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Abstract

The area of feasible solutions (AFS) is a low-dimensionalesentation of all possible concentration factors or-spec
tral factors in nonnegative factorizations of a given sg@ctata matrix. The AFS analysis is a powerful methodology
for the exploration of the rotational ambiguity inherenthe multivariate curve resolution problem. Up to now the
AFS has been studied for two-, three- and four-componetesys

1. The AFS for two-component systems was introduced by Laved Sylvestre in 1971. For these two-

dimensional problems the AFS can be constructed anallytical

2. Forthree-componentsystems the AFS can either be coteirgeometrically (classical approach by Borgen and

Kowalski from 1985) or it can be computed by numerical algornis. Various computational techniques have
been suggested byftirent groups in the recent past.

3. For four-component systems a first numerical method $océimputation has been published recently. A new

polyhedron inflation algorithm is under development.

In this review paper we explain the underlying concepts efAlrS theory and its contribution to a deepened un-
derstanding of the multivariate curve resolution problésurvey is given on various methods for the computation
of the AFS for two-, three- and four-component systems. Dioe$ is on methods which approximate the boundary
of the AFS for three-component systems by inflating polygamd for four-component systems by inflating polyhe-
drons. Several numerical examples are discussed and Aheskdtoolbox FACPACK for these AFS-computations is
presented.

Key words: spectral recovery, factor analysis, nonnegative matdtofdzation, area of feasible solutions,
Generalized Borgen Plot, complementarity and coupling.

1. Introduction C € R*s andA € RS" in the form
D=CA (1)

Multivariate curve resolution techniques serve to ex- Thereinsis the number of the pure or at least indepen-
tract the pure component information from multivari- dent components. An error matiike R*" with entries
ate (spectroscopic) data. Typically, the data is taken by close to zero can be added on the right-hand side of (1)
spectral observation of a chemical reaction system on ain order to allow approximate factorizations in case of
time x frequency grid. Ik spectra are measured, each perturbed or noisy dat®. In general, the matriceS
atn frequencies, then the resulting matbxis ak x n and A are called abstract factors. One is interested in
matrix. The measured data result from a superposition finding a factorizatiorD = CA with chemically inter-
of the pure component spectra. Multivariate curve res- pretableC andA. Then the columns o € R* are the
olution methods can be applied in order to extract the concentration profiles along the time axis of the pure
pure component spectra and the concentration profiles.components. And the rows &f € R¥" are the associ-
The basic bilinear model underlying these methods is ated pure component spectra.
the Lambert-Beer law. In matrix notation, the Lambert-  The aim of a multivariate curve resolution (MCR)
Beer law is a relation betwedh and the matrix factors ~ method is to determine the numbgtogether with the

November 13, 2015



pure component factoiS andA. Sometimes no addi- 1.2. Model data sets and experimental spectral data
tional information on the pure components is available. |5 this work we use four dierent data sets (two

Then the MCR method only us@sfor the pure compo-  model data sets and two IR-spectroscopic data sets) for
nent decomposition within a model-free approach. The || demonstrations. The data sets are as follows:
main hurdle for any MCR technique is the so-called ro-

tational ambiguity of the solution. See, e.g., [27, 28, 2] Data set 1 (FT-IR experimental data on a Rhodium
for an introduction to the ambiguity problem. By apply- catalyst formation) This data set describes the two-
ing additional hard- or soft-constraints to the pure com- component subsystem ¢s 2) of the formation of a
ponent factorization problem, one can often determine Rhodium catalyst from a certain precursor; for the un-
a single solution by means of a regularized optimiza- derlying chemical problem see [24]. The data set in-
tion problem. In case of proper constraints this solu- cludes a number of k 977spectra, each with & 481

tion can be the chemically correct one. A large num- wavenumbers. Within this spectral window the dom-
ber of successful MCR methods has been developed.inant absorbing components are a catalyst precursor
Some examples are methods as MCR-ALS [19], RFA and the catalyst. The usage of a first order reaction
[29], SIMPLISMA [52], BTEM [7] and PCD [32]. Al- scheme allows to find unique factors C and A. These
ternatively, one can give up the aim to determine only factors are shown in Figure 1. For the associated areas
a single solution by solving a regularized optimization of feasible solutions see Figure 9.

problem. Instead, one can follow the global approach of
determining the full range of all nonnegative factoriza-
tionsD = CA with nonnegative ranlsmatricesC and

A. Such continua of possible nonnegative matrix fac-
tors can graphically be presented either by drawing the

bands of possible concentration profiles together with is considered with the rate constants k 0.3 and
the bands of possible spectra [49] or by plqtting t.hese k» = 0.1. The initial concentrations arex¢0) = 1,
sets of fea§|ble factors by a certain Igw-dlmen.smnal cv(0) = ¢z(0) = 0 and the time interval is & [0, 10].
representation, the so-callédea of Feasible Solutions

,(AFS)' The aim of this paper is to provide a systematic cretization for a number of k 201time steps results in
introduction to the AFS concept together with many ref- the concentration matrix factor @ R2°>3. The matrix

erences to the chemometric literature. Important prop- ¢, .tor A is derived from the three Gaussian functions
erties of the AFS are presented together with computa-

Data set 2 (A three-component model problemJhe
consecutive reaction

x5 vk 7

The solution of the associated rate equations and its dis-

tional techniques for its numerical approximation. (x— 30y (x - 50y
ax(x) = eXp(—m), av(x) = EXP(—m),
1.1. Organization of the paper (x — 70%
az(x) = exp(—m)

In the remaining part of this section, we introduce the

four dat.a sgts which are used within t.his. work. Sectiqn for x € [0, 100]and equidistant discretization along the
2 explains in a compact form the principles of multi- frequency axis. A number ofsn401spectral channels
variate curve resolution methods and their relation to is used. The spectra depend on the real parameter w

the singular value decomposition of the data maldix  \yhich controls the signal width. The rows of the data
The techniques to compute the fact@randA are ex-  nayix D as well as the original factors C and A for

plained. In Section 3 the AFS and some of its important \,, _ q gre plotted in Figure 2. The associated areas
properties are described in detail. The rules for a classi- ¢ faasible solutions, namely the AFS for the concentra-
fication of feasible or non-feasible points are discussed iy, factors C and the AFS for the spectral factors A
in Section 5. In Section 6 methods for the computation .o presented in the first column of Figures 20 and 21.

