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Abstract

The area of feasible solutions (AFS) is a low-dimensional representation of all possible concentration factors or spec-
tral factors in nonnegative factorizations of a given spectral data matrix. The AFS analysis is a powerful methodology
for the exploration of the rotational ambiguity inherent tothe multivariate curve resolution problem. Up to now the
AFS has been studied for two-, three- and four-component systems:

1. The AFS for two-component systems was introduced by Lawton and Sylvestre in 1971. For these two-
dimensional problems the AFS can be constructed analytically.

2. For three-component systems the AFS can either be constructed geometrically (classical approach by Borgen and
Kowalski from 1985) or it can be computed by numerical algorithms. Various computational techniques have
been suggested by different groups in the recent past.

3. For four-component systems a first numerical method for its computation has been published recently. A new
polyhedron inflation algorithm is under development.

In this review paper we explain the underlying concepts of the AFS theory and its contribution to a deepened un-
derstanding of the multivariate curve resolution problem.A survey is given on various methods for the computation
of the AFS for two-, three- and four-component systems. The focus is on methods which approximate the boundary
of the AFS for three-component systems by inflating polygonsand for four-component systems by inflating polyhe-
drons. Several numerical examples are discussed and the MatLab-toolbox FACPACK for these AFS-computations is
presented.

Key words: spectral recovery, factor analysis, nonnegative matrix factorization, area of feasible solutions,
Generalized Borgen Plot, complementarity and coupling.

1. Introduction

Multivariate curve resolution techniques serve to ex-
tract the pure component information from multivari-
ate (spectroscopic) data. Typically, the data is taken by
spectral observation of a chemical reaction system on a
time× frequency grid. Ifk spectra are measured, each
at n frequencies, then the resulting matrixD is ak × n
matrix. The measured data result from a superposition
of the pure component spectra. Multivariate curve res-
olution methods can be applied in order to extract the
pure component spectra and the concentration profiles.
The basic bilinear model underlying these methods is
the Lambert-Beer law. In matrix notation, the Lambert-
Beer law is a relation betweenD and the matrix factors

C ∈ Rk×s andA ∈ Rs×n in the form

D = CA. (1)

Thereins is the number of the pure or at least indepen-
dent components. An error matrixE ∈ Rk×n with entries
close to zero can be added on the right-hand side of (1)
in order to allow approximate factorizations in case of
perturbed or noisy dataD. In general, the matricesC
and A are called abstract factors. One is interested in
finding a factorizationD = CA with chemically inter-
pretableC andA. Then the columns ofC ∈ Rk×s are the
concentration profiles along the time axis of the pure
components. And the rows ofA ∈ R

s×n are the associ-
ated pure component spectra.

The aim of a multivariate curve resolution (MCR)
method is to determine the numbers together with the
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pure component factorsC andA. Sometimes no addi-
tional information on the pure components is available.
Then the MCR method only usesD for the pure compo-
nent decomposition within a model-free approach. The
main hurdle for any MCR technique is the so-called ro-
tational ambiguity of the solution. See, e.g., [27, 28, 2]
for an introduction to the ambiguity problem. By apply-
ing additional hard- or soft-constraints to the pure com-
ponent factorization problem, one can often determine
a single solution by means of a regularized optimiza-
tion problem. In case of proper constraints this solu-
tion can be the chemically correct one. A large num-
ber of successful MCR methods has been developed.
Some examples are methods as MCR-ALS [19], RFA
[29], SIMPLISMA [52], BTEM [7] and PCD [32]. Al-
ternatively, one can give up the aim to determine only
a single solution by solving a regularized optimization
problem. Instead, one can follow the global approach of
determining the full range of all nonnegative factoriza-
tions D = CA with nonnegative rank-s matricesC and
A. Such continua of possible nonnegative matrix fac-
tors can graphically be presented either by drawing the
bands of possible concentration profiles together with
the bands of possible spectra [49] or by plotting these
sets of feasible factors by a certain low-dimensional
representation, the so-calledArea of Feasible Solutions
(AFS). The aim of this paper is to provide a systematic
introduction to the AFS concept together with many ref-
erences to the chemometric literature. Important prop-
erties of the AFS are presented together with computa-
tional techniques for its numerical approximation.

1.1. Organization of the paper

In the remaining part of this section, we introduce the
four data sets which are used within this work. Section
2 explains in a compact form the principles of multi-
variate curve resolution methods and their relation to
the singular value decomposition of the data matrixD.
The techniques to compute the factorsC andA are ex-
plained. In Section 3 the AFS and some of its important
properties are described in detail. The rules for a classi-
fication of feasible or non-feasible points are discussed
in Section 5. In Section 6 methods for the computation
of the AFS are explained with a focus on the polygon
inflation method. Methods for the reduction of the AFS
by using additional information or soft constraints are
demonstrated in Section 8. In Section 9 we study dy-
namic changes of the shape of the AFS under changes
in the data (e.g. variation of a shift parameter). Finally
in Section 10 the software packageFACPACKfor the
computation of the AFS is pointed out.

1.2. Model data sets and experimental spectral data

In this work we use four different data sets (two
model data sets and two IR-spectroscopic data sets) for
all demonstrations. The data sets are as follows:

Data set 1 (FT-IR experimental data on a Rhodium
catalyst formation). This data set describes the two-
component subsystem (s= 2) of the formation of a
Rhodium catalyst from a certain precursor; for the un-
derlying chemical problem see [24]. The data set in-
cludes a number of k= 977spectra, each with n= 481
wavenumbers. Within this spectral window the dom-
inant absorbing components are a catalyst precursor
and the catalyst. The usage of a first order reaction
scheme allows to find unique factors C and A. These
factors are shown in Figure 1. For the associated areas
of feasible solutions see Figure 9.

Data set 2 (A three-component model problem). The
consecutive reaction

X
k1
−→ Y

k2
−→ Z

is considered with the rate constants k1 = 0.3 and
k2 = 0.1. The initial concentrations are cX(0) = 1,
cY(0) = cZ(0) = 0 and the time interval is t∈ [0, 10].
The solution of the associated rate equations and its dis-
cretization for a number of k= 201time steps results in
the concentration matrix factor C∈ R201×3. The matrix
factor A is derived from the three Gaussian functions

aX(x) = exp

(

−
(x− 30)2

1250+ w

)

, aY(x) = exp

(

−
(x− 50)2

1000+ w

)

,

aZ(x) = exp

(

−
(x− 70)2

1000+ w

)

for x ∈ [0, 100]and equidistant discretization along the
frequency axis. A number of n= 401spectral channels
is used. The spectra depend on the real parameter w
which controls the signal width. The rows of the data
matrix D as well as the original factors C and A for
w = 0 are plotted in Figure 2. The associated areas
of feasible solutions, namely the AFS for the concentra-
tion factors C and the AFS for the spectral factors A,
are presented in the first column of Figures 20 and 21.
See additionally the Figure 6 (with the data representa-
tion in the leftmost plot) and Figure 15 for a successive
approximation of the AFS by means of the polygon in-
flation technique.

Data set 3 (Operando FT-IR specroscopic data from the
Rhodium-catalyzed hydroformylation process). This
data set is described in detail in [23]. The data consists
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of k = 850spectra, each with n= 642 wavenumbers.
The three major absorbing components form a reaction-
subsystem and are an olefin component, a hydrido-
complex and an acyl-complex. All these chemical com-
ponents are explained in [23]. The series of mixture
spectra and the factors C and A are shown in Figure
3. The Michaelis-Menten kinetic has been used as a ki-
netic hard model in order to find unique concentration
profiles. The complete set of all nonnegative factoriza-
tions of the data matrix D is represented by the AFS for
the concentration factor and by the AFS for the spec-
tral factor. These AFS sets are plotted together with the
associated bands of feasible solutions in Figure 7.

Data set 4 (A four-component model problem). The
concentration factor C of this model problem results
from solving the rate equations for the reaction scheme

W
k1
−→ X

k2
−→ Y

k2
−→ Z

with the kinetic constants k1 = 1, k2 = 0.25 and
k3 = 0.1. The initial concentrations are cW(0) = 1,
cX(0) = cY(0) = CZ(0) = 0 and the time interval is
t ∈ [0, 10]. The time-continuous concentration func-
tions are discretized in k= 26 time steps to form C.

The factor A derives from the Gaussian functions

aW(x) = exp

(

−
(x− 40)2

σ

)

, aX(x) = exp

(

−
(x− 20)2

σ

)

,

aY(x) = exp

(

−
(x− 80)2

σ

)

, aZ(x) = exp

(

−
(x− 60)2

σ

)

,

depending on the parameterσ on the frequency interval
x ∈ [0, 100]. Numerical evaluation of these functions
in n = 31 equidistant channels results in the matrix A.
Thus the matrix A depends onσ. The mixture spectra,
namely the rows of D= CA, are plotted together with
the original factors C and A forσ = 750 in Figure 4.
The associated areas of feasible solutions (concentra-
tional and spectral AFS) are shown in Figure 19.

2. Multivariate curve resolution methods

Multivariate curve resolution methods are key-tools
in order to extract the pure component information from
the chemical mixture data inD. The problem is to com-
pute

1. the number of independent componentssand

2. the pure component factorsC andA.

Any available information on the factors can and should
be integrated into the MCR computations.

2.1. The singular value decomposition

The singular value decomposition (SVD), see [15],
is a very powerful tool of numerical linear algebra to
compute the left and right orthogonal bases for the ex-
pansion of the pure component factorsC ∈ R

k×s and
A ∈ Rs×n; see for example [26, 28, 27, 38]. The SVD of
D reads

D = UΣVT .

ThereinU ∈ Rk×k andV ∈ Rn×n are orthogonal matrices
whose columns are the left and right singular vectors.
The diagonal matrixΣ contains on its diagonal the sin-
gular valuesσi in decreasing order. The singular values
are real and nonnegative. For ans-component system
the first s singular vectors and the associated singular
values contain all information on the system. For data
not including perturbations only the firsts singular val-
ues are nonzero if the chemical system containss inde-
pendent chemical components. For data including noise
some additional singular values are nonzero. In such
cases the SVD allows to compute optimal (with respect
to least-squares) rank-s approximations ofD. If in the
case of noisy data the noise-to-signal ratio is not too
large, then the number of independent chemical com-
ponentss can often be determined from the SVD. Then
the relevant and meaningful singular values are clearly
larger compared to the remaining nonzero singular val-
ues which evince the influence of noise, cf. [27, 32].

