (S,Lβ). The latter

problem can be reformulated (implcitly) as computing the largest eigenvalues of the Hermitian

matrix pair

(L̃,M) with L̃ = ±Lβ and M = LβS
−1Lβ

where M is positive definite. This is equivalent to computing the largest eigenvalues of

A = M−1/2L̃M−1/2.

A reverse transformation toward the original problem can be used to construct shift-and-invert

versions of various iterative eigensolvers.

For instance, a block Krylov subspace K = Y +AY + · · ·+Ak−1Y can be transformed as

K̂ = Z +M−1L̃Z + · · ·+ (M−1L̃)k−1Z with K̂ = M−1/2K and Z = M−1/2Y.

Such block Krylov subspaces with respect to M−1L̃ correspond to a shift-and-invert version of

the block Lanczos method. For an implementation with practical construction of K̂, we can solve

linear systems of the form Mw = r for certain Ritz vector residuals r similarly to the generalized

Davidson method. The linear system Mw = r is actually Lβ(S−1Lβw) = r and can thus be

solved as two successive linear systems for the shifted matrix Lβ .

For the convergence analysis, we can reformulate Lemma 4.1 and Theorem 4.2 based on the

above substitutions. Therein the parameter definition (4.3) and the Ritz value measures are

reformulated by λ = ±(α − β)−1 for eigenvalues. The transformation of angle terms is related

to the inner product induced by M .

5. Numerical examples

We discuss the accuracy of our new results with several numerical examples. Examples 1

and 2 deal with the block Lanczos method applied to real diagonal matrices following a classical

example from [23]. The bounds from Theorem 4.2 and their counterparts from [15] can directly

be applied and demonstrated with a comparative illustration. The associated MATLAB/Octave

codes (including validity checks for Theorems 3.5 and 3.8) are available on
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https://github.com/lobpcg/MAJORIZATION_TYPE_CLUSTER_ROBUST_BOUNDS

_FOR_BLOCK_FILTERS_AND_EIGENSOLVERS

5.1. Example 1

Similarly to [23, Subsection 4.2] and [15, Example 7.3], we consider the diagonal matrix

A = diag(λ1, . . . , λn) with n = 900 and the eigenvalues

λ1 = 2, λ2 = 1.6, λ3 = 1.4, λj = 1− (j − 3)/n for j = 4, . . . , n.

Combining this with the settings from Subsection 2.1 and Lemma 3.1, the invariant subspace X
associated with the p largest eigenvalues is spanned by the first p columns of the identity matrix

In. We set p = 3 and construct the initial subspace Y ∈ Rn×p of the block Lanczos method using

a random matrix Y=[orth(randn(p,p)); randn(n-p,p)] such that the principal angles be-

tween X and Y are evenly distributed. We note that the initial subspace in the related examples

in [15, 23] is spanned by a fixed matrix Y = [V ; . . . ; V ] with V = [1, 1, 1; 1, 0, −2; 1, −1, 1]

for which the principal angles between X and Y are actually equal. We use 1000 randomly con-

structed initial subspaces instead. For each of them, the corresponding block Krylov subspace

K = Y + AY + · · ·+ Ak−1Y is determined up to k = 15 where full orthogonalization is used in

order to reduce instability. Indeed, the target eigenvalues λ1, λ2, λ3 in this classical example are

well separated, and the gap λ3 − λ4 ≈ 0.4 is sufficiently large to ensure meaningful Chebyshev

terms in the bounds. Figure 1 shows the numerical comparison between our new bounds (4.4),

(4.5) and the reformulated bounds (4.6), (4.7) based on [15]. In the left subfigure, the multi-angle

bounds (4.4) and (4.6) are compared in the special form∑t
j=1 tan θj(Xτ ,K) ≤

∑t
j=1 σ tan θj(Xτ ,Yτ ) with σ ∈ [σit , . . . , σi1 ] or σ = σit .