of the AFS are explained with a focus on the polygon gee aqgitionally the Figure 6 (with the data representa-
inflation method. Methods for the reduction of the AFS tion in the leftmost plot) and Figure 15 for a successive

by using additi.onal im_‘ormation or spft constraints are approximation of the AFS by means of the polygon in-

demonstrated in Section 8. In Section 9 we study dy- fation technique.

namic changes of the shape of the AFS under changes

in the data (e.g. variation of a shift parameter). Finally Dataset 3 (Operando FT-IR specroscopic data from the

in Section 10 the software packagACPACKfor the Rhodium-catalyzed hydroformylation processhhis

computation of the AFS is pointed out. data set is described in detail in [23]. The data consists
2



of k = 850spectra, each with = 642wavenumbers.  2.1. The singular value decomposition

The three major absorbing components form areaction-  The singular value decomposition (SVD), see [15],
subsystem and are an olefin component, a hydrido- js 4 very powerful tool of numerical linear algebra to

complex and an aqyl-co_mplex. All these .chemlCa] COM- compute the left and right orthogonal bases for the ex-
ponents are explained in [23]. The series of mixture pansion of the pure component fact@se RS and

spectra a_nd thg factors C .and. A are shown in Figurg A e R™": see for example [26, 28, 27, 38]. The SVD of
3. The Michaelis-Menten kinetic has been used as a ki- p reads

netic hard model in order to find unique concentration

profiles. The complete set of all nonnegative factoriza- D=UxV'.

tions of the data matrix D is represented by the AFS for

the concentration factor and by the AFS for the spec- ThereinU € Rk andV € R™" are orthogonal matrices
tral factor. These AFS sets are plotted together with the whose columns are the left and right singular vectors.
associated bands of feasible solutions in Figure 7. The diagonal matrix contains on its diagonal the sin-
gular valuesr in decreasing order. The singular values
are real and nonnegative. For aitomponent system
the first s singular vectors and the associated singular
values contain all information on the system. For data
not including perturbations only the firsssingular val-
ues are nonzero if the chemical system contaiimgle-
with the kinetic constants;k= 1, k,» = 0.25 and pendent chemical components. For data including noise
ks = 0.1. The initial concentrations areyg(0) = 1, some additional singular values are nonzero. In such
cx(0) = cv(0) = Cz(0) = 0 and the time interval is ~ Cases the SVD allows to compute optimal (with respect

t € [0,10]. The time-continuous concentration func- (© léast-squares) ramkapproximations oD. Ifin the

Data set 4 (A four-component model problem)rhe
concentration factor C of this model problem results
from solving the rate equations for the reaction scheme

WS xe vl

tions are discretized in k 26time steps to form C. case of noisy data the noise-to-signal ratio is not too
The factor A derives from the Gaussian functions ~ large, then the number of independent chemical com-
ponentss can often be determined from the SVD. Then
aw(x) = ex _(x — 40y ax(X) = exp|— (x— 20y the relevant and meaningful singular values are clearly
W P o r P ’ larger compared to the remaining nonzero singular val-
(x — 80Y (x — 6OR ues which evince the influence of noise, cf. [27, 32].
ay(x) = eXP(—T), az(x) = eXP(—T),

2.2. Reconstruction of the pure component factors
depending on the parameteron the frequency interval The firstssingular vectors, namely the firscolumns

x € [0,100] Numerical evaluation of these functions f y and the firsts columns ofV. are used as bases

in n = 31 equidistant channels results in the matrix A. 4 expand the desired pure component fac®endA.
Thus the matrix A depends on The mixture Spectra,  £or ease of notation we denote these submatrices of the
namely the rows of B= CA, are plotted together with  g\/p_factors again byJ andV. ThenU € R*S and

the original factors C and A for- = 750in Figure 4. V € R™S, The matrice<C andA are formed according
The associated areas of feasible solutions (concentra-

tional and spectral AFS) are shown in Figure 19.
C=UIT, A=TV'. (2)
2. Multivariate curveresolution methods . . . . .
ThereinT € R¥Sis a regular matrix which remains to
Multivariate curve resolution methods are key-tools be determined. MCR methods typically provide a sin-
in order to extract the pure component information from gle pure component factorizati@h= CAand thus they
the chemical mixture data iD. The problemis to com-  explicitly or implicitly determine the matriX. FromC
pute andA the matrixT of expansion coicients is accessi-
ble from Equation (2). For SVD-based MCR methods
see [26, 28, 27, 32] and the references therein.
2. the pure component factogsandA. The basis expansion approach (2) drastically reduces
the number of free variables of the pure component fac-
Any available information on the factors can and should torization problem. The crucial point is that the number
be integrated into the MCR computations. of matrix elements o€ andA is (k + n)s whereas the
3
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Figure 1: Data set 1: The series of mixture spectra is shof(olely every tenth spectrum of the data is plotted). Allioate axes are scaled to a
maximum of 1 and the channel windows are set to.[1, 100]. By enclosing a kinetic hard-model for the reactionesoh X — Y) into the pure
component decomposition unigue matrix factors (aside fiteermultiplicative ambiguity and the permutation ambigutiave been determined.
These are shown in the centered and right subplot.
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Figure 2: Data set 2 fav = 0: The leftmost plot shows the series of the mixture spet&athe rows of the matri®. Only every third spectrum
of the data is plotted. The remaining two plots show the cotmaéon profiles and the spectra of the three pure compenent
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Figure 3: Data set 3 on catalyst formation within the hydnofglation process: The leftmost subplot shows the spedat, i.e. the rows ob.
Only every tenth spectrum of the data is actually plottede flédmaining two subplots show the concentration profilestaedpectra of the pure
components. For a successful pure component decomposttitiese spectral data a Michaelis-Menten kinetic hardehbds been integrated
into the pure component factorization.
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Figure 4: Data set 4 far = 750: The spectral data (left) for the four-component modebjem together with the concentration profiles of the
pure components (center) and the pure component spectnd) (ri



representation by Equation (2) reduces the degrees ofwhich only fulfill the nonnegativity constraint are called

freedom to thes® matrix elements of . Hence the rep-
resentation (2) is a basic ingredient for the construction
of computationally &ective MCR methods.