2.2. Reconstruction of the pure component factors

The firstssingular vectors, namely the firstscolumns
of U and the firsts columns ofV, are used as bases
to expand the desired pure component factorsC andA.
For ease of notation we denote these submatrices of the
SVD-factors again byU andV. ThenU ∈ R

k×s and
V ∈ R

n×s. The matricesC andA are formed according
to

C = UΣT−1, A = TVT . (2)

ThereinT ∈ R
s×s is a regular matrix which remains to

be determined. MCR methods typically provide a sin-
gle pure component factorizationD = CAand thus they
explicitly or implicitly determine the matrixT. FromC
andA the matrixT of expansion coefficients is accessi-
ble from Equation (2). For SVD-based MCR methods
see [26, 28, 27, 32] and the references therein.

The basis expansion approach (2) drastically reduces
the number of free variables of the pure component fac-
torization problem. The crucial point is that the number
of matrix elements ofC andA is (k + n)s whereas the
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Figure 1: Data set 1: The series of mixture spectra is shown left (only every tenth spectrum of the data is plotted). All ordinate axes are scaled to a
maximum of 1 and the channel windows are set to [1, . . . , 100]. By enclosing a kinetic hard-model for the reaction scheme (X → Y) into the pure
component decomposition unique matrix factors (aside fromthe multiplicative ambiguity and the permutation ambiguity) have been determined.
These are shown in the centered and right subplot.
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Figure 2: Data set 2 forw = 0: The leftmost plot shows the series of the mixture spectra,i.e. the rows of the matrixD. Only every third spectrum
of the data is plotted. The remaining two plots show the concentration profiles and the spectra of the three pure components.
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Figure 3: Data set 3 on catalyst formation within the hydroformylation process: The leftmost subplot shows the spectraldata, i.e. the rows ofD.
Only every tenth spectrum of the data is actually plotted. The remaining two subplots show the concentration profiles andthe spectra of the pure
components. For a successful pure component decompositionof these spectral data a Michaelis-Menten kinetic hard-model has been integrated
into the pure component factorization.
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Figure 4: Data set 4 forσ = 750: The spectral data (left) for the four-component model problem together with the concentration profiles of the
pure components (center) and the pure component spectra (right).
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representation by Equation (2) reduces the degrees of
freedom to thes2 matrix elements ofT. Hence the rep-
resentation (2) is a basic ingredient for the construction
of computationally effective MCR methods.

2.3. Application of hard- and soft constraints

Hard- and soft constraints have a crucial role in the
construction of MCR methods [16, 11, 51, 32, 42]. A
very restrictive and often successful hard constraint is
a kinetic model of the underlying chemical reaction
system. Only those concentration factorsC are ac-
ceptable which are consistent with the kinetic model
[8, 20, 27, 39]. Typically, the rate constants are im-
plicitly computed as a by-product of the model fitting
process.

If no kinetic model is available forC, then soft con-
straints can be used in order to extract (from the set of all
nonnegative factorizations) solutions with special prop-
erties, see e.g. [16, 11, 51, 32, 42]. Typical examples
of such soft constraints are those on the smoothness of
the concentration profiles inC or A, constraints on a
small or large integral of the spectra inA (in order to
favor solution with few and sharp peaks or alternatively
those with a large number of wide peaks), criteria on
the closure of the concentration data and so on. Such
soft constraints are usually added to the reconstruction
functional‖D −CA‖2F in terms of a cost function

g(T) =
p

∑

i=1

γi‖gi(C,A)‖22.

According to the representations ofC = C(T) and
A = A(T) as functions ofT, the cost functiong(T) in-
cludes a number ofp constraint functionsgi . Theγi ≥ 0
are the associated weight factors which give the user
the possibility to determine a certain balance between
the different constraints. A small reconstruction error
‖D − CA‖2F together with the nonnegativity of the fac-
torsC andA is of highest importance; sometimes small
negative entries inC and A can be acceptable. Other
constraint functions are of lower importance, e.g. on
the smoothness. For these constraint functions smaller
weight factorsγi are used.

3. The area of feasible solutions

Even with proper constraint functions and proper
weight factors, MCR methods cannot always find the
chemically correct or “true” solution. Thus one might
follow the alternative idea to determine the set ofall
nonnegative factorizationsD = CA. Such solutions

which only fulfill the nonnegativity constraint are called
feasibleor abstract factors. The global approach of
computing all feasible factors provides an elegant way
in order to survey the complete rotational ambiguity of
the pure component factorization problem. However,
the sets of feasible matricesC ∈ R

k×s or A ∈ R
s×n are

difficult to handle. The key idea to make these sets of
feasible factors accessible is their low-dimensional rep-
resentation in terms of the so-calledArea of Feasible So-
lutions(AFS). The AFS refers to the representation ofC
andA as functions ofT by Equation (2). Only a single
row of T is sufficient to represent a feasible factor, see
Section 3.2 for the details. In the following, our analy-
sis aims at determining the AFS for the spectral factor
A starting from a spectral data matrixD. This analy-
sis can immediately be used to determine the AFS for
the concentrational AFS containing the feasible factors
C. Therefore we apply the procedure to the transposed
data matrixDT since inD = CA the factors change their
places by the transpositionDT = ATCT .

The aim of this section is to introduce the AFS and to
discuss some of its important properties. We consider
especially those properties which are decisive for an ef-
fective numerical computation of the AFS.

3.1. Development of the AFS concept and discussion of
methods for its numerical computation

In this section a short overview is given on the devel-
opment of the AFS concepts. These developments are
closely related with the growth of effective numerical
methods for its computation.

The AFS for two-component systems was first ana-
lyzed by Lawton and Sylvestre in 1971, see [26]. The
Lawton-Sylvestre plot is a 2D plot of the set of the two
expansion coefficients (with respect to the basis of sin-
gular vectors) which result in nonnegative matrix factors
C andA. The Lawton-Sylvestre plot for a two compo-
nent system consists of two cones whose boundaries can
be computed analytically, see [50, 1, 35] and Section 4.

For three-component systems a direct analogue of
the Lawton-Sylvestre plot would be a three-dimensional
plot of feasible expansion coefficients. Such three-
dimensional objects are somewhat more complicated to
draw, to handle and to understand. However, there is a
tricky dimension reduction (by a certain scaling) which
allows to represent these AFS sets for three-component
systems only by two expansion coefficients (and thus by
plots in 2D). This was suggested by Borgen and Kowal-
ski, who published in 1985 [6] a geometric construc-
tion of these 2D AFS plots for three-component sys-
tems. These plots are called Borgen plots. The men-
tioned dimension reduction can be explained by a typ-
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ical Lawton-Sylvestre plot which is shown in Figure 5.
For a two-component system the Lawton-Sylvestre plot
consists of two cones. If the first expansion coefficient
t1 is fixed to 1, then the intersection of the dash-dotted
line att1 = 1 with the two cones are two separated inter-
vals. These two intervals are a 1D analogue of the Bor-
gen plots. For a three-component system the 2D Borgen
plot is the two-dimensional intersection of a plane att1
with a 3D generalization of a Lawton-Sylvestre plot.

The geometric constructionof the Borgen plots is
deepened by further concepts in [36] and [22]. In addi-
tion to the geometric constructions of the Borgen plots,
various techniques for a numerical approximation of the
AFS for (s= 3)-component systems have been devised.
These are the grid search method (for two-component
systems in [50, 1]), the triangle enclosure method [12]
and the polygon inflation method [43, 44]. One bene-
fit of the numerical methods compared to the geometric
methods is that the numerical methods are able to com-
pute the AFS in the presence of noise. Recently, the
classical geometric construction has been generalized
in a way which allows geometric AFS constructions for
noisy data [22].

For systems with more than three components the
problem of AFS computations is more complex and re-
quires large computation times. For 4-component sys-
tems a generalized triangle enclosure method which
uses a slicing of the 3D AFS has already been published
[14]. The basic grid search algorithm and the polygon
inflation method can also be extended to such higher di-
mensional problems.

AFS computations can be used to determine the so-
calledfeasible bands. To this end, one can draw the con-
tinua of concentration profiles or the continua of possi-
ble spectra which are represented by the AFS. The re-
sulting feasible bands visualize the rotational ambiguity.
The MCR-Bands toolbox [49, 21] pursues the same ob-
jective, namely to construct the feasible bounds. How-
ever, the MCR-Bands approach does not require a previ-
ously constructed AFS. Instead, the band boundaries are
constructed by a minimization respectively maximiza-
tion of a properly constructed target function.

3.2. The set of feasible pure component spectra
Our focus is on the construction of the set of all pos-

sible pure component spectra. The set of feasible con-
centration profiles can be computed similarly; therefore
the computational procedure is to be applied toDT . The
permutation of the columns ofC and the same permuta-
tion applied to the rows ofA does not provide any new
information. This fact is known as the (trivial) permu-
tation ambiguity. A consequence of this property is that

the problem to find all feasible factorsA is equal to the
problem to determine the set of all first rows of the feasi-
ble factorsA. Hence the set of feasible pure component
spectra (also called feasible bands) for ans-component
system reads

A = {a ∈ Rn : existC,A ≥ 0 with A(1, :) = a

andD = CA}.
(3)

For the computation ofA we prefer the SVD-based ap-
proach (2). A further reduction of the degrees of free-
dom is possible. This is explained next.

3.3. Reduction of the degrees of freedom

Equation (2) is a representation of thes× n matrix
A by the matrixT with only s2 matrix elements. These
s2 matrix elements are the expansion coefficients with
respect to the basis of right singular vectors. As shown
for the derivation of (3) only the first row ofA = TVT is
required in order to form the setA of feasible spectra.
The first row ofA equals the first row ofTVT . Hence
only thesmatrix elements of the first row ofT are deci-
sive. This reduces the degrees of freedom froms2 down
to s.