The “Lanczos” curve illustrates the mean value (cf. [15]) of
∑t
j=1 tan θj(Xτ ,K) among 1000

samples for τ = {1, 2, 3} and t = 3 for each k ∈ {1, . . . , 15}. The “Chebyshev” curve presents

the corresponding data determined for f(A)Y instead of K by using the shifted Chebyshev

polynomial defined in (4.2). The other curves contain the mean values of bounds. The ac-

curacy of (4.6) is at the same level as that observed in [15, Table 4] concerning the measure(∑t
j=1 sin2 θj(Xτ ,K)

)1/2
. The improvement achieved by (4.4) is evident, and is also observed in

a comparison with respect to maxima instead of mean values. In the right subfigure, we evaluate∑i
j=1

λj − ψj
λ1 − λn

≤
∑i
j=1 σ

2 tan2 θj(Xi,Yi) with σ ∈ [σi, . . . , σ1] or σ = σi

to compare the Ritz value bounds (4.5) and (4.7) for i = 3. Therein the denominator ψj −λn in

(4.5) is simplified as λ1 − λn. This reduces the accuracy of (4.5), but only slightly after several

iteration steps. A possible overestimation in the first iteration steps is avoided by additionally

using the trivial bound
∑i
j=1

λj−ψj

λ1−λn
≤ i. We observe that (4.5) is more accurate than (4.7).

However, their relative accuracy is slightly worse than that of (4.4) and (4.6). This reflects the

fact that the Ritz value bounds are essentially derived by combining the multi-angle bounds

with further inequalities which are not necessarily sharp at the same time. Furthermore, the

reader may refer to [15, Section 7] and [25, Section 5] that discuss the drawbacks of the classical

bounds from [23].

5.2. Example 2

We use the diagonal matrix A = diag(λ1, . . . , λn) with n = 3600 and the eigenvalues

λ1 = 2.05, λ2 = 2, λ3 = 1.95, λ4 = 1.65, λ5 = 1.6, λ6 = 1.55,

λ7 = 1.45, λ8 = 1.4, λ9 = 1.35, λj = 1− (j − 9)/n for j = 10, . . . , n.
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Figure 1. Numerical comparison of the new bounds (4.4) and (4.5) with the relevant

bounds (4.6) and (4.7) based on [15] accompanying the block Chebyshev and Lanczos

methods; see Example 1 with p = 3, τ = {1, 2, 3}, t = 3 and i = 3.

The experiment introduced in Example 1 is run for this matrix together with p = 9, τ =

{3, . . . , 8}, t = 6 and i = 8; see Figure 2. The smaller distances between target eigenvalues

do not deteriorate the convergence rates due to the large gap λ9 − λ10 ≈ 0.35. This also

results in suitable Chebyshev terms so that the slopes of the bound curves accurately reflect

the convergence rates and the cluster robustness, at least in the final phase. Our new bounds

(4.4) and (4.5) provide visible improvements in comparison to (4.6) and (4.7) based on [15].

The corresponding bounds from [15] already dramatically improve the classical bounds from [23]

involving the “bulky” factors; see [15, Example 7.2].
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Figure 2. Numerical comparison of the new bounds (4.4) and (4.5) with the relevant

bounds (4.6) and (4.7) based on [15] accompanying the block Chebyshev and Lanczos

methods; see Example 2 with p = 9, τ = {3, . . . , 8}, t = 6 and i = 8.
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Conclusions

Majorization techniques exploring relations between Ritz value errors and principal angles are

extended to block signal filters and subspace iterates of block eigensolvers. The majorization-

type analysis of tangents of principal angles from [12] is improved by using auxiliary vectors

from the classical analysis of the block power method by Rutishauser [22]. This leads to novel

majorization bounds for the Rayleigh-Ritz method applied to the final iterative subspace in

terms of principal angles between an initial subspace and a target invariant subspace. Our results

improve the existing approaches from [15, 23] that are used for the block Lanczos method. Our

majorization technique is especially advantageous in situations where the concerned principal

angles are evenly distributed, which is common for random initial subspaces. Our forthcoming

work will focus on angle-free bounds for Ritz value errors which are applicable to restarted

iterations, such as the stochastic block descent. Simultaneous consideration of several Ritz

values approximating clustered eigenvalues enables meaningful bounds and has potential for

investigating block preconditioned eigensolvers. A future aim is to cover the popular locally

optimal block preconditioned conjugate gradient (LOBPCG) method [10, 13], taking advantage

of techniques developed in [20, 26].