2.3. Application of hard- and soft constraints

Hard- and soft constraints have a crucial role in the
construction of MCR methods [16, 11, 51, 32, 42]. A
very restrictive and often successful hard constraint is
a kinetic model of the underlying chemical reaction
system. Only those concentration fact@sare ac-
ceptable which are consistent with the kinetic model
[8, 20, 27, 39]. Typically, the rate constants are im-
plicitly computed as a by-product of the model fitting
process.

If no kinetic model is available fo€, then soft con-
straints can be used in order to extract (from the set of all
nonnegative factorizations) solutions with special prop-
erties, see e.g. [16, 11, 51, 32, 42]. Typical examples

of such soft constraints are those on the smoothness of°

the concentration profiles i@ or A, constraints on a
small or large integral of the spectra M(in order to
favor solution with few and sharp peaks or alternatively
those with a large number of wide peaks), criteria on

the closure of the concentration data and so on. Such
soft constraints are usually added to the reconstruction

functional||D — CA“E in terms of a cost function

p
o(T) = )" %lla(C. Al
i=1

According to the representations & = C(T) and
A = A(T) as functions ofT, the cost functiorg(T) in-
cludes a number gf constraint functiong;. They; > 0

are the associated weight factors which give the user

the possibility to determine a certain balance between
the diferent constraints. A small reconstruction error
ID - CA“E together with the nonnegativity of the fac-
torsC andA is of highest importance; sometimes small
negative entries i€ and A can be acceptable. Other
constraint functions are of lower importance, e.g. on

the smoothness. For these constraint functions smaller

weight factorsy; are used.

3. Theareaof feasible solutions

Even with proper constraint functions and proper
weight factors, MCR methods cannot always find the
chemically correct or “true” solution. Thus one might
follow the alternative idea to determine the setatif
nonnegative factorization® = CA. Such solutions

5

feasibleor abstractfactors. The global approach of
computing all feasible factors provides an elegant way
in order to survey the complete rotational ambiguity of
the pure component factorization problem. However,
the sets of feasible matric€& e RS or A € R¥" are
difficult to handle. The key idea to make these sets of
feasible factors accessible is their low-dimensional rep-
resentation in terms of the so-calladka of Feasible So-
lutions(AFS). The AFS refers to the representatioiCof
andA as functions ofl by Equation (2). Only a single
row of T is suficient to represent a feasible factor, see
Section 3.2 for the details. In the following, our analy-
sis aims at determining the AFS for the spectral factor
A starting from a spectral data matrix This analy-

sis can immediately be used to determine the AFS for
the concentrational AFS containing the feasible factors
C. Therefore we apply the procedure to the transposed
data matrixD" since inD = CAthe factors change their
laces by the transpositidd’ = ATCT.

The aim of this section is to introduce the AFS and to
discuss some of its important properties. We consider
especially those properties which are decisive for an ef-
fective numerical computation of the AFS.

3.1. Development of the AFS concept and discussion of
methods for its numerical computation

In this section a short overview is given on the devel-
opment of the AFS concepts. These developments are
closely related with the growth offfective numerical
methods for its computation.

The AFS for two-component systems was first ana-
lyzed by Lawton and Sylvestre in 1971, see [26]. The
Lawton-Sylvestre plot is a 2D plot of the set of the two
expansion coicients (with respect to the basis of sin-
gular vectors) which result in nonnegative matrix factors
C andA. The Lawton-Sylvestre plot for a two compo-
nent system consists of two cones whose boundaries can
be computed analytically, see [50, 1, 35] and Section 4.

For three-component systems a direct analogue of
the Lawton-Sylvestre plot would be a three-dimensional
plot of feasible expansion cfigients. Such three-
dimensional objects are somewhat more complicated to
draw, to handle and to understand. However, there is a
tricky dimension reduction (by a certain scaling) which
allows to represent these AFS sets for three-component
systems only by two expansion dheients (and thus by
plots in 2D). This was suggested by Borgen and Kowal-
ski, who published in 1985 [6] a geometric construc-
tion of these 2D AFS plots for three-component sys-
tems. These plots are called Borgen plots. The men-
tioned dimension reduction can be explained by a typ-



ical Lawton-Sylvestre plot which is shown in Figure 5. the problem to find all feasible factofsis equal to the
For a two-component system the Lawton-Sylvestre plot problem to determine the set of all first rows of the feasi-
consists of two cones. If the first expansion iméent ble factorsA. Hence the set of feasible pure component
t; is fixed to 1, then the intersection of the dash-dotted spectra (also called feasible bands) forsscomponent
line att; = 1 with the two cones are two separated inter- system reads
vals. These two intervals are a 1D analogue of the Bor-
gen plots. For a three-componentsystem the 2D Borgen ~ # = {ac R": existC,A> 0 withA(L,:) = a
plot is the two-dimensional intersection of a plang;at andD = CA. 3)
with a 3D generalization of a Lawton-Sylvestre plot.
The geometric constructiorf the Borgen plots is
deepened by further concepts in [36] and [22]. In addi-
tion to the geometric constructions of the Borgen plots,
various techniques for a numerical approximation of the
AFS for (s = 3)-component systems have been devised.
These are the grid search method (for two-component
systems in [50, 1]), the triangle enclosure method [12] 3.3. Reduction of the degrees of freedom
and the polygon inflation method [43, 44]. One bene-
fit of the numerical methods compared to the geometric
methods is that the numerical methods are able to com-
pute the AFS in the presence of noise. Recently, the
classical geometric construction has been generalized
in away which allows geometric AFS constructions for for the derivation of (3) only the first row o = TV is
noisy data [22]. . required in order to form the s& of feasible spectra.
For systems with more than three components the The first row ofA equals the first row oT V'. Hence
problem of AFS computations is more complex and re- only thes matrix elements of the first row df are deci-

quires large computatlpn times. For 4-component SYS™ sjve. This reduces the degrees of freedom f&dmown
tems a generalized triangle enclosure method which

uses a slicing of the 3D AFS has already been published
[14]. The basic grid search algorithm and the polygon
inflation method can also be extended to such higher di-
mensional problems.