These remainings degrees of freedom for ans-
component reaction system can further be reduced to
s− 1 by a certain scaling of the rows ofA. In [6, 36]
the‖ · ‖1 vector norm (i.e. the sum of the absolute values
of the components) is used for the normalization of the
spectra. Alternatively, the maximum norm‖ · ‖max can
be used. Here we follow the approach in [12, 14, 43, 44]
and use a scaling which sets the first column ofT equal
to ones, i.e.

T(i, 1) = 1 for all i = 1, . . . , s. (4)

This can be called the first-singular-vector scaling (FSV-
scaling) since it uses for the first right singular vector
the fixed expansion coefficient 1. A precise justification
for this choice is based on the Perron-Frobenius theory
[30] on spectral properties of nonnegative matrices; for
the details see Theorem 2.2 in [44]. Figure 5 shows
a typical Lawton-Sylvestre plot for a two-component
model problem. The dash-dotted and the dotted lines
define two intersections with the Lawton-Sylvestre plot.
These intersections are the 1D AFS representations with
respect to the FSV-scaling and with respect to the‖ · ‖1
normalization.
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Figure 5: The Lawton-Sylvestre plot (gray triangle-shapedareas) for a
two-component model problem. The dash-dotted and the dotted lines
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These points represent the rows ofD. Mathematically the coordinates
of these points are the expansion coefficients of the rows ofD with
respect to the two dominant right singular vectors. For a more de-
tailed explanation of the AFS and for the meaning ofa, b, c andd see
Section 4.

3.4. Definition of the AFS
With respect to the FSV-scaling (4) the matrixT in

(2) has the form

T =



































1 x1 · · · xs−1

1
... S
1



































. (5)

ThereinS is an (s−1)× (s−1) matrix. Only thes−1 el-
ements of the row vectorx = (x1, . . . , xs−1) are decisive
for the representation of the set of all feasible solutions.

With these definitions the setA ⊂ R
n by Equation (3)

can be represented by the associated set of expansion
vectorsx ∈ R

s−1. Such a set of (s − 1)-dimensional
vectors for a chemical reaction system withs species is
much easier to handle compared to the subsetA of the
higher dimensional spaceRn. The set

M = {x ∈ Rs−1 : existsS so thatT in (5) fulfills

rank(T) = sandC,A ≥ 0}
(6)

is called the AFS for the factorA or the spectral AFS.
Figure 6 shows a typical AFS for the three-

component underlying the data set 2. This AFS consists
of three isolated subsets. In [43, 44] these subsets are
called segments of an AFS. Further, two series of points
are marked within two segments of the AFS. The asso-
ciated series of spectra, which are represented by these

points, are also shown in Figure 6. Figure 7 displays the
AFS sets of the factorsC andA for the data set 3. Addi-
tionally, this figure shows the associated bands of feasi-
ble pure component spectra, i.e. the setA. The feasible
bands of concentration profiles are also plotted; this set
results from computing the setA for the transposed data
matrix DT .

3.5. Properties of the AFS

The AFS has several interesting properties. Many of
these properties derive from the Perron-Frobenius spec-
tral theory of nonnegative matrices [30]. This theory
provides (see Section 3.3) the justification for the scal-
ing condition (4). An important property of the AFS is
its boundedness, see Section 3.5.2. This property makes
possible a numerical approximation of the boundary of
the AFS. The AFS sets may have several shapes. For
three-component systems the most important cases are
AFS sets which consist of three separated segments and
AFS sets which have the form of a topologically con-
nected set with a single hole. Such a hole always con-
tains the origin (null vector), see, e.g., Figure 24 and
Section 3.5.3. Further explanations on the geometric
construction of the AFS and its relationship to the the-
ory of simplices and convex combinations are contained
in [36, 22].

3.5.1. Definition of FIRPOL and INNPOL

For the further analysis the two polygons FIRPOL
and INNPOL are to be introduced. First, the set

M+ = {x ∈ Rs−1 : (1, x)VT ≥ 0} (7)

is called FIRPOL [6, 36, 22]. All pointsx inM+ result
in nonnegative linear combinations of the right singular
vectors, i.e. (1, x)VT. Thus FIRPOL is a superset of the
set of feasible spectra. The membership of a certainx to
M+ does not guarantee that the nonnegative spectrum
(1, x)VT is part of a feasible pure component decompo-
sition D = CA. The crucial point is that nonnegativity
of (1, x)VT does not necessarily imply the nonnegativity
of an associated concentration profile.

Further, the setM∗ is to be introduced

M∗ = {x ∈ Rs−1 : existsS so thatT in (5) fulfills

rank(T) = sandC ≥ 0, A(2 : s, :) ≥ 0}.
(8)

The two setsM+ andM∗ are super-sets of the AFSM.
The definition ofM+ includes only the nonnegativity-
constraintA(1, :) ≥ 0. The definition ofM∗ includes
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Figure 7: Data set 3: The areas of feasible solutions, namelythe AFS for the concentration factorC and the AFS for the spectral factorA, are
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the remaining constraints on nonnegativity and the rank
condition. ThusM =M+ ∩M∗. Finally, the vectors

w(i, :) =
D(i, :)V(:, 2 : s)

D(i, :)V(:, 1)
∈ Rs−1 for i = 1, . . . , n (9)

are introduced. In [6, 36, 22] the convex hull of these
pointsw(i, :), i = 1, . . . , n, is called INNPOL [6, 36, 22].

3.5.2. Boundedness of the AFS
Threenumericalapproximation methods for the com-

putation of the AFS for two- and three-component sys-
tem have been described in literature. These are the grid
search algorithm [50], the triangle enclosure method
[12] and the polygon inflation method [43]. In order to
guarantee that these algorithms terminate within finite
times, the boundedness of the AFS is required. Theo-
rem 2.4 in [44] proves thatM+ is a bounded set if and
only if DTD is an irreducible matrix. Thus the AFS
M is also a bounded set sinceM ⊂ M+. See [30] or
[44] for the definition of an irreducible quadratic ma-
trix. Practically, irreducibility is always guaranteed if
the whole system does not allow a complete separation
into two independent subsystems. The latter case is al-

ready a trivial case as completely isolated subsystems
can be analyzed separately.

3.5.3. The origin is never included in the AFS

As already mentioned in Section 3.5 the origin (or
null vector) is never contained in the AFS. The proof
for this fact is given in Theorem 2.2 in [44]. It is based
on the Perron-Frobenius theory and uses the irreducibil-
ity of the matrixDT D. For the cases that the AFS con-
sists of several isolated subsets, called segments, these
subsets do not contain any holes. In mathematics such
sets are calledsimply-connected. The approach of in-
flating polygons can be used in order to approximate
such AFS segments. The remaining case that the AFS
consists of only a single set is more complicated. Such
a single-segment AFS always contains a hole and this
hole encloses the origin. The inverse polygon inflation
algorithm is a modification of the polygon inflation al-
gorithm which allows a fast and accurate numerical ap-
proximation of such one-segment AFS sets with a hole.
See Section 4 in [44] for the details.
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3.5.4. Geometric AFS construction

The geometric construction of the AFS for three-
component systems was introduced by Borgen and
Kowalski in 1985 [6, 5], see also [36, 22]. The resulting
geometric constructions are called Borgen plots.

The construction principles of Borgen plots are not
limited to s = 3 but can be applied to generals-
component systems. In the general case a pointx is
feasible if and only if there exist furthers − 1 points
y j, j = 1 . . . , s− 1, so that the simplex spanned upx
and the vectorsy j is enclosed inM+ and includes all
pointsw(i, :) given by Equation (9). These points are
the vertices of INNPOL. Consequently the classical the-
ory by Borgen and Kowalski works with convex equa-
tions. A weakening fromconvex combinationstowards
affine combinationsallows to generalize the geometric
AFS construction [22]. The resulting generalized Bor-
gen plots can be constructed even for noisy or perturbed
spectral data.

3.6. Segment structure of the AFS

For two-component systems and with respect to the
FSV-scaling, the AFS (6) always consists of two sepa-
rated 1D intervals. The intervals may degenerate to sin-
gle points. One of these intervals is completely negative
and the other one is completely positive, see Figure 8
and in Figure 5 the cross-section att1 = 1.

For three-component systems the AFS can consist of
a single segment with a hole around the origin or of a
number of 3m segments form = 1, 2, . . .. A formal
proof is planned for a forthcoming paper. For experi-
mental data sets only the cases of a one-segment AFS
and of 3-segment AFS sets have been observed. Only
these cases appear to be practically relevant. However,
nonnegative matricesD can be constructed whose asso-
ciated AFS sets consist of 6, 9, . . . separated segments.

For s-component systems withs ≥ 4 little informa-
tion exists on the possible numbers of segments.

By changing the dataD continuously one can explore
the resulting changes of the associated AFS sets. How-
ever, such parameter dependent data sets could hardly
be found as experimental data sets. The data sets 2 and 4
in Section 1.2 include the parametersw andσ. For each
of these data sets a variation of these parameters allows
to start from AFS sets with either 3 or 4 separated seg-
ments and to end in one-segment AFS sets each with a
hole. See Figure 24 for the AFS-dynamics in case of the
data set 2 and Figure 25 for the data set 4.

4. The AFS for two-component systems

The AFS for systems with a number ofs= 2 compo-
nents can explicitly be described analytically. The nu-
merical evaluation of the analytic formula results in the
1D AFS plots. Next these formula are compiled. The
starting point for the cases = 2 is the matrixT by (5)
which together with its inverse read

T =

(

1 x
1 S11

)

, T−1 =
1

S11− x

(

S11 −x
−1 1

)

.