6. Appendix: Detailed proofs

6.1. Proof of Lemma 2.1

By using the orthonormal basis matrix U = ŨG with G = (ŨH Ũ)−1/2 ∈ Cs×s, the cosine

values of the principal angles θ1 ≥ · · · ≥ θs from U to V are given by the singular values of

V HU ∈ Ct×s. More precisely, a standard singular value decomposition V HU = WΣZH provides

unitary matrices W ∈ Ct×t and Z ∈ Cs×s together with the diagonal (rectangle) matrix

Σ =

[
D

O

]
∈ Rt×s consisting of D = diag

(
cos(θs), . . . , cos(θ1)

)
∈ Rs×s

and the zero matrix O ∈ R(t−s)×s. Then V̂ = VW and Û = UZ = ŨGZ are orthonormal basis

matrices of U and V with the property Σ = V̂ H Û = WHV H ŨGZ. Since V H Ũ has full rank, so

does Σ. In addition, it holds that

V H⊥ ÛΣ† = V H⊥ Û(V̂ H Û)† = V H⊥ ŨGZ(WHV H ŨGZ)† = V H⊥ ŨGZ(GZ)†(V H Ũ)†(WH)†

= V H⊥ ŨGZ(GZ)−1(V H Ũ)†(WH)−1 =
(
V H⊥ Ũ(V H Ũ)†

)
W

so that the singular values of V H⊥ ÛΣ† coincide with those of V H⊥ Ũ(V H Ũ)†. Their squared values

are the min{t, n−t} largest eigenvalues of the t×t matrix

(V H⊥ ÛΣ†)HV H⊥ ÛΣ† = (Σ†)H ÛHV⊥V
H
⊥ ÛΣ† = (Σ†)H ÛH(In − V̂ V̂ H)ÛΣ†

= (Σ†)H ÛH ÛΣ† − (Σ†)H ÛH V̂ V̂ H ÛΣ†

= (Σ†)HΣ† − (Σ†)HΣHΣΣ† = (Σ†)HΣ† − (ΣΣ†)H(ΣΣ†).

(6.1)

Therein V⊥V
H
⊥ is the orthogonal projector on V⊥ and thus coincides with In − V̂ V̂ H for the

orthogonal projector V̂ V̂ H on V. Moreover, Σ† = [D−1 OH ] holds as Σ has full rank. Then

(6.1) implies

(V H⊥ ÛΣ†)HV H⊥ ÛΣ† =

[
D−2

Õ

]
−

[
Is

Õ

]H [
Is

Õ

]
=

[
D−2 − Is

Õ

]
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with the zero matrix Õ = OOH . Thus the s largest singular values of V H⊥ Ũ(V H Ũ)† or V H⊥ ÛΣ†

coincide with the square roots of the diagonal entries of the diagonal matrix

D−2 − Is = diag
((

cos(θs)
)−2 − 1, . . . ,

(
cos(θ1)

)−2 − 1
)

= diag
(

tan2(θs), . . . , tan2(θ1)
)
,

i.e., the tangent values of the principal angles from U to V. The largest singular value also

coincides with the 2-norm so that ‖V H⊥ Ũ(V H Ũ)†‖ = tan(θ1) = tan∠(U ,V). �

6.2. Proof of Lemma 3.2

Applying Lemma 2.1 to

V = xi, V⊥ = [x1, . . . , xi−1, xi+1, . . . , xn], Ũ = yi

shows that the only singular value of the (n−1)×1 matrix

w = [x1, . . . , xi−1, xi+1, . . . , xn]Hyi(x
H
i yi)

† (3.1)
= [0; . . . ; 0; xHp+1yi; . . . ; xHn yi].

coincides with the tangent value of the only principal angle from span{yi} to span{xi}. Then

‖w‖ = | tan∠(yi, xi)| = | tan∠(xi, yi)| = tan∠(xi, yi)

holds since xHi yi = 1 > 0 leads to tan∠(xi, yi) > 0. In addition, the common assumption (2.1)

ensures f(λi) 6= 0 and xHi f(A)yi =
((
f(A)

)H
xi
)H
yi =

(
f(λi)xi

)H
yi = f(λi)x

H
i yi = f(λi) 6= 0.