AFS computations can be used to determine the so-
calledfeasible bandsTo this end, one can draw the con-
tinua of concentration profiles or the continua of possi-
ble spectra which are represented by the AFS. The re-
sulting feasible bands visualize the rotational ambiguity
The MCR-Bands toolbox [49, 21] pursues the same ob-
jective, namely to construct the feasible bounds. How-
ever, the MCR-Bands approach does not require a previ- T@,1)=1 foralli=1,...,s (4)
ously constructed AFS. Instead, the band boundaries are
constructed by a minimization respectively maximiza- This can be called the first-singular-vector scaling (FSV-

For the computation ot we prefer the SVD-based ap-
proach (2). A further reduction of the degrees of free-
dom is possible. This is explained next.

Equation (2) is a representation of thex n matrix
A by the matrixT with only s> matrix elements. These
& matrix elements are the expansion fiméents with
respect to the basis of right singular vectors. As shown

These remainings degrees of freedom for as-
component reaction system can further be reduced to
s— 1 by a certain scaling of the rows &f In [6, 36]
the||- |1 vector norm (i.e. the sum of the absolute values
of the components) is used for the normalization of the
spectra. Alternatively, the maximum noim ||max can
be used. Here we follow the approach in [12, 14, 43, 44]
and use a scaling which sets the first columit &qual
to ones, i.e.

tion of a properly constructed target function. scaling) since it uses for the first right singular vector
. the fixed expansion céigcient 1. A precise justification
3.2. The set of feasible pure component spectra for this choice is based on the Perron-Frobenius theory

Our focus is on the construction of the set of all pos- [30] on spectral properties of nonnegative matrices; for
sible pure component spectra. The set of feasible con-the details see Theorem 2.2 in [44]. Figure 5 shows
centration profiles can be computed similarly; therefore a typical Lawton-Sylvestre plot for a two-component
the computational procedure is to be applie®{o The model problem. The dash-dotted and the dotted lines
permutation of the columns @ and the same permuta- define two intersections with the Lawton-Sylvestre plot.
tion applied to the rows ofA does not provide any new  These intersections are the 1D AFS representations with
information. This fact is known as the (trivial) permu- respect to the FSV-scaling and with respect to|thfy
tation ambiguity. A consequence of this property is that normalization.

6
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Figure 5: The Lawton-Sylvestre plot (gray triangle-shapezhs) for a
two-component model problem. The dash-dotted and thediities
define two intersections with the Lawton-Sylvestre plot.e3é in-
tersections are the 1D AFS representations with respetteté-$V-
scaling and with respect to the- |l1 normalization. The points
W(i,:) = D@,:)V(G,1:2),i =1,..., n, are drawn by small circles.
These points represent the rowshfMathematically the coordinates
of these points are the expansion f@éents of the rows oD with
respect to the two dominant right singular vectors. For aeru®-
tailed explanation of the AFS and for the meaningdb, c andd see
Section 4.

3.4. Definition of the AFS

With respect to the FSV-scaling (4) the matfixin
(2) has the form

1 x Xs-1

1

ThereinS is an 6—1)x (s— 1) matrix. Only thes—1 el-
ements of the row vectot = (X, ..., Xs-1) are decisive

points, are also shown in Figure 6. Figure 7 displays the
AFS sets of the factoiS andA for the data set 3. Addi-
tionally, this figure shows the associated bands of feasi-
ble pure component spectra, i.e. thegetThe feasible
bands of concentration profiles are also plotted; this set
results from computing the sét for the transposed data
matrix DT .

3.5. Properties of the AFS

The AFS has several interesting properties. Many of
these properties derive from the Perron-Frobenius spec-
tral theory of nonnegative matrices [30]. This theory
provides (see Section 3.3) the justification for the scal-
ing condition (4). An important property of the AFS is
its boundedness, see Section 3.5.2. This property makes
possible a numerical approximation of the boundary of
the AFS. The AFS sets may have several shapes. For
three-component systems the most important cases are
AFS sets which consist of three separated segments and
AFS sets which have the form of a topologically con-
nected set with a single hole. Such a hole always con-
tains the origin (null vector), see, e.g., Figure 24 and
Section 3.5.3. Further explanations on the geometric
construction of the AFS and its relationship to the the-
ory of simplices and convex combinations are contained
in [36, 22].

3.5.1. Definition of FIRPOL and INNPOL

For the further analysis the two polygons FIRPOL
and INNPOL are to be introduced. First, the set

M ={xeR¥: (1, XV >0} 7)

for the representation of the set of all feasible solutions. i c51led FIRPOL [6, 36, 22]. All points in M* result

With these definitions the sgt c R" by Equation (3)

in nonnegative linear combinations of the right singular

can be represented by the associated set of expansioQeciors ie. (1X)VT. Thus FIRPOL is a superset of the

vectorsx € RS, Such a set of{ - 1)-dimensional
vectors for a chemical reaction system wsthpecies is
much easier to handle compared to the sul#sef the

higher dimensional spad®". The set

M ={xeRS1: existsS so thafT in (5) fulfills )
rank(T) = sandC, A > 0}

is called the AFS for the factdk or the spectral AFS.

Figure 6 shows a typical AFS for the three-
componentunderlying the data set 2. This AFS consists

set of feasible spectra. The membership of a cexéin
M* does not guarantee that the nonnegative spectrum
(1, X)VT is part of a feasible pure component decompo-
sition D = CA. The crucial point is that nonnegativity
of (1, X)VT does not necessarily imply the nonnegativity
of an associated concentration profile.

Further, the seM* is to be introduced

M = {xe RS existsS so thatT in (5) fulfills

rank(T) = sandC > 0, A(2:s,:) > 0}. ®

of three isolated subsets. In [43, 44] these subsets are

called segments of an AFS. Further, two series of points The two setsM* and M* are super-sets of the ARSI.
are marked within two segments of the AFS. The asso- The definition of M* includes only the nonnegativity-
ciated series of spectra, which are represented by theseconstraintA(1,:) > 0. The definition ofA* includes
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Figure 6: Data set 2 Left: The spectral AFS for this threeqgonent system consists of three isolated subsets. In twegétsubsets sequences
of points are marked. The points marked>bjave a color shading from red to black. The points marked bhgve a color shading from green to
black. The associated series of spectra are shown in thesaoreshading in the remaining two subplots.
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Figure 7: Data set 3: The areas of feasible solutions, nathehAFS for the concentration fact@ and the AFS for the spectral factéy, are
plotted (left) together with the associated bands of féasiblutions (right).

the remaining constraints on nonnegativity and the rank ready a trivial case as completely isolated subsystems
condition. ThusM = M* n M*. Finally, the vectors can be analyzed separately.