The nonnegativity for the factorsC andA results in fea-
sible intervals forx andS11, see also Section 3.6 in [44]
and [1]. With

a = − min
i with V(i,2)>0

Vi1

Vi2
, d = − max

i with V(i,2)<0

Vi1

Vi2
,

b = min
i

Ui2σ2

Ui1σ1
, c = max

i

Ui2σ2

Ui1σ1

(10)

the AFS for the two-component system has the form of
two separated intervals

M = [a, b] ∪ [c, d]. (11)

This result can be interpreted in a way that both

x ∈ [a, b] and S11 ∈ [c, d]

and
S11 ∈ [a, b] and x ∈ [c, d]

result in nonnegative factors.
A certain choice

(x,S11) ∈ [a, b] × [c, d]

completely determines a nonnegative factorizationD =
CA. The second choice (S11, x) ∈ [a, b] × [c, d] does not
provide any new information. Instead, the second solu-
tion is equal to the first solution after a row permutation
in A and a column permutation inC. This fact justifies
that the AFS for two-component systems is often repre-
sented by the rectangular [a, b] × [c, d], see [50, 1, 44].

4.1. Numerical AFS computation for the data set 1

For noisy or perturbed spectral data it can be ad-
vantageous to accept small negative entries in the pure
component factors. With a positive control parameter
ε on the tolerated size of negative entries ofC and A
(see Section 5.1) one can generalize the AFS-bounds as
discussed above. Next numerical results generated by
theFACPACKsoftware [45] are presented for the two-
component experimental FT-IR spectroscopic data set
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Figure 8: Data set 1: The AFSM for this two-component system
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(lower plot). The control parameterε on acceptable negative entries
readsε = 0.035.
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Figure 9: Data set 1: Two-dimensional rectangle representation of the
1D-AFS in which the two intervals of the one-dimensional AFSM
are the edges of a rectangular. A certain point (with the two coordi-
natesx andS11) completely determines eitherC andA. The control
parameter is againε = 0.035.

1. Figure 8 shows the one-dimensional AFS sets with
ε = 0.035 for the concentrational factorC and for the
spectral factorA. Additionally, Figure 9 shows for the
same problem the two-dimensional rectangle represen-
tation of the same AFS. The two intervals of the one-
dimensional AFS form the edges of a rectangular. The
advantage of such a rectangle-representation is that a
certain point (with the two coordinatesx andS11) com-
pletely determinesC or A. Moreover, a known factorC
allows to computeA from D = CAand vice versa.

5. Feasibility of points in the AFS

For the case of two-component systems the question
of the feasibility of a certain point is solved by the anal-
ysis in Section 4 (at least for noise-free data). In the fol-
lowing we consider systems with three or more compo-
nents. For these systems the feasibility question arises
in two major ways. There is first the feasibility analysis

for noise-free (model) data by considering a certain ge-
ometric construction. Alternatively, and with a focus on
experimental spectral data, there is a numerical feasibil-
ity analysis which is based on the numerical solution of
an optimization problem. Unfortunately, the numerical
feasibility test can yield false results, if the numerical
optimization procedure (e.g. due to convergence prob-
lems or poor initial estimates) is not successful.

This section explains the feasibility checks of the
polygon inflation algorithm by soft constraints (in the
Subsection 5.1), of the triangle enclosure technique as
well as the grid search method (see Subsection 5.2) and
of the geometric-constructive Borgen plot approach (see
Section 5.3).

5.1. Soft-constraint based feasibility check

Soft constraints can be added to the feasibility check
on nonnegativity. The aim of this approach is to com-
pute the matrix elements of the submatrixS of (5)
by solving a minimization problem for a certain target
function which guarantees thatCA is a good approxi-
mation of the initial matrixD. Simultaneously various
constraints onC and A are to be satisfied. This fea-
sibility test which also underlies the polygon inflation
algorithm [44] is explained in the following.

First we introduce a small control parameterε ≥ 0
so that−ε is a lower bound for the acceptable negative
elements ofC andA (in a relative sense related to the
maximal value of a concentration profile or spectrum).
Mathematically, these conditions read

min j C( j, i)

maxj C( j, i)
≥ −ε,

min j A(i, j)

maxj A(i, j)
≥ −ε

for all i = 1, . . . , s. The acceptance of small negative
entries can often significantly stabilize the computation
in case of noisy or perturbed (e.g. by a background sub-
traction) data.

The feasibility test for a pointx is done in two steps.
First, a rapid and computationally very cheap test is
used in order to check whetherx is contained in the set
FIRPOLM+, see Equation (7). Ifx is not in FIRPOL,
thenx cannot be an element of the AFSM. Once again,
we accept small negative entries. To this end we use an
approximate FIRPOL test in order to check whether or
not

f0(x) := min

(

(1, x)VT

‖(1, x)VT‖∞
+ ε, 0

)

(12)

satisfies thatf0(x) ≥ 0 (in a component-wise sense).
Therein,‖·‖∞ is the maximum vector norm, which is the
largest absolute value of all components of its argument.
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If this test is passed successfully, then a second much
more expensive test follows. Therefore the soft con-
straint function

f (x,S) =
s

∑

i=1

∥

∥

∥

∥

∥

∥

min

(

C(:, i)
‖C(:, i)‖∞

+ ε, 0

)
∥

∥

∥

∥

∥

∥

2

F

+

s
∑

i=2

∥

∥

∥

∥

∥

∥

min

(

A(i, :)
‖A(i, :)‖∞

+ ε, 0

)
∥

∥

∥

∥

∥

∥

2

F

+ ‖Is − TT+‖2F

(13)

is considered withT = T(x,S) by (5). Further,C, A are
computed according to (2). If

min
S∈R(s−1)×(s−1)

f (x,S) ≤ εtol, (14)

then x has passed the feasibility test successfully.
Therein εtol is a small positive control parameter,
e.g.εtol = 10−10.

To summarize, the approximate feasibility test with
the control parametersε andεtol results in the (approxi-
mate) AFS

M = {x ∈ Rs−1 : x fulfills f0(x) ≥ 0

and min
S

f (x,S) ≤ εtol}.
(15)

Figure 10 shows the function‖ f0(x)‖ + minS f (x,S)
on the grid (x1, x2) ∈ [−1.2, 1.2] × [−0.4, 1.4] for the
data set 2. For these computations the control param-
eters areε = 10−12 andεtol = 10−6. All points with
‖ f0(x)‖ +minS f (x,S) ≤ 10−6 belong to the AFS; these
are the points at the valley bottom in Figure 10.

For the data set 1, a two-component system, Figure
11 displays the function‖ f0(x)‖ + f (x,S) on the grid
(x,S) ∈ [−0.29, −0.01] × [0.55, 0.8] for ε = 0.035.
For this two-component system no minimization is re-
quired; the argumentsS and x of f are real numbers.
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Figure 11: Data set 1: The function‖ f0(x)|| + f (x,S) with scalar ar-
gumentsx andS is plotted. The control parameterε is set to 0.035 in
order to successfully deal with small negative entries which are caused
by a baseline correction. Sincef (x,S) = f (S, x) the function graph
of ‖ f0‖ + f is symmetric to the axisx = S; the symmetric part of the
function is not plotted. The area with‖ f0(x)‖ +minS f (x,S) < εtol is
bounded by the interval endpointsa, b, c andd as given in Equation
(10).

The valley bottom is equal to the right subplot of Fig-
ure 9. The endpoints of the intervals are approximately
equal toa andb in (10) and are located on thex1-axis.
Further the endpointsc andd are located on theS-axis.

5.2. The ssq-function based feasibility check
The ssq-function (ssq for sum-of-squares) approach

evaluates the reconstruction functional

ssq(x,S) = ‖D −max(C, 0) ·max(A, 0)‖2F .

Therein max(C, 0) and max(A, 0) are the matrices whose
negative entries are zeroed. The matricesC andA de-
pend onT = T(x,S) according to (5). The triangle
enclosure algorithm [12] and the grid search method
[50, 1] are based on the evaluation of thessq-function.
Computationally, thessq-evaluation is relatively expen-
sive as the computation ofO(k · n) squares is required
whereas the evaluation of (13) needs onlyO(k + n)
squares. For large numbersk and/or n this results in
significantly different computation times; see for exam-
ple Tables 1 and 2 in [44] for a direct comparison of
the soft constrained approach (13) compared to thessq-
based AFS computation.

Finally, the AFS can be written as

M =

{

x ∈ Rs−1 : min
S

ssq(x,S) ≤ εtol

}

for a fixed small parameterεtol > 0.

5.3. Geometric constructive feasibility test
The fundamentals of the geometric AFS construction

are shortly outlined in Section 3.5.4. Principally, these
11



constructions are not limited to (s= 3)-component sys-
tems. However, the current literature does not contain
any investigations fors≥ 4.

The geometric feasibility test of a certain pointx ∈
M+ for the cases = 3 amounts to the following steps:
First two tangents of INNPOL are constructed which
run through the given pointx and which (tightly) en-
close INNPOL. Next the intersection of the first tangent
with the boundary ofM+ (the line segment betweenx
and this point must touch at least one pointwi) is de-
fined asP1. The same is done for the second tangent.
This results in the pointP2. Thenx is a feasible point
of the AFS if and only if the triangle with the vertices
x, P1 and P2 includes the polygon INNPOL, see Sec-
tion 3.5.1. An extension of this geometric construction
which is applicable to noisy or perturbed data is devel-
oped in [22].

6. AFS computations for three-component systems

The definition of the AFS and the discussion of some
of its numerous properties is now followed by a numer-
ical algorithm for its computation. The focus is on the
polygon inflation algorithm [43, 44] and its implemen-
tation in theFACPACKsoftware. We also briefly dis-
cuss the geometric AFS construction, the triangle enclo-
sure algorithm, the grid search approach and the MCR-
Bands method for the computation of upper and lower
band boundaries. We do not claim to present a com-
plete discussion of all methods for AFS computations.
For example, we do not consider the particle swarm al-
gorithm for the detection of feasible regions [48].

6.1. Borgen plots and computational geometry

The geometric construction of Borgen plots has al-
ready been introduced in Section 3.5.4. This construc-
tion is purely geometric [6, 36]. The practical imple-
mentation of the construction on a computer requires
methods of computational geometry. Hence a floating-
point arithmetic is used so that certain approximation
problems can occur. Perturbed spectral data, data which
result from an SVD low rank approximation or spectral
data containing small negative entries (e.g. from back-
ground subtraction) cannot successfully be treated with
the classical Borgen plots. In [22] a generalized Bor-
gen plot construction has been suggested which has ex-
tended the construction principles to perturbed spectral
data. Generalized Borgen plots can be constructed with
theFACPACKsoftware.