Thus f(A)yi is a nonzero vector. Applying Lemma 2.1 to

V = xi, V⊥ = [x1, . . . , xi−1, xi+1, . . . , xn], Ũ = f(A)yi

analogously implies
∣∣ tan∠

(
xi, f(A)yi

)∣∣ = ‖w′‖ for

w′ = [x1, . . . , xi−1, xi+1, . . . , xn]Hf(A)yi
(
xHi f(A)yi

)†
(3.1)
=
[
0; . . . ; 0; f(λp+1)xHp+1yi; . . . ; f(λn)xHn yi

](
f(λi)

)−1
.

Then a simple comparison between ‖w′‖ and ‖w‖ shows∣∣ tan∠
(
xi, f(A)yi

)∣∣ ≤ maxj∈{p+1,...,n}|f(λj)|
|f(λi)|

tan∠(xi, yi).

This implies the first inequality in (3.2) according to f(A)yi ∈ f(A)Y = Y ′.

Moreover, the term tan∠(xi, yi) can be enlarged by tan∠(X ,Y) for eliminating the auxiliary

vector yi; cf. (1.5). This modification is enabled by projection arguments or by applying Lemma

2.1 to

V = X = [x1, . . . , xp], V⊥ = [xp+1, . . . , xn], Ũ = yi.

Therein tan∠(yi,X ) = ‖W‖ holds for

W = [xp+1, . . . , xn]Hyi
(
[x1, . . . , xp]

Hyi
)†

= w̃e†i = w̃eHi

with w̃ = [xHp+1yi; . . . ; xHn yi] and the ith column ei of the identity matrix Ip. Then

‖W‖ = ‖w̃eHi ‖ = ‖w̃‖‖ei‖ = ‖w̃‖ = ‖w‖

holds by comparing the components of w and w̃. Thus

tan∠(xi, yi) = ‖w‖ = ‖W‖ = tan∠(yi,X ) ≤ tan∠(Y,X ) = tan∠(X ,Y)

leads to the second inequality in (3.2). �

Bound (3.2) can also be shown in an elementary way; cf. [25, Theorem 1] concerning the

specified function (1.4). The proof of Lemma 3.2 aims at motivating that of Theorem 3.5 where

majorization bounds are to be derived.
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6.3. Proof of Lemma 3.3

The common assumption (2.1) ensures f(λj) 6= 0 for each j ∈ {1, . . . , i}. The i×i matrix

XH
i Y

′
i = XH

i f(A)Yi = diag
(
f(λ1), . . . , f(λi)

)
XH
i Yi

(3.1)
= diag

(
f(λ1), . . . , f(λi)

)
is then invertible. Thus Y ′i has rank i, and dimY ′i = i. Moreover, the relation Y ′ = f(A) span{Y } =

span{f(A)Y } = span{f(A)Yp} = span{Y ′p} = Y ′p holds so that dimY ′ = p.

In order to show (3.4), the property dimY ′i = i = dimXi enables the representation

tan∠(Xi,Y ′i) = tan∠(Y ′i,Xi) = maxy′∈Y′
i\{0} tan∠(y′,Xi) = tan∠(ŷ′,Xi)

with a maximizer ŷ′ ∈ Y ′i\{0}. Because Y ′i = span{f(A)Yi} = f(A)Yi, we can represent ŷ′ by

ŷ′ = f(A)ŷ with a certain ŷ ∈ Yi\{0}. Applying Lemma 2.1 to

V = Xi, V⊥ = [xi+1, . . . , xn], Ũ = ŷ′ = f(A)ŷ

(there is only one principal angle in this case) yields tan∠(ŷ′,Xi) = ‖W ′‖ for

W ′ = [xi+1, . . . , xn]Hf(A)ŷ
(
XH
i f(A)ŷ

)†
= w′e′

†

with w′ =
[
0; . . . ; 0; f(λp+1)xHp+1ŷ; . . . ; f(λn)xHn ŷ

]
and e′ =

[
f(λ1)xH1 ŷ; . . . ; f(λi)x

H
i ŷ
]
.