. D(i,:)V(:,2: 9 ol
)= —"———cRfori=1,...,

w(i,:) DGV D) € ori n (9)

are introduced. In [6, 36, 22] the convex hull of these 3.5.3. The origin is never included in the AFS

pointsw(i, ), i = 1,....n,is called INNPOL [6, 36, 22]. As already mentioned in Section 3.5 the origin (or

null vector) is never contained in the AFS. The proof

3.5.2. Boundedness of the AFS for this fact is given in Theorem 2.2 in [44]. It is based

Threenumericalapproximation methods for the com-  on the Perron-Frobenius theory and uses the irreducibil-
putation of the AFS for two- and three-component sys- ity of the matrixD"D. For the cases that the AFS con-
tem have been described in literature. These are the gridsists of several isolated subsets, called segments, these
search algorithm [50], the triangle enclosure method subsets do not contain any holes. In mathematics such
[12] and the polygon inflation method [43]. In orderto sets are calledimply-connected The approach of in-
guarantee that these algorithms terminate within finite flating polygons can be used in order to approximate
times, the boundedness of the AFS is required. Theo- such AFS segments. The remaining case that the AFS
rem 2.4 in [44] proves thad" is a bounded set if and  consists of only a single set is more complicated. Such
only if DD is an irreducible matrix. Thus the AFS a single-segment AFS always contains a hole and this
M is also a bounded set singd c M*. See [30] or hole encloses the origin. The inverse polygon inflation
[44] for the definition of an irreducible quadratic ma- algorithm is a modification of the polygon inflation al-
trix. Practically, irreducibility is always guaranteed if gorithm which allows a fast and accurate numerical ap-
the whole system does not allow a complete separation proximation of such one-segment AFS sets with a hole.
into two independent subsystems. The latter case is al-See Section 4 in [44] for the details.
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3.5.4. Geometric AFS construction 4. The AFSfor two-component systems
The geometric construction of the AFS for three-
component systems was introduced by Borgen and
Kowalskiin 19856, 5], see also [36, 22]. The resulting merical evaluation of the analytic formula results in the

geometric constructions are called Borgen plots. 1D AFS plots. Next these formula are compiled. The
The construction principles of Borgen plots are not starting point for the case = 2 is the matrixT by (5)

The AFS for systems with a number ®& 2 compo-
nents can explicitly be described analytically. The nu-

limited to s = 3 but can be applied to geners which together with its inverse read
component systems. In the general case a poiist

feasible if and only if there exist furthex— 1 points T2 (1 X ) — 1 (Sn - )
yj, i = 1...,s-1, so that the simplex spanned up “\1 Su)’ TS —-x\-1 1)

and the vectory; is enclosed inM* and includes all o .
pointsw(i, :) given by Equation (9). These points are 1he nonnegativity for the factos andAresults in fea-

the vertices of INNPOL. Consequently the classical the- SiPle intervals foxxandSyy, see also Section 3.6 in [44]
ory by Borgen and Kowalski works with convex equa- and [1]. With
tions. A weakening frontonvex combination®wards

Vi Vi
affine combinationgllows to generalize the geometric  a= _iwitml(92)>ov+’ = —iwitm/%ékov—f,
AFS construction [22]. The resulting generalized Bor- U O’_ 12 U (;_ 2" (10)
gen plots can be constructed even for noisy or perturbed b = min 2, € = max 272

i Uioy i Upo

spectral data.

the AFS for the two-component system has the form of
two separated intervals

36. S t structure of the AFS
egment structure of the M =[a,b] U[c,d]. (11)

For two-component systems and with respect to the This result can be interpreted in a way that both
FSV-scaling, the AFS (6) always consists of two sepa-
rated 1D intervals. The intervals may degenerate to sin-
gle points. One of these intervals is completely negative and
and the other one is completely positive, see Figure 8 Sy € [a,b]
and in Figure 5 the cross-sectiontat 1.

For three-component systems the AFS can consist of "€SUlt in nonnegative factors.
a single segment with a hole around the origin or of a A certain choice
numbgr of 3n segments fom = 1,2,.... A formal . (X S11) € [a b] X [c, d]
proof is planned for a forthcoming paper. For experi-
mental data sets only the cases of a one-segment AFScompletely determines a nonnegative factorizafios
and of 3-segment AFS sets have been observed. Onlyc A The second choiceSy, X) € [a, b] x [c, d] does not
these cases appear to be practically relevant. However,provide any new information. Instead, the second solu-
nonnegative matricel can be constructed whose asso- tion is equal to the first solution after a row permutation
ciated AFS sets consist of 6, 9, ... separated segments. jn A and a column permutation i@. This fact justifies

For sscomponent systems with > 4 little informa- that the AFS for two-component systems is often repre-
tion exists on the possible numbers of segments. sented by the rectangulax, p] x [c, d], see [50, 1, 44].

By changing the datB continuously one can explore
the resulting changes of the associated AFS sets. How-4-1. Numerical AFS computation for the data set 1
ever, such parameter dependent data sets could hardly For noisy or perturbed spectral data it can be ad-
be found as experimental data sets. The data sets 2 and 4antageous to accept small negative entries in the pure
in Section 1.2 include the parametarando. For each component factors. With a positive control parameter
of these data sets a variation of these parameters allowss on the tolerated size of negative entries®and A
to start from AFS sets with either 3 or 4 separated seg- (see Section 5.1) one can generalize the AFS-bounds as
ments and to end in one-segment AFS sets each with adiscussed above. Next numerical results generated by
hole. See Figure 24 for the AFS-dynamics in case of the the FACPACKSsoftware [45] are presented for the two-
data set 2 and Figure 25 for the data set 4. component experimental FT-IR spectroscopic data set
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AFS forC for noise-free (model) data by considering a certain ge-
T ometric construction. Alternatively, and with a focus on
experimental spectral data, there is a numerical feasibil-
or* I ity analysis which is based on the numerical solution of
an optimization problem. Unfortunately, the numerical
feasibility test can yield false results, if the numerical

. . . . . . . .
0 0.5 1 15 2 25 3 3.5

X1 optimization procedure (e.g. due to convergence prob-
AFS forA lems or poor initial estimates) is not successful.