6.2. Grid search
The grid search approach [50, 1] is a brute-force

method to compute the AFS. It can be used for any
s≥ 2. For two-component systems the functionf (x,S)
is plotted on a proper grid inR2, see Section 4.1 or Fig-
ure 8. For the casess ≥ 3 one has to evaluate‖ f0(x)‖ +
minS f (x,S) by Equation (13) or minS ssq(x,S) on a
suitable grid. Figures 11 and 10 show the function
graphs for the data set 2 and for the data set 1. The grid
search method can simply be implemented on a com-
puter. However, the computational costs increase expo-
nentially in the number of componentss. Moreover, the
grid search approach is a non-adaptive method. Any in-
crease of the resolution by a factorκ (e.g., in each coor-
dinate direction the number of grid points is multiplied
by κ) results in an increase of the computational costs
by the factor ofκs−1.

6.3. Triangle enclosure
The triangle enclosure method was introduced in

2011 for three-component systems in [12]. The idea
is to approximate the boundary of the two-dimensional
AFS by series of equilateral triangles which cover the
boundary. Therefore an initial triangle is computed for
which at least one vertexx fulfills that x ∈ M and at
least one vertexy is not located inM. The third point
z can be a feasible or a non-feasible point. Then the
generation of further triangles starts. The idea is to mir-
ror the most recently generated triangle along one of its
edges which intersects the boundary ofM. This is done
in a way that the triangle chain grows until the initial
triangle is reached. Then the boundary of a segment of
the AFS has been successfully approximated.

Figure 12 illustrates the idea of the triangle enclosure
method. The shape of an Erlenmeyer flask is approxi-
mated by a chain of equilateral triangles. This is done
for different edge lengthsa. The precision of the bound-
ary approximation is equal to the edge lengtha. Halving
the edge length in order to increase the approximation
quality doubles the number of required triangles.

For each segment (or isolated subset) of the AFS a
separate chain of triangles is to be computed, see Sec-
tion 3.5 for the possible cases. However, if the AFS con-
sists of only a single topologically connected set, then
this set contains a hole which encloses the origin. In
this case an additional run of the triangle enclosure al-
gorithm is required in order to approximate the inner
boundary by a second chain of triangles. The compu-
tational costs of the triangle enclosure algorithm is sig-
nificantly smaller compared to the grid search method.
The reason is that feasibility tests are only required for
points close to the boundary.
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a = 0.2, N = 85 a = 0.1, N = 175 a = 0.05,N = 353 a = 0.01,N = 1775 a = 0.001,N = 17769

Figure 12: Approximation of the shape of an Erlenmeyer flask by the triangle enclosure method by chains of equilateral triangles with edge lengths
a. The required number of triangles isN. The start triangle is chosen in the way, that its centroid islocated in the middle of the bottom-line. The
edge lengtha limits the precision of the boundary approximation.

6.4. MCR-Bands

The MCR-Bands method [10, 49, 21] is not gener-
ically an AFS computation method. Instead, MCR-
Bands aims at the computation of lower and upper
boundaries for the feasible bands of each component.
The method works for anys ≥ 1. The band boundaries
are computed by minimizing (for the lower boundaries)
or maximizing (for the upper boundaries) a certain cost
function. As this method does not aim at a direct com-
putation of the AFS we refer for further explanations to
[49].

The minimal and maximal band boundaries show an
interesting property. If a band boundary function for the
possible spectra is expanded with respect to the firsts
right singular vectors, then the associated expansion co-
efficients (after FSV-scaling) are located on the bound-
ary of the AFS; see e.g. [2] and [53] for systems with
s = 2 or s = 3 components. So far, a systematic expla-
nation for this has not been given and is a possible topic
for future work. For noisy or perturbed spectral data,
the localization of the band boundaries on the boundary
of the AFS does not hold strictly. The reason is that the
MCR-Bands toolbox and the feasibility check by Equa-
tions (12)–(15) deal in different ways with perturbed or
noisy data.

6.5. Polygon inflation

The polygon inflation algorithm [43] and its algo-
rithmic variation of inverse polygon inflation [44] are
adaptive methods for the computation of the AFS for
three-component systems. The idea is to approximate
the boundary of each segment of the AFS by sequences
of step-by-step refined polygons. A combination of a
local error estimation with a local strategy for the refine-
ment of the polygon results in a very effective, adaptive
approximation scheme. Various control parameters al-
low to steer the approximation process and its quality.
The polygon inflation method can be generalized to a

polyhedron inflation procedure in order to compute the
AFS for four-component systems, see Section 7. We
show some first examples in this work.

The geometric idea of the boundary approximation
by inflating polygons is demonstrated in Figure 13. The
shape of an Erlenmeyer flask is approximated in 2D by
the polygon inflation method. Additionally the surface
of a 3D Erlenmeyer flask is approximated by the polyhe-
dron inflation algorithm. The surface of the polyhedron
is a triangle mesh.

6.5.1. Steps of the polygon inflation algorithm

In this section the steps of polygon inflation method
are explained. The inverse polygon inflation algorithm
derives from the standard polygon inflation in a way that
the setsM+ andM∗ by Equations (7) and (8) are com-
puted separately by inflating polygons. Then the AFS
M is computed by forming the intersectionM+ ∩M∗.
Thus the costs for the inverse polygon inflation is less
than twice that of the polygon inflation. For further de-
tails see [43, 44]. Next the single steps of polygon infla-
tion are explained for the case of an AFS consisting of
three separate segments.

Step 1: Computation of an initial factorization of D

The first step of the polygon inflation method is to
compute a nonnegative matrix factorization ofD. Ac-
cording to Equations (2) and (5) this allows to find three
points in the (spectral) AFS; the planar coordinates of
these points are the matrix elements of the second and
third column ofT. If the AFS consists of three sepa-
rated segments, then each segment contains exactly one
of these points. For each of these three points an asso-
ciated polygon is inflated.

The following steps 2 and 3 are executed for each of
the three points from Step 1 which are located in the
three AFS segments.
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N = 4 N = 16 N = 64 N = 412 N = 1150

Figure 13: Top: Approximation of the shape of an Erlenmeyer flask in 2D by the polygon inflation algorithm withN vertices. Bottom: Approxi-
mation of a 3D Erlenmeyer flask by the polyhedron inflation algorithm. The surface of the polyhedron consists ofN triangles.

Step 2: Computation of an initial polygon
The starting point is used in order to construct an ini-

tial triangle. The three vertices of this triangle are lo-
cated on the boundary of the AFS segment. The result-
ing initial triangle includes the starting point.

Step 3: Step-by-step polygon inflation by edge subdivi-
sion

Given a current polygon withm vertices, a certain
edge of this polygon is selected for a refinement. The
selection rules are explained later in this section. IfPi

andPi+1 are the endpoints of the selected edge, then the
mid-perpendicular of the edge is determined. The clos-
est point of intersection of this mid-perpendicular with
the boundary of the AFS segment defines a new point
P′i+1. (There is always a second point of intersection of
the mid-perpendicular with the boundary of the AFS.
However, this more distant point on the opposite side of
the AFS segment would not result in a successful ap-
proximation of the entire boundary by a polygon.) The
vertices of the new and refined polygon read

[P1, . . . ,Pi, P′i+1, Pi+1, . . . , Pm].

The introduction of the new vertex results in a gain or
loss∆i of the area of the polygon. In most cases the area
of the polygon increases, i.e. the polygon is inflated. If
in rare cases the pointsPi andPi+1 limit a non-convex
region of the boundary of the AFS segments, then the

refinement process can decrease the area of the polygon.

Figure 14 shows the three steps of the polygon refine-
ment process for the data set 3. For the data set 2 with
w = 0 the polygon inflation algorithm and the inverse
polygon inflation algorithm are illustrated in Figure 15
by sequences of step-by-step refined polygons.

Polygon refinement
If a certain edge between the adjacent verticesPi and

Pi+1 is marked for a refinement, then first the feasibil-
ity check, see Section 5.1, is applied to the mid-point
M = 1

2(Pi + Pi+1) of this edge. IfM is feasible, then
a second pointM′ < M is determined along the mid
perpendicular of the current edge. The new pointM′

is to be found in the outward direction with regard to
the current polygon. IfM is not a feasible point, then
a second pointM′ ∈ M is determined along the mid-
perpendicular in the inward direction with regard to the
current polygon. Hence the two pointsM andM′ on the
mid-perpendicular are determined. One of these points
is a feasible point and the other point is not a feasible
point. In other words, the boundary of the AFS seg-
ment intersects the mid-perpendicular betweenM and
M′. The point of intersection is to be determined. This
can be done in a slow but very stable way by means of
the iterative bisection method. The iteration is stopped
if a final precisionεb has been reached.
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Figure 14: Data set 3: The steps of the polygon inflation procedure are illustrated. Left (Step 1): A nonnegative factorization of D results in a
factorA (a so-called abstract factor). Center (Step 2): The initialfactorization is represented by three points in thex1 − x2-plane of the AFS. These
points are marked by× symbols. The three initial triangles for the inflation procedure are plotted. Right (Step 3): The inflation procedure (applied
separately to the three initial triangles) results in a finalAFS approximation. This reproduces the AFS shown in the second subplot of Figure 7.

Edge selection and stopping criterion for the polygon
refinement

The change-of-area variable∆i ≥ 0 as introduced in
Step 3 of the polygon inflation procedure can be stored
as an attribute for each edge. If each of the three edges
of the initial triangle has been subdivided at least once,
then∆i has been assigned for each edge of the polygon.
The stopping control parameterδ > 0 is used to stop
the polygon refinement process if∆ j < δ for all edges
of the polygon. Then the gain or loss of area in the
last subdivision of every edge is bounded byδ. If this
stopping condition is not fulfilled, then an edge with the
indexℓ is selected for a subdivision if∆ℓ = maxj ∆ j .

Figure 16 shows for the data set 2 withw = 0 a typical
∆i convergence history in theFACPACKsoftware. For
these computations the stopping control parameterδ =

10−3 has been used.