The vector w′ initially consists of xHj f(A)ŷ = f(λj)x
H
j ŷ for j = i+1, . . . , n, but the first compo-

nents up to the index p are simply zero due to (3.1) and that ŷ belongs to Yi = span{y1, . . . , yi}.
Moreover, ŷ can be represented by ŷ = Yig with a certain g ∈ Ci\{0} so that

e′ = diag
(
f(λ1), . . . , f(λi)

)
XH
i Yig

(3.1)
= diag

(
f(λ1), . . . , f(λi)

)
g 6= 0.

Then e′
†

= e′
H
/‖e′‖2, and

tan∠(ŷ′,Xi) = ‖W ′‖ =
∥∥w′e′H/‖e′‖2∥∥ =

‖w′e′H‖
‖e′‖2

=
‖w′‖‖e′‖
‖e′‖2

=
‖w′‖
‖e′‖

.

Analogously, tan∠(ŷ,Xi) has the representation

tan∠(ŷ,Xi) =
‖w‖
‖e‖

with w = [0; . . . ; 0; xHp+1ŷ; . . . ; xHn ŷ]

and e = [xH1 ŷ; . . . ; xHi ŷ].

Summarizing the above together with

‖w′‖ ≤
(
maxj∈{p+1,...,n}|f(λj)|

)
‖w‖, ‖e′‖ ≥

(
minj∈{1,...,i}|f(λj)|

)
‖e‖

and tan∠(ŷ,Xi) ≤ tan∠(Yi,Xi) = tan∠(Xi,Yi) yields (3.4). �

The above proof focuses on the rank-1 matrices w′e′
†

and we†. An alternative proof using

rank-i matrices is involved in the corresponding majorization-type analysis; see the proofs of

Theorem 3.5 and Lemma 3.6.

6.4. Proof of Lemma 3.4

We use the smallest Ritz value of A in Y ′i and an associated normalized Ritz vector which are

denoted by η′ and y′. Then

Y ′i ⊆ Y ′ ⊂ Cn ⇒ λi ≥ η′i ≥ η′ ≥ λn
according to the Courant-Fischer principles and dimY ′i = i. Moreover, (3.5) can be implied by

(6.2)
λi − η′i
η′i − λn

≤ tan2∠(y′,Xi)



MAJORIZATION BOUNDS FOR BLOCK FILTERS AND EIGENSOLVERS 21

since y′ is a nonzero vector in Y ′i and thus tan2∠(y′,Xi) ≤ tan2∠(Y ′i,Xi) = tan2∠(Xi,Y ′i). An

elementary trigonometric transformation shows that (6.2) is equivalent to

(6.3) cos2∠(y′,Xi) ≤
η′i − λn
λi − λn

.

Thus we only need to show (6.3). Therein we use the standard definition of principal angles

which indicates that cos∠(y′,Xi) coincides with the only singular value of XH
i y
′, i.e., ‖XH

i y
′‖.

In addition, we consider the Hermitian matrices

Ã = A− λnIn and D̃ = diag(λ1 − λn, . . . , λi − λn).

Evidently, Ã is positive semidefinite, and D̃ is positive definite because λ1 ≥ · · · ≥ λi ≥ λp >

λp+1 ≥ λn. By using their square roots Ã1/2 and D̃1/2, we get Ã1/2Xi = XiD̃
1/2 so that

XH
i y
′ = D̃−1/2D̃1/2XH

i y
′ = D̃−1/2

(
XiD̃

1/2
)H
y′ = D̃−1/2

(
Ã1/2Xi

)H
y′ = D̃−1/2XH

i Ã
1/2y′

⇒ cos∠(y′,Xi) = ‖XH
i y
′‖ = ‖D̃−1/2XH

i Ã
1/2y′‖ ≤ ‖D̃−1/2‖‖XH

i Ã
1/2y′‖.