This section explains the feasibility checks of the

polygon inflation algorithm by soft constraints (in the
o - Subsection 5.1), of the triangle enclosure technique as
well as the grid search method (see Subsection 5.2) and
02 0 0z 02 05 o8 of the geometric-constructive Borgen plot approach (see

X1 Section 5.3).

Figure 8: Data set 1: The AF3 for this two-component system

for the concentrational factor (upper plot) and for the sadédactor 5.1. Soft-constraint based feaSIblllty check

(lower plot). The control parameteron acceptable negative entries Soft constraints can be added to the feasibility check
readse = 0.035. on nonnegativity. The aim of this approach is to com-
Rectangle-AFS fo€ Rectangle-AFS foA pute th.e matri?< 'el'eme.nts of the submatEqu (5)
018 0.72 by solving a minimization problem for a certain target
0.7 function which guarantees th&A is a good approxi-
-0.19 068 mation of the initial matrixD. Simultaneously various
0.66 constraints orC and A are to be satisfied. This fea-
w02 0.64 sibility test which also underlies the polygon inflation
o 0.62 algorithm [44] is explained in the following.
' 1 2 3 —0.2 -015 -01 -0.05 First we introduce a small control parametee 0

. . . . so that-¢ is a lower bound for the acceptable negative
Figure 9: Data set 1: Two-dimensional rectangle repretientaf the | € andA (i lati lated h
1D-AFS in which the two intervals of the one-dimensional AFS elements ofC andA (in a relative sense related to the

are the edges of a rectangular. A certain point (with the toard- maximal value of a concentration profile or spectrum).
natesx andS11) completely determines eith€ andA. The control Mathematically, these conditions read
parameter is again = 0.035.

min; C(j, i min; A, |

ma; C(j.1) ma; A, ])

1. Figure 8 shows the one-dimensional AFS sets with
& = 0.035 for the concentrational fact@ and for the foralli =1,...,s. The acceptance of small negati\/e
spectral factoA. Additionally, Figure 9 shows for the  entries can often significantly stabilize the computation
same problem the two-dimensional rectangle represen-in case of noisy or perturbed (e.g. by a background sub-
tation of the same AFS. The two intervals of the one- traction) data.

dimensional AFS form the edges of a rectangular. The  The feasibility test for a point is done in two steps.
advantage of such a rectangle-representation is that aFirst, a rapid and computationally very cheap test is

certain point (with the two coordinatesandS;;) com- used in order to check whethris contained in the set
pletely determine€ or A. Moreover, a known facto® FIRPOL M*, see Equation (7). Ik is not in FIRPOL,
allows to computeé\ from D = CAand vice versa. thenx cannot be an element of the AR3. Once again,

we accept small negative entries. To this end we use an
approximate FIRPOL test in order to check whether or

5. Feasibility of pointsin the AFS not

For the case of two-component systems the question ) (1, VT

of the feasibility of a certain point is solved by the anal- fo(X) = m'”(m +eé, 0) (12)

ysis in Section 4 (at least for noise-free data). In the fol- ’ ~

lowing we consider systems with three or more compo- satisfies thatfo(x) > 0 (in a component-wise sense).

nents. For these systems the feasibility question arisesTherein||-||. is the maximum vector norm, which is the

in two major ways. There is first the feasibility analysis largest absolute value of all components of its argument.
10
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Figure 11: Data set 1: The functidifo(X)I| + f(x, S) with scalar ar-
Figure 10: Data set 2: The functidirio(X)|| + mins f(x, S) is plotted. gumentsx andS is plotted. The control parameteiis set to 0035 in
The valley bottom is the AFS. order to successfully deal with small negative entries tvhie caused

by a baseline correction. Sindéx, S) = (S, x) the function graph

of ||foll + f is symmetric to the axig = S; the symmetric part of the

If this test is passed successfully, then a second muchfunction is not plotted. The area witffo(x)l| + mins f(x. S) < &t is
bounded by the interval endpoirgsb, ¢c andd as given in Equation

more expensive test follows. Therefore the soft con- (10).
straint function

S

fmazz

2 The valley bottom is equal to the right subplot of Fig-

. C(,1) 0
min te ure 9. The endpoints of the intervals are approximately

ICC Dl

< =t . ) r (13) equal toa andb in (10) and are located on the-axis.
. Z min(n':(xi(l,.).')l Te 0) Flls= TTHR Further the endpointsandd are located on th8-axis.
'= s (o] F
=2 5.2. The ssg-function based feasibility check
is considered witd = T(x, S) by (5). FurtherC, Aare The ssgfunction (ssq for sum-of-squares) approach
computed according to (2). If evaluates the reconstruction functional
min  f(x.S) < &, (14) ssqx, S) = [ID — max(C, 0) - max(A, O)II¢.
SeR(s-1)x(s-1)

L Therein maxC, 0) and max4, 0) are the matrices whose
then x has passed the feasibility test successfully. negative entries are zeroed. The matri€eand A de-
Therein gy |1?) a small positive control parameter, pend onT = T(x,S) according to (5). The triangle
€.9.e01 = 107 . o _ enclosure algorithm [12] and the grid search method