6.5.2. The control parameters
The polygon inflation algorithm in theFACPACK

software includes the following control parameters:
- ε ≥ 0 is an upper bound for the acceptable relative

size of negative entries inC andA, see Equations
(12) and (13).

- εtol is the tolerance parameter in the feasibility test,
see Equations (14) and (15).

- δ is the stopping parameter for the polygon refine-
ment. The iteration is stopped if the nonnegative
change of area attribute∆i of each edge of the poly-
gon is bounded byδ. In the FACPACKsoftware
δ = 10−3 is the default value.

- εb is the control parameter on the guaranteed pre-
cision of the vertex localization close to the bound-
ary of the AFS. This parameter should satisfyεb ≤
δ.

Suitable parameter selection for the parameterε
The parameterε on the acceptable relative size of

negative entries inC andA considerably influences the
size of the AFS. Thusε should be selected carefully. A
reasonable choice is as follows: If a computational pro-
cedure for nonnegative matrix factorizations (an NNMF
routine) is only capable of producing a factorization
D = CA with matricesC and A with small negative
entries, thenε can be selected according to

ε ≥ max

(

0, − min
i=1,...,s

C(:, i)
‖C(:, i)‖∞

, − min
i=1,...,s

A(i, :)
‖A(i, :)‖∞

)

. (16)

As a rule of thumb, an increase of the valueε results in a
growth of the area of the AFS. The crucial point is that
increasingε means that the factorsC and A can con-
tain (in absolute values) larger negative entries. Hence
a larger number of approximate nonnegative matrix fac-
torizations can be accepted as feasible. Thus the AFS
grows. Figure 17 illustrates this relationship for the data
set 3 for four different values ofε.

6.5.3. Benefit of the adaptive AFS approximation
A strength of the polygon inflation method is its adap-

tive strategy for the boundary approximation. If the
boundary of the AFS is locally more or less a straight
line, then only few vertices of the polygon are neces-
sary for a high-quality boundary approximation. For
other boundary regions which are strongly curved or
non-smooth, a higher resolution of the polygon inflation
method is a result of the local error estimation together
with the local polygon refinement. Figures 12 and 13
demonstrate that only few vertices are sufficient for a
good approximation of rectilinear regions of the bound-
ary.

Table 1 provides a comparison of the numbers of ver-
tices which are necessary for an approximation with
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N = 3 N = 4 N = 5 N = 6 N = 7

N = 8 N = 9 N = 10 N = 11 N = 12

N = 13 N = 14 N = 15 N = 20 N = 25

N = 30 N = 40 N = 50 N = 75 N = 96

N = 3 N = 4 N = 5 N = 6 N = 7

N = 8 N = 9 N = 10 N = 11 N = 12

N = 13 N = 14 N = 15 N = 20 N = 25

N = 30 N = 40 N = 50 N = 75 N = 189

Figure 15: Data set 2 withw = 0: Polygon inflation (rows 1-4) and inverse polygon inflation(rows 5-8) are illustrated for the same data matrix. In
case of inverse polygon inflation the solid lines represent the boundary ofM+ and the broken lines stand for the boundary ofM∗.
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Figure 16: Data set 2: The gain/loss of area∆i of the adaptive polygon inflation procedure is plotted against the number of vertices of the polygon.
Left: ∆i for the three segments of the AFS. The polygon refinement is stopped if max∆i ≤ δ with δ = 10−3. Right: ∆i for the two polygonsM+

andM∗ for the case of the inverse polygon inflation procedure. (In theFACPACKsoftware these convergence history data are contained in the log
file “AFScomputation.log”. Alternatively, one can push thelog-file button.)

boundary grid triangle polygon
precision search enclosure inflation

10−1 632 175 29
10−2 6.32 · 104 1775 85
10−3 6.32 · 106 17769 127
10−4 6.32 · 108 177735 299
10−5 6.32 · 1010 1777349 901

Table 1: Approximation of the shape of an Erlenmeyer flask by the
grid search approach, the triangle enclosure method and thepoly-
gon inflation method. Tabulated are the numbers of grid points (grid
search approach), the total numbers of vertices of the approximating
triangle chain and the numbers of vertices of the approximating poly-
gons. The boundary precision values areε = 10−i , i = 1, . . . , 5. These
data affirm that the adaptive strategy has a clear advantage. See also
Figure 12 and the first row in Figure 13.

guaranteed boundary precision of the shape of an Er-
lenmeyer flask by the grid search approach, by the tri-
angle enclosure method and by the polygon inflation
method. The boundary precision values areε = 10−i,
i = 1, . . . , 5. Further, Table 2 in [43] contains a simi-
lar comparison of the triangle enclosure method and the
polygon inflation method for a three-component model
problem.

7. AFS computations for four-component systems

All the methods for AFS computations for three-
component systems as explained in Section 6 can be
extended to four-component systems. The AFS for a

four-componentsystem is a bounded subset of the three-
dimensional space. In this section a short overview is
given on already published methods and on an on-going
research project.

7.1. The slicing method

In [14] the idea has been presented to compute the
three-dimensional AFS by two-dimensional slices. In
this paper the triangle enclosure method has been used
to approximate the boundary of the two-dimensional
slices. For example, a slicing inz-direction works with a
matrixT in (5) whose fourth column is fixed to a certain
valueζ, i.e.

T(i, 4) = ζ, i = 1, . . . , 4.

(Additionally, the FSV scaling requires thatT(i, 1) = 1
for all i.) All other matrix elements ofT are free vari-
ables and are determined within the optimization pro-
cedure. With such a choice ofT, one can compute the
intersection of the 3D AFS with the 2D plane withz= ζ.
The entire AFS is computed by settingzto m+1 equidis-
tant values in the interval [zb, zu] with

ζ j = zb +
j

m
(zu − zb), , j = 0, . . . ,m.

In each of the slices any of the AFS approximation
methods from Section 6 can be applied.

Figure 18 illustrates the slicing method for the four-
component data set 4. In each of the slices the polygon
inflation method has been applied in order to compute
the 2D intersections (the slices) with the 3D AFS. A
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Figure 17: Data set 3: Variation of the control parameterε on the acceptable relative size of negative entries inC andA, see Section 6.5.2. The area
of the AFS segments increases with risingε. For ε ≥ 0.008 the initially isolated three segments are grown together into a single AFS with a hole
(black dotted lines). The continua of feasible bands for theparameterε = 0.005 are shown in the two rightmost plots of Figure 7.
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Figure 18: Data set 4 withσ = 750: Computation of the AFS for the spectral factorA by slicing along the three coordinate axes. A number of 30
slices is used for each plot. The same AFS computed by polyhedron inflation is shown in the right subplot of Figure 19.

number of 30 slices has been used for the slicing in the
coordinate directions. The achievable resolution in the
slicing direction depends on the number of slices.

7.2. Polyhedron inflation method

The direct generalization of the adaptive polygon in-
flation method is the polyhedron inflation method. To
this end the 3D AFS is approximated by a series of
polyhedrons. Each face of the polyhedron is a triangle.
Thus the AFS is approximated by a 3D triangle mesh.
The principles of the triangle subdivision and of the lo-
cal error estimation are similar to those of the 2D AFS;
but there are various technical challenges. Once again,
adaptivity is an advantage of the inflation algorithm. We
will explain the method in detail in a future work.

The method is demonstrated by the approximation of
the shape of a 3D Erlenmeyer flask in Figure 13. Fur-
ther, Figure 19 shows the concentrational AFS and the

spectral AFS for the four-component model system of
the data set 4 withσ = 750.

8. Reduction of the rotational ambiguity by soft con-
straints represented in the AFS

The AFS construction includes the nonnegativity of
the factorsC and A as the one and only constraint.
Sometimes additional information is available on the
chemical reaction system. Such information is welcome
in order to reduce the rotational ambiguity. For instance
known concentration profiles or pure component spectra
lead to a significant reduction of the rotational ambigu-
ity by means of the duality- and complementarity theory
[18, 34, 40, 4, 46, 17]. Alternatively, soft constraints can
be very useful for extracting chemically meaningful so-
lutions from the AFS [3, 47, 33].
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Figure 19: Data set 4 forσ = 750: For this four-component model problem the left plot shows the concentrational AFS and the right plot is the
spectral AFS. The concentrational AFS is also shown in Figure 18.

8.1. Equality constraints: locked points in the AFS
The knowledge of a certain pure component spectrum

is often called an equality constraint. It means that a
certain point of the AFS is fixed (or locked). The effect
on the remaining components is a reduction of the rota-
tional ambiguity or equivalently a reduction of the area
of the AFS segments. The reduced AFS can either be
constructed geometrically (then one vertex in the sim-
plex rotation algorithm [6] is fixed) or numerically (then
a certain row ofT is fixed). One observes that the re-
duction effect on the remaining segments of the AFS is
relatively large if a point close to the origin is fixed.

All these concepts also apply to known concentration
profiles. Then the whole procedure works withDT =

ATCT whereC andA have changed their places.

8.1.1. Complementarity theory and the AFS
The restrictions on the factorC which results from a

given pure component spectrum are theoretically well
understood by the complementarity theory or duality
theory [34, 40, 4, 46, 31].

In general the AFS for ans-component system is a
bounded subset of theRs−1. The complementarity the-
ory provides a reduction of the rotational ambiguity to
(s− 2)-dimensional affine spaces. Theorem 3.1 in [46]
proves that a given pointx in the AFS forA forces the
complementary concentration profiles represented byy
to fulfill

s−1
∑

i=1

yi xi = −1.

Additionally locked points have an area-reduction
impact on the AFS segment of the concentration fac-

tor of the same component for which the spectrum is
given. All these restrictions can be combined if more
than one point is locked. Ifs0 points in the AFS forA
are locked, then the admissible pointsy in the AFS for
C for the complementary concentration profiles are in
s− 1 − s0-dimensional subspaces. This means for the
important case of a three-component system that one
known spectrum restricts the complementary two con-
centration profiles to a straight line in the AFS forC.
Further the concentration profile of the chemical com-
ponent whose spectrum is given is located in an AFS
segment with a reduced area.