Combining this with

‖D̃−1/2‖ = maxj=1,...,i

∣∣(λj − λn)−1/2
∣∣ = (λi − λn)−1/2 and

‖XH
i Ã

1/2y′‖ ≤ ‖XH
i ‖‖Ã1/2y′‖ = ‖Ã1/2y′‖ =

(
y′
H
Ãy′
)1/2

=
(
y′
H
Ay′ − λn

)1/2
= (η′ − λn)1/2 ≤ (η′i − λn)1/2

yields (6.3). �

The proof of Lemma 3.4 uses inequalities with respect to the 2-norm, i.e., the largest singular

value. In the corresponding majorization-type analysis, we consider tuples of singular values;

see the proof of Lemma 3.7.

6.5. Extending (3.6) as (3.3)

For this extension, we apply Lemma 2.1 to

V = Xi = [x1, . . . , xi], V⊥ = [xi+1, . . . , xn], Ũ = Yi = [y1, . . . , yi].

This leads to tan∠(Xi,Yi) = tan∠(Yi,Xi) = ‖W‖ for

W = [xi+1, . . . , xn]HYi
(
XH
i Yi

)† (3.1)
= [O; xHp+1Yi; . . . ; xHn Yi] I

†
i =

[
O

G

]
with G = [xHp+1Yi; . . . ; xHn Yi] ∈ C(n−p)×i and the zero matrix O ∈ R(p−i)×i. Moreover, applying

Lemma 2.1 to

V = X = [x1, . . . , xp], V⊥ = [xp+1, . . . , xn], Ũ = Y = [y1, . . . , yp]

yields tan∠(X ,Y) = tan∠(Y,X ) = ‖Ĝ‖ for

Ĝ = [xp+1, . . . , xn]HY
(
XHY

)† (3.1)
= [xHp+1Y ; . . . ; xHn Y ] I†p = [xHp+1Y ; . . . ; xHn Y ] ∈ C(n−p)×p.

In summary, it holds that

tan∠(Xi,Yi) = ‖W‖ = ‖G‖ = ‖ĜEi‖ ≤ ‖Ĝ‖ = tan∠(X ,Y)

where Ei ∈ Rp×i consists of the first i columns of Ip.
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6.6. Proof of Theorem 3.5

Applying Lemma 2.1 to

V = Xτ = [xi1 , . . . , xit ], V⊥ = [xj for j ∈ {1, . . . , n}\τ ], Ũ = Yτ = [yi1 , . . . , yit ]

and s = t generates the (n−t)×t matrix

W = [xj for j ∈ {1, . . . , n}\τ ]HYτ (XH
τ Yτ )†

(3.1)
= [O; xHp+1Yτ ; . . . ; xHn Yτ ]

with the zero matrix O ∈ R(p−t)×t where (XH
τ Yτ )† = I†t = It is eliminated. Moreover, t ≤ p� n

holds according to Subsection 2.1 and ensures t ≤ n−t so that W has t singular values. By using

the notations from Subsection 2.3, the statement in Lemma 2.1 yields

S(W ) = tan Θ(Yτ ,Xτ ) = tan Θ(Xτ ,Yτ ).

In addition, the common assumption (2.1) ensures f(λj) 6= 0 ∀ j ∈ τ so that

Dτ =XH
τ f(A)Yτ = diag

(
f(λi1), . . . , f(λit)

)
XH
τ Yτ

(3.1)
= diag

(
f(λi1), . . . , f(λit)

)
is an invertible diagonal matrix. Consequently, the n×t matrix f(A)Yτ has rank t, and the

subspace Y ′τ = span{f(A)Yτ} has dimension t. Applying Lemma 2.1 to

V = Xτ , V⊥ = [xj for j ∈ {1, . . . , n}\τ ], Ũ = f(A)Yτ

implies S(W ′) = tan Θ(Xτ ,Y ′τ ) for the (n−t)×t matrix

W ′ = [xj for j ∈ {1, . . . , n}\τ ]Hf(A)Yτ
(
XH
τ f(A)Yτ

)†
(3.1)
=
[
O; f(λp+1)xHp+1Yτ ; . . . ; f(λn)xHn Yτ

]
D†τ

= D̂WD−1τ with D̂ = diag
(
0, . . . , 0, f(λp+1), . . . , f(λn)

)
.