To summarize, the approximate fe'aS|b|I|ty test vy|th [50, 1] are based on the evaluation of #sgfunction.
the control parameteesandeo results in the (approxi- - computationally, thesgevaluation is relatively expen-

mate) AFS sive as the computation a@¥(k - n) squares is required
B 1. ' whereas the evaluation of (13) needs odlgk + n)
M= {xe R xfulf|II§ fo(>) = 0 (15) squares. For large numbeksandor n this results in
and ng'nf(x, S) < &t} significantly diferent computation times; see for exam-

ple Tables 1 and 2 in [44] for a direct comparison of
Figure 10 shows the functidfo(X)I| + mins f(x, S) the soft constrained approach (13) compared ts#ue
on the grid ¢, x2) € [-1.2, 1.2] x [-0.4, 1.4] for the based AFS computation.
data set 2. For these computations the control param-  Finally, the AFS can be written as
eters ares = 1072 ande = 1076, All points with
[Ifo(X)Il + ming f(x, S) < 10°® belong to the AFS; these M= {x e RS!: minssqx,S) < 8t0|}
are the points at the valley bottom in Figure 10. s
For the data set 1, a two-component system, Figure for a fixed small parametet, > 0.
11 displays the functiofifo(X)|l + f(x,S) on the grid
(x,S) € [-0.29, —0.01] x [0.55, 0.8] for &£ = 0.035. 5.3. Geometric constructive feasibility test
For this two-component system no minimization is re-  The fundamentals of the geometric AFS construction
quired; the argumentS andx of f are real numbers.  are shortly outlined in Section 3.5.4. Principally, these
11



constructions are not limited t& & 3)-component sys-
tems. However, the current literature does not contain
any investigations fos > 4.

The geometric feasibility test of a certain pokte
M* for the cases = 3 amounts to the following steps:
First two tangents of INNPOL are constructed which
run through the given point and which (tightly) en-
close INNPOL. Next the intersection of the first tangent
with the boundary oM™ (the line segment between
and this point must touch at least one poin} is de-
fined asP;. The same is done for the second tangent.
This results in the poinP,. Thenx is a feasible point
of the AFS if and only if the triangle with the vertices
X, P1 and P, includes the polygon INNPOL, see Sec-
tion 3.5.1. An extension of this geometric construction
which is applicable to noisy or perturbed data is devel-
oped in [22].

6. AFScomputationsfor three-component systems

The definition of the AFS and the discussion of some
of its numerous properties is now followed by a numer-
ical algorithm for its computation. The focus is on the
polygon inflation algorithm [43, 44] and its implemen-
tation in theFACPACKsoftware. We also briefly dis-
cuss the geometric AFS construction, the triangle enclo-
sure algorithm, the grid search approach and the MCR-
Bands method for the computation of upper and lower
band boundaries. We do not claim to present a com-
plete discussion of all methods for AFS computations.
For example, we do not consider the particle swarm al-
gorithm for the detection of feasible regions [48].

6.1. Borgen plots and computational geometry

The geometric construction of Borgen plots has al-
ready been introduced in Section 3.5.4. This construc-
tion is purely geometric [6, 36]. The practical imple-
mentation of the construction on a computer requires
methods of computational geometry. Hence a floating-
point arithmetic is used so that certain approximation

6.2. Grid search

The grid search approach [50, 1] is a brute-force
method to compute the AFS. It can be used for any
s > 2. For two-component systems the functix, S)
is plotted on a proper grid iR?, see Section 4.1 or Fig-
ure 8. For the cases> 3 one has to evaluatdo(X)|| +
mins f(x, S) by Equation (13) or migssqx, S) on a
suitable grid. Figures 11 and 10 show the function
graphs for the data set 2 and for the data set 1. The grid
search method can simply be implemented on a com-
puter. However, the computational costs increase expo-
nentially in the number of componerdsMoreover, the
grid search approach is a non-adaptive method. Any in-
crease of the resolution by a faciofe.g., in each coor-
dinate direction the number of grid points is multiplied
by «) results in an increase of the computational costs
by the factor o&s2.

6.3. Triangle enclosure

The triangle enclosure method was introduced in
2011 for three-component systems in [12]. The idea
is to approximate the boundary of the two-dimensional
AFS by series of equilateral triangles which cover the
boundary. Therefore an initial triangle is computed for
which at least one vertex fulfills that x € M and at
least one vertey is not located inM. The third point
z can be a feasible or a non-feasible point. Then the
generation of further triangles starts. The idea is to mir-
ror the most recently generated triangle along one of its
edges which intersects the boundary\df This is done
in a way that the triangle chain grows until the initial
triangle is reached. Then the boundary of a segment of
the AFS has been successfully approximated.

Figure 12 illustrates the idea of the triangle enclosure
method. The shape of an Erlenmeyer flask is approxi-
mated by a chain of equilateral triangles. This is done
for different edge lengths The precision of the bound-
ary approximation is equal to the edge lengtlialving
the edge length in order to increase the approximation
quality doubles the number of required triangles.

For each segment (or isolated subset) of the AFS a
separate chain of triangles is to be computed, see Sec-
tion 3.5 for the possible cases. However, if the AFS con-

problems can occur. Perturbed spectral data, data whichsists of only a single topologically connected set, then

result from an SVD low rank approximation or spectral

data containing small negative entries (e.g. from back-
ground subtraction) cannot successfully be treated with
the classical Borgen plots. In [22] a generalized Bor-

this set contains a hole which encloses the origin. In
this case an additional run of the triangle enclosure al-
gorithm is required in order to approximate the inner
boundary by a second chain of triangles. The compu-

gen plot construction has been suggested which has extational costs of the triangle enclosure algorithm is sig-
tended the construction principles to perturbed spectral nificantly smaller compared to the grid search method.
data. Generalized Borgen plots can be constructed with The reason is that feasibility tests are only required for

the FACPACKSsoftware.
12
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a=01,N=175 a= 005N =353 a=0.01,N=1775 a=0.001,N=17769

Figure 12: Approximation of the shape of an Erlenmeyer flasthk triangle enclosure method by chains of equilaterahgies with edge lengths
a. The required number of triangleshs The start triangle is chosen in the way, that its centroiddated in the middle of the bottom-line. The
edge lengtta limits the precision of the boundary approximation.

6.4. MCR-Bands polyhedron inflation procedure in order to compute the
The MCR-Bands method [10, 49, 21] is not gener- AFS for four_—component syste_ms, see Section 7. We
ically an AFS computation method. Instead, MCR- SNOW some first examples in this work. o
Bands aims at the computation of lower and upper ~1heé geometric idea of the boundary approximation
boundaries for the feasible bands of each component.PY inflating polygons is demonstrated in Figure 13. The
The method works for ang > 1. The band boundaries ~Shape of an Erlenmeyer flask is approximated in 2D by
are computed by minimizing (for the lower boundaries) the polygon inflation me'ghod. Adqmonally the surface
or maximizing (for the upper boundaries) a certain cost °f 23D Erlenmeyer flask is approximated by the polyhe-
function. As this method does not aim at a direct com- plron i_nflation algorithm. The surface of the polyhedron
putation of the AFS we refer for further explanations to 1S 2 triangle mesh.
[49].
. The minimal and maximal band boundarie_s show an 6.5.1. Steps of the polygon inflation algorithm
interesting property. If a band boundary function for the
possible spectra is expanded with respect to the dirst
right singular vectors, then the associated expansion co-
efficients (after FSV-scaling) are located on the bound-
ary of the AFS; see e.g. [2] and [53] for systems with
s =2 ors = 3 components. So far, a systematic expla-
nation for this has not been given and is a possible topic
for future work. For noisy or perturbed spectral data,
the localization of the band boundaries on the boundary
of the AFS does not hold strictly. The reason is that the
MCR-Bands toolbox and the feasibility check by Equa-
tions (12)—(15) deal in diierent ways with perturbed or
noisy data.

In this section the steps of polygon inflation method
are explained. The inverse polygon inflation algorithm
derives from the standard polygon inflation in a way that
the setsM* and M* by Equations (7) and (8) are com-
puted separately by inflating polygons. Then the AFS
M is computed by forming the intersectigvi* N M*.
Thus the costs for the inverse polygon inflation is less
than twice that of the polygon inflation. For further de-
tails see [43, 44]. Next the single steps of polygon infla-
tion are explained for the case of an AFS consisting of
three separate segments.

Step 1: Computation of an initial factorization of D

6.5. Polygoninflation The first step of the polygon inflation method is to

The polygon inflation algorithm [43] and its algo- Ccompute a nonnegative matrix factorizationdf Ac-
rithmic variation of inverse polygon inflation [44] are  cording to Equations (2) and (5) this allows to find three
adaptive methods for the computation of the AFS for points in the (spectral) AFS; the planar coordinates of
three-component systems. The idea is to approximatethese points are the matrix elements of the second and
the boundary of each segment of the AFS by sequencesthird column of T. If the AFS consists of three sepa-
of step-by-step refined polygons. A combination of a rated segments, then each segment contains exactly one
local error estimation with a local strategy for the refine- of these points. For each of these three points an asso-
ment of the polygon results in a verffective, adaptive  Ciated polygon is inflated.
approximation scheme. Various control parameters al-  The following steps 2 and 3 are executed for each of
low to steer the approximation process and its quality. the three points from Step 1 which are located in the
The polygon inflation method can be generalized to a three AFS segments.
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Figure 13: Top: Approximation of the shape of an Erlenmeyaskilin 2D by the polygon inflation algorithm witk vertices. Bottom: Approxi-
mation of a 3D Erlenmeyer flask by the polyhedron inflatiorogtm. The surface of the polyhedron consistdNdfiangles.

Step 2: Computation of an initial polygon refinement process can decrease the area of the polygon.

The starting point is used in order to construct an ini-
tial triangle. The three vertices of this triangle are lo-
cated on the boundary of the AFS segment. The result-
ing initial triangle includes the starting point.

Figure 14 shows the three steps of the polygon refine-
ment process for the data set 3. For the data set 2 with
w = 0 the polygon inflation algorithm and the inverse
polygon inflation algorithm are illustrated in Figure 15

Step 3: Step-by-step polygon inflation by edge subdivi- by sequences of step-by-step refined polygons.

sion
Given a current polygon witlm vertices, a certain Polygon refinement
edge of this polygon is selected for a refinement. The
selection rules are explained later in this sectionP;If P.., is marked for a refinement, then first the feasibil-
adei+1 are the endpoints of th? selecteq edge, then the ity check, see Section 5.1, is applied to the mid-point
m|d—p§rpen<j|cular of'the edg'e is Qeterm|neq. The c!os— M = %(Pi + P,.1) of this edge. IfM is feasible, then
est point of intersection of this mid-perpendicular with
the boundary of the AFS segment defines a new point
Pi.,. (There is always a second point of intersection of
the mid-perpendicula}r with the boundary of t.he AFS' the current polygon. IM is not a feasible point, then
However, this more distant point on t.he opposite side of a second poinM’ € M is determined along the mid-
the AFS segment would not result in a successful ap- o hendicular in the inward direction with regard to the
pro>§|mat|on of the entire bpundary by a polygon.) The current polygon. Hence the two poirsandM’ on the
vertices of the new and refined polygon read mid-perpendicular are determined. One of these points
[Py.....P. Py Pi..... Pal. is f';\feasible point and the other point is not a feasible
point. In other words, the boundary of the AFS seg-
The introduction of the new vertex results in a gain or ment intersects the mid-perpendicular betwégrand
lossA; of the area of the polygon. In most cases the area M’. The point of intersection is to be determined. This
of the polygon increases, i.e. the polygon is inflated. If can be done in a slow but very stable way by means of
in rare cases the poin® andPj,; limit a non-convex the iterative bisection method. The iteration is stopped
region of the boundary of the AFS segments, then the if a final precisionesy has been reached.
14

If a certain edge between the adjacent vertigesnd

a second poinM’ ¢ M is determined along the mid
perpendicular of the current edge. The new paitit
is to be found in the outward direction with regard to



Step 1: Initial nonnegative factéy

Step 2: Three initial triangles

Step 3: Inflated segments of the AFS
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Figure 14: Data set 3: The steps of the polygon inflation piore are illustrated. Left (Step 1): A nonnegative facttion of D results in a
factor A (a so-called abstract factor). Center (Step 2): The infiéieforization is represented by three points inxhe x2-plane of the AFS. These
points are marked by symbols. The three initial triangles for the inflation prdaee are plotted. Right (Step 3): The inflation procedurglfed
separately to the three initial triangles) results in a fiNa§ approximation. This reproduces the AFS shown in thersesabplot of Figure 7.

Edge selection and stopping criterion for the polygon
refinement
The change-of-area variable > 0 as introduced in

Suitable parameter selection for the parameter
The parametet on the acceptable relative size of
negative entries i€ andA considerably