8.1.2. Equality constraints applied to experimental IR
spectral data

Figure 20 illustrates for the data set 2 withw = 0 the
reduction of the AFS for the cases of one or two given
spectra. The left column shows the AFS sets forC and
A only under the nonnegativity constraint. In the cen-
tered column the pure component spectrum of the com-
ponentX is locked as a constraint (that is an equality
constraint). The position of this spectrum is marked by
a blue cross in the spectral AFS. This known spectrum
results in a reduction of the areas of the AFS segments
for the componentsY andZ in the spectral AFS. Further
the AFS segment forX in the concentrational AFS is re-
duced (black dashed lines). Due to the complementarity
theory the AFS-segments for the componentsY andZ
in the concentrational AFS are reduced to linear AFS
segments (black dashed lines). In the right column of
Figure 20 a second spectrum is locked. The remaining
segment in the AFS forA is reduced a second time. In
the AFS forC a second line-restriction has been added.
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Figure 20: Data set 2: Application of equality constraints (this is the lock mode inFACPACK) to the AFS forC and the AFS forA. The three
segments of the AFS sets and their associated chemical componentsX, Y andZ are shown in the left column.
Left column: Areas of feasible solutions without restrictions. Center column: The pure component spectrum of the componentX is locked as a
constraint. The position of the spectrum in the spectral AFSis marked by a blue cross. This known spectrum results in a reduction of the areas
of the AFS segments for the componentsY andZ in the spectralA. Further the AFS segment forX in the concentrational AFS is reduced (black
dashed lines). Due to complementarity [40, 46] and duality theory [34], the AFS-segments for the componentsY andZ in the AFS forC are
reduced to linear AFS segments (black dashed lines). Right column: If additionally the pure component spectrum for componentZ is locked (red
◦), then the segment for the componentY in the AFS forA is reduced a second time (solid line) and the concentration profile of Y is unique (green
∗ symbol). Finally, the reduced AFS segments forX andZ in the AFS forC are line segments (solid lines).

The point of intersection of these two lines uniquely de-
termines the concentration profile of the componentY
(green color).

8.2. Further soft constraints

The target functionf by Equation (13) or thessq-
function in Section 5.2 can easily be extended by ad-
ditional soft constraints in order to strengthen certain
desired characteristics of the solution [4, 3, 33, 47]. In
other words, one hopes to extract only those points from
the AFS which additionally satisfy certain (soft) con-
straints. Finally and by using various constraints, one
hopes to extract only one and chemically meaningful
solution. Tauler [49] uses a similar approach within the
MCR-Bands method.

Possible soft constraints are the unimodality con-
straint for the concentration profiles or even stronger a
monotonicity constraint. Alternatively, one can use as-
sumptions on closure or windowing, see Section 4.3 in
[47]. Figure 21 for the data set 2 withw = 0 illustrates
how the unimodality soft constraints can be used for a

reduction of the AFS. Additionally, Figure 21 shows the
associated reductions of the feasible bands.

9. Geometric shapes of the AFS and AFS dynamics

The AFS can have various geometric shapes depend-
ing on the numbers of independent components. For
two-component systems the AFS always consists of two
separated intervals. These intervals can degenerate to
single-point intervals. One of these intervals contains
only negative numbers and the other interval only pos-
itive numbers. Fors ≥ 3 the diversity of possible ge-
ometric shapes of AFS segments is much larger. In
this section the focus is on the different (and partially
degenerated) geometric shapes of the segments of an
AFS. Furthermore the transition from an AFS with iso-
lated segments to a one-segment AFS is demonstrated
for model data sets with either three or four independent
components.
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Figure 21: Data set 2 forw = 0: Application of the unimodality soft constraint.
Left column: AFS sets forC andA without restrictions. Center column: Application of monotonicity soft constraints only to the concentration
profiles reduces the concentrational AFS and the spectral AFS. Right column: The associated feasible bands forC andA without unimodality soft
constraint (pale colors) and with the unimodality soft constraint for the factorC (bright colors).

9.1. Shapes of AFS segments and degenerated segments
The segments of an AFS for ans-component sys-

tem are subsets of theRs−1. Very often the (s −
1)-dimensional volume of these segments is nonzero.
However, certain problems can contain one or more
unique spectra or concentration profiles. A further
possible case is that the nonnegative matrix factor-
ization problem for a givenD has a unique solution
[9, 25]. Such unique solutions are associated with
single-point AFS segments. Furtherdegenerated cases
are line-shaped AFS segments in the case of 2D AFS
sets for three-component systems. In the case of
four-component systems the possible degenerated cases
are single-point, line-shaped or planar AFS segments.
These degenerated AFS segments have only been ob-
served for model data. For perturbed or noisy experi-
mental data the control parameterε on tolerated nega-
tive entries inflates degenerated AFS segments, see Fig-
ure 17.

Computationally, single-point AFS segments can eas-
ily be computed. The initial nonnegative matrix factor-
ization ofD provides their coordinates. Somewhat more
complicated is the computation ofi0-dimensional seg-
ments with 1< i0 < s− 1. (E.g. for s = 2 the case

i0 = 1 refers to a line-shaped AFS segment.) For these
segments the polygon inflation algorithm (and also the
triangle enclosure method), see Sections 6, as well as
the polyhedron inflation method, see Section 7, are to
be adapted properly. The start-up phase of the polygon
inflation algorithm tries to build an initial triangle (with
a nonzero area) and the polyhedron inflation algorithm
tries to generate an initial non-degenerated tetrahedron,
see left column of Figure 13. In other words, the al-
gorithms aim at the construction of ans-simplex with a
nonzero volume. If this is not successful, the algorithms
try to construct an (s−1)-simplex with a nonzero ((s−1)-
dimensional) volume, and so on. The extreme and final
case is that the algorithm ends in a 1-simplex, which is
a unique point.

For three-component systems there is only the case of
a line-shaped AFS segment between the extreme cases
of a planar AFS segment with a nonzero area and a
unique point. The numerical strategy for the computa-
tion of line-shaped AFS segments by polygon inflation
is explained in Section 4.6 of [44]. The idea can easily
be explained by means of a lighthouse. Starting from an
initial feasible pointx, which is considered as the posi-
tion of the lighthouse, one determines a feasible beam
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is a unique point (i.e. one spectrum and one concentration profile are uniquely determined), a further segment is line-shaped and the remaining
third AFS segment has a geometric area larger than zero.
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Figure 23: The AFS sets for a four-component model problem. One segment is a unique point (i.e. one spectrum and one concentration profile are
uniquely determined), a second segment is line-shaped witha nonzero interval length, a third segment is planar with a nonzero planar area and the
fourth segment is a volume segment with a nonzero volume.

direction so that the line

gr,x(ϕ) = x+ r

(

sin(ϕ)
cos(ϕ)

)

covers the desired line-shaped AFS segment. In a sec-
ond step one determines the beam ranges in the form of
boundsr l andrr so thatM = Ll ∪ Lr with

Ll =

{

x+ r

(

sin(ϕ − π)
cos(ϕ − π)

)

with r ∈ [0, r l ]

}

,

Lr =

{

x+ r

(

sin(ϕ)
cos(ϕ)

)

with r ∈ [0, rr ]

}

.

This idea can easily be extended to the computation
of planar AFS segments for the case of four-component
systems; then two angles are to be determined.

Figure 22 shows for a three-component model system
that the three shapes of AFS segments can occur simul-
taneously. Both the AFS forC and the AFS forA con-
tain a single-point segment, a line-shaped segment and
a planar segment with a nonzero area. Figure 23 illus-

trates the analogue of this for a four-component model
problem.

9.2. AFS dynamics

Section 3.6 contains a discussion on the possible
numbers of segments of an AFS. The obvious ques-
tion on the inherent connection of this segment structure
is discussed next. We demonstrate for the parameter-
dependent data sets 2 and 4 that continuous changes of
the parameter result in continuous changes of the AFS.
Within this process of a dynamically changing AFS, the
number of isolated segments of the AFS varies in a dis-
continuous way.

9.2.1. The three-component model data set 2
We compute for the data set 2 the AFS sets for a

sequence of parameter valuesw ∈ [100, 240]. For
w = 100 the signal width and thus the overlap of the
pure component spectra is relatively small. The AFS for
the spectral factor contains three separated segments,
see Figure 24. For increasingw the segments show
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w = 191 w = 192 w = 193 w = 194 w = 195

w = 200 w = 210 w = 220 w = 230 w = 240

Figure 24: Data set 2: AFS dynamics with respect to a variation of the model parameterw. The shape of the spectral AFS is changing from three
isolated segments to a one-segment AFS with a hole. An AFS with exactly two isolated segments is not possible.

an increasing geometric area; the distances between the
segments decrease. Forw ≥ 170 the AFS computa-
tion by theFACPACKsoftware should better be done
by the inverse polygon inflation procedure. Forw ≥ 192
the AFS consists of only one segment, which contains a
hole. The point of discontinuityw for which the three-
segment AFS turns into a one-segment AFS is the same
for the spectral AFS and the concentrational AFS.

9.2.2. The four-component model data set 4
Next the spectral AFS sets are computed for the

model problem 4 for a sequence of parameter values
σ with σ ∈ [550, 850]. The associated AFS sets are
shown in Figure 25. Forσ = 550 the AFS consists of
four isolated segments. These segments grow together
for increasing values ofσ. Finally, forσ = 810 all four
segments are connected and form a Swiss-cheese like
3D object with a complicated hole structure; the origin
is contained in the hole.

Remark 9.1. It is not clear by the results shown in Fig-
ure 25 if an AFS for a four-component system can con-
sist of exactly two or exactly three segments. The res-

olution of the computations is not high enough. This
question has to be investigated analytically.