Furthermore, applying Lemma 2.2 to

B1 = D̂, B2 = W, B3 = D−1τ

and c = 1 leads to

tan Θ(Xτ ,Y ′τ ) = S(W ′) = St(W
′) ≺w St(D̂)St(W )St(D

−1
τ ) = S(D−1τ )St(D̂)S(W ).

Combining this with

S(D−1τ ) =
[∣∣(f(λi1)

)−1∣∣, . . . , ∣∣(f(λit)
)−1∣∣]↓ = Φτ ,

S(D̂) =
[
0, . . . , 0, |f(λp+1)|, . . . , |f(λn)|

]↓ ⇒ St(D̂) = Φ̂t

and S(W ) = tan Θ(Xτ ,Yτ ) yields

(6.4) tan Θ(Xτ ,Y ′τ ) ≺w Φτ Φ̂t tan Θ(Xτ ,Yτ ).

Then (3.7) is obtained by using the tuple inequality tan Θ(Xτ ,Y ′) ≤ tan Θ(Xτ ,Y ′τ ) based on Y ′τ ⊆
span{f(A)Y } = Y ′. This inequality can be shown in the equivalent form

(
cos2 Θ(Xτ ,Y ′)

)↓ ≥(
cos2 Θ(Xτ ,Y ′τ )

)↓
as follows. An arbitrary orthonormal basis matrix Ỹ of Y ′τ can be extended

as an orthonormal basis matrix [Ỹ Ŷ ] of Y ′ so that(
cos2 Θ(Xτ ,Y ′)

)↓
= S2

(
[Ỹ Ŷ ]HXτ

)
= Λ

((
[Ỹ Ŷ ]HXτ

)H
[Ỹ Ŷ ]HXτ

)
= Λ

(
XH
τ Ỹ Ỹ

HXτ +XH
τ Ŷ Ŷ

HXτ

)
≥ Λ

(
XH
τ Ỹ Ỹ

HXτ

)
=
(

cos2 Θ(Xτ ,Y ′τ )
)↓
.

Therein the intermediate inequality uses the Weyl’s inequality and the fact that XH
τ Ŷ Ŷ

HXτ is

Hermitian positive semidefinite. �
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6.7. Derivation of (3.8)

For deriving (3.8), we use the given basis matrix Ũ of U together with the orthogonal pro-

jectors V V H on V so that

V HFŨ = (FHV )H Ũ =
(
(V V H)FHV

)H
Ũ = (V HFV )V H Ũ .

Analogously, V H⊥ FŨ = (V H⊥ FV⊥)V H⊥ Ũ . Moreover, V HFV ∈ Ct×t is invertible and V H Ũ ∈ Ct×s

has full rank by setting, thus V HFŨ has full rank. Then FŨ also has full rank and can be treated

as a basis matrix of F U with Lemma 2.1. By using the matrices

G = V HFV, W̃ = V H Ũ , D =
(
W̃HW̃

)1/2
and W = W̃D−1,

it holds that

(V HFŨ)† = (GW̃ )† = W̃ †W̃ (GWD)† = W̃ †W̃D−1(GW )† = (V H Ũ)†W (GW )†.

In summary, we get

V H⊥ FŨ(V HFŨ)† = (V H⊥ FV⊥)
(
V H⊥ Ũ(V H Ũ)†

)(
W (GW )†

)
.

Subsequently, we consider the singular values α1 ≤ · · · ≤ αt of G and the singular values

β1 ≤ · · · ≤ βs of GW . These values are evidently all positive, and it holds that αi ≤ βi,

i = 1, . . . , s according to WHW = Is and the Courant-Fischer principles. This leads to the

tuple inequality

Ss
(
W (GW )†

)
= S

(
(GW )†

)
= [β−11 , . . . , β−1s ] ≤ [α−11 , . . . , α−1s ] = Ss

(
G−1

)
= Ss

(
(V HFV )−1

)
which can easily be combined with Lemma 2.2 for showing

Ss
(
V H⊥ FŨ(V HFŨ)†

)
≺w Ss

(
V H⊥ FV⊥

)
Ss
(
V H⊥ Ũ(V H Ũ)†

)
Ss
(
(V HFV )−1

)
,

i.e., an equivalent form of (3.8) according to Lemma 2.1.

6.8. Proof of Lemma 3.7

As in the proof of Lemma 3.4, we use the Hermitian positive semidefinite matrix Ã = A −
λnIn and the Hermitian positive definite matrix D̃ = diag(λ1 − λn, . . . , λi − λn) together with

their square roots Ã1/2 and D̃1/2. In addition, we define the orthonormal basis matrix Ỹ =

Y ′i
(
Y ′i

H
Y ′i
)−1/2

of Y ′i by using the basis matrix Y ′i = f(A)Yi introduced in Lemma 3.3. Then

the Ritz values η̃1 ≥ · · · ≥ η̃i of A in Y ′i coincide with the eigenvalues of Ỹ HAỸ so that

Λ(Ỹ HÃỸ ) = Λ(Ỹ HAỸ − λnIi) = [η̃1 − λn, . . . , η̃i − λn] ≤ [η′1 − λn, . . . , η′i − λn]

holds according to Y ′i ⊆ Y ′ and the Courant-Fischer principles.

Moreover, XH
i Ỹ is invertible since the invertibility of XH

i Y
′
i is verified at the beginning of

the proof of Lemma 3.3. Then we transform XH
i Ỹ as

XH
i Ỹ = D̃−1/2D̃1/2XH

i Ỹ = D̃−1/2
(
XiD̃

1/2
)H
Ỹ = D̃−1/2

(
Ã1/2Xi

)H
Ỹ = D̃−1/2XH

i Ã
1/2Ỹ

so that

D̃1/2 = XH
i

(
Ã1/2Ỹ

)
(XH

i Ỹ )−1.

Then applying Lemma 2.2 to

B1 = XH
i , B2 = Ã1/2Ỹ , B3 = (XH

i Ỹ )−1,
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t = i and c = 2 yields a majorization relation which can be extended as[
λ1 − λn
η′1 − λn

, . . . ,
λi − λn
η′i − λn

]
≤
[
λ1 − λn
η̃1 − λn

, . . . ,
λi − λn
η̃i − λn

]
= Λ(D̃)/Λ(Ỹ HÃỸ ) = S2

i (D̃1/2)/S2
i (Ã1/2Ỹ ) ≺w S2

i (XH
i )S2

i

(
(XH

i Ỹ )−1
)

= [1, . . . , 1]
[(

cos(θ1)
)−2

, . . . ,
(

cos(θi)
)−2]

=
[
1 + tan2(θ1), . . . , 1 + tan2(θi)

]
with the associated principal angles θ1 ≥ · · · ≥ θi. Thus[

λ1 − λn
η′1 − λn

, . . . ,
λi − λn
η′i − λn

]
≺w

[
1 + tan2(θ1), . . . , 1 + tan2(θi)

]
holds and implies bound (3.11) by subtracting 1 from each component. �

Remark 6.1. Bound (3.11) is comparable with [12, Theorems 2.3 and 2.4] where actually (de-

spite different notations) the smallest Ritz value of A in Xi +Y ′i or Xi +Y ′ is used instead of the

smallest eigenvalue λn. Such a modification can be made by restricting the proof of Lemma 3.7 to

the associated subspace. In comparison to the corresponding derivation in [12], our new deriva-

tion is more direct (e.g., without shifting) and the factorization D̃1/2 = XH
i

(
Ã1/2Ỹ

)
(XH

i Ỹ )−1

enables a simpler formulation.
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