10. The FACPACK-toolbox for AFS-computations

TheFACPACKtoolbox [45] is a software package for
AFS computations and can be applied to experimental
spectroscopic data, to model data or even to any nonneg-
ative matrixD. The software contains implementations
of the polygon inflation method [44], the inverse poly-
gon inflation method and the geometric constructive ap-
proach of generalized Borgen plots [22]. Moreover, it
allows to apply the complementarity theory [46] within
the AFS representation. The main functionalities are
implemented in separate software modules. The current
software revision is theFACPACKrevision 1.2. Addi-
tionally, modules are contained for baseline corrections
of spectroscopic data and for a library management of
computed pure component spectra. The software can be
downloaded on theFACPACK-homepage

http://www.math.uni-rostock.de/facpack/ .
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650

σ = 600 σ = 650

σ = 700 σ = 750 σ = 760

σ = 770 σ = 780 σ = 790

σ = 800 σ = 810 σ = 820
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Figure 25: Data set 4: AFS-dynamics with respect to a variation of the model parameterσ. Forσ = 550 the spectral AFS contains four separated
segments. Finally, forσ = 850 these segments are grown together to a one-segment AFS with a hole.
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For more details onFACPACKsee the manual [41]. This
includes a guide on how to install and to start the soft-
ware.

TheFACPACKsoftware comes with a graphical user
interface in MatLab. The time-consuming computa-
tional procedures are externalized in precompiled C-
programs. Up to now the AFS-computation and the vi-
sualization is available fors = 2 ands = 3 component
systems. For the future we plan to present an extension
to four-component systems.

10.1. Data import

The spectral data matrixD is to be provided in a
MatLab compatible∗.mat file and is assumed to con-
tain row-wise thek spectra. Additionally, a vector of
spectral wavenumbers/frequencies can be provided by
ann-component vector variablex together with a vector
t of time coordinate values.

10.2. The AFS computation module

The core of theFACPACKsoftware is the polygon
inflation algorithm for three-component systems. This
software is contained in theAFS computation-module.

See Figure 26 for a screen shot of theAFS
computation-module window with a short explanation
of the possible users’ operations. The first step in order
to run the software is to push the button “AFS computa-
tion” in the start window. The second step is to load
the data. The third step is to select whether a two-
or three-component system is considered. The singu-
lar valuesσ1, . . . , σ4 of D are displayed and serve in-
dicators for the selection of the number of independent
components. In step 4 an initial nonnegative matrix fac-
torization is computed, which supplies the initial point
for the construction of the initial triangles. Then, step
5 allows to select either the standard polygon inflation
algorithm or the inverse polygon inflation algorithm.
The AFS is computed by pressing the button “Compute
AFS”. A special feature of the software is its “live-
view mode”, see [45], which allows to move the mouse-
pointer through the AFS and to see simultaneously the
associated spectrum (or the concentration profile in case
of the concentrational AFS).

The AFS computation module allows to apply equal-
ity constraints. Either one-, two- or three pure com-
ponent spectra can be locked. Then the reduced AFS
can be computed, see Section 8.1. External spectra
(e.g. from a spectra library) can be imported; their coor-
dinates are marked within the AFS.

10.3. The Complementarity& AFS module

Section 8.1.1 and in more detailed form the refer-
ence [46] explain the (possibly drastic) reduction of
the rotational ambiguity by the complementarity theory.
The module “Complementarity & AFS” illustrates this
within the AFS.

The module is activated by pressing the button “Com-
plementarity & AFS” in the start window of theFAC-
PACK software. After data loading the third step is to
compute the AFS sets forC andA. Alternatively, it is
possible to compute only the set FIRPOLM+. The live-
view mode allows to move the mouse-pointer through
the AFS and to see simultaneously the associated spec-
tra or concentration profile. By clicking the mouse but-
ton the current pointer position is locked and serves as
a restriction for the complementarity theory. If three
points either in AFS forC or A are locked, then a unique
factorizationD = CA is defined. If some of these points
are to be modified, then the user can repeat the steps
4-6. All steps are illustrated in Figure 27.

10.4. The Generalized Borgen Plot module

The Generalized Borgen Plot-module, see Section
6.1 for more details, allows the construction of the AFS
for noisy of perturbed data by means of computational
geometry methods.

First, the module is activated by the button “General-
ized Borgen Plot” in the start window. Then the data is
loaded and the desired scaling is selected. The further
steps (AFS computation and live-view mode) are briefly
explained in Figure 28.

11. Outlook and open problems

The AFS analysis which was launched by Lawton
and Sylvestre [26] in 1971 and Borgen et al. [6, 5]
in 1985 has produced a continuous stream of results
for a deeper understanding of the rotational ambigu-
ity of MCR methods. Especially, in the last decade
a large number of papers have been published, see
e.g. [34, 2, 12, 13, 43, 14, 44, 4, 3, 46, 22, 37].

Many challenges and open questions remain for the
future. Some of them are:

1. How to integrate AFS methods to the toolboxes of
practically working chemometricians? Up to now,
AFS methods are more or less in the niche of re-
search tools. AFS methods should be popularized
as useful instruments for the investigation of the
possible outcome of MCR methods.
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2. How to compute and to visualize the AFS for sys-
tems with five or more independent chemical com-
ponents? Then the AFS is a four- or even higher-
dimensional bounded set whose graphical repre-
sentation is very difficult. The derived representa-
tion by the dimension-independent feasible bands
is a possible solution.

3. The nonnegative matrix factorization problem ap-
pears in various research fields as bio-informatics,
text mining, neural sciences and others. It remains
to be analyzed to which extent the global AFS
approach could be helpful in order to investigate
the inherent ambiguity for these factorization prob-
lems.
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[37] R. Rajkó, H. Abdollahi, S. Beyramysoltan, and N. Omidikia.
Definition and detection of data-based uniqueness in evaluating
bilinear (two-way) chemical measurements.Anal. Chim. Acta,
855:21 – 33, 2015.

[38] C. Ruckebusch and L. Blanchet. Multivariate curve resolution:
A review of advanced and tailored applications and challenges.
Anal. Chim. Acta, 765:28–36, 2013.

[39] M. Sawall, A. Börner, C. Kubis, D. Selent, R. Ludwig, and
K. Neymeyr. Model-free multivariate curve resolution com-
bined with model-based kinetics: Algorithm and applications.
J. Chemom., 26:538–548, 2012.

[40] M. Sawall, C. Fischer, D. Heller, and K. Neymeyr. Reduction
of the rotational ambiguity of curve resolution techniquesunder
partial knowledge of the factors. Complementarity and coupling
theorems.J. Chemom., 26:526–537, 2012.

[41] M. Sawall, A. Jürß, and K. Neymeyr. FAC-PACK: A software
for the computation of multi-component factorizations andthe
area of feasible solutions, Revision 1.2. FAC-PACK homepage:
http://www.math.uni-rostock.de/facpack/, 2014.

[42] M. Sawall, C. Kubis, E. Barsch, D. Selent, A. Börner, and
K. Neymeyr. Peak group analysis for the extraction of pure com-
ponent spectra.Journal of the Iranian Chemical Society, pages
1–15, 2015.

[43] M. Sawall, C. Kubis, D. Selent, A. Börner, and K. Neymeyr. A
fast polygon inflation algorithm to compute the area of feasible
solutions for three-component systems. I: Concepts and appli-
cations.J. Chemom., 27:106–116, 2013.

[44] M. Sawall and K. Neymeyr. A fast polygon inflation algorithm
to compute the area of feasible solutions for three-component
systems. II: Theoretical foundation, inverse polygon inflation,
and FAC-PACK implementation. J. Chemom., 28:633–644,
2014.

[45] M. Sawall and K. Neymeyr.How to compute the Area of Feasi-
ble Solutions, A practical study and users’ guide to FAC-PACK,
volume in Current Applications of Chemometrics, ed. by M.
Khanmohammadi, chapter 6, pages 97–134. Nova Science Pub-
lishers, New York, 2014.

[46] M. Sawall and K. Neymeyr. On the area of feasible solutions
and its reduction by the complementarity theorem.Anal. Chim.
Acta, 828:17–26, 2014.

[47] M. Sawall, N. Rahimdoust, C. Kubis, H. Schröder, D. Selent,
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Figure 26: Quick-start in seven steps for the data set 2.

Step 1: Press the buttonAFS computation in the start window to activate this GUI.

Step 2: Load the data. Here data set 2 is used.

Step 3: Select3 as the number of components.

Step 4: Compute an initial nonnegative matrix factorization (NNMF).

Step 5: ChoosePolygon inflation.

Step 6: Compute the AFS which consists of three isolated segments.

Step 7: Plot the range of spectral factors (spectral bands),e.g., for the lowermost AFS segment.
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Figure 27: Complementarity theory and AFS implementation demonstrated for the data set 2.

Step 1: Press the buttonComplementarity & AFS to activate this GUI.

Step 2: Load the data. Here data set 2 is used.

Step 3: EitherFIRPOL or the AFS sets forC andA can be computed. The computation of the AFS may be time-
consuming.

Step 4: After clicking the buttonfirst, the mouse pointer can be moved through the spectral AFS. Theassociated
spectra are plotted in the live-view mode. A certain spectrum A(1, :) can be locked by clicking in the AFS.

Step 5: Click the buttonsecond to repeat the spectrum selection for a second spectrumA(2, :). For the remaining
third component the concentration profile is shown which is uniquely determined by the complementarity theory.

Step 6: A lastthird spectrumA(3, :) can be selected by moving the mouse pointer through the spectral AFS. The
resulting predictions on the spectral factor are shown interactively.

Step 7: These three buttons and also the buttonsfirst, second, third can be clicked and then a spectrum or concen-
tration profile can be modified by moving the mouse pointer through the AFS. This allows to modify the two
triangles which represent a pure component factorization of the given spectral data matrix.
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Figure 28: The Borgen plot module demonstrated for the data set 2.

Step 1: Press the buttonGeneralized Borgen Plot to activate this GUI.

Step 2: Load the data. Here data set 2 is used.

Step 3: The scaling options are theRow Sum scaling and theFirst Singular Vector scaling.

Step 4: The AFS is computed and consists of three isolated segments.

Step 5: Activate thelive-view on mode.

Step 6: Move the mouse pointer through the AFS and watch the interactively computed solutions. Points in the AFS
can be fixed by clicking the left mouse button.

Step 7: If a point is fixed, then the reduced AFS segments for the remaining components are computed.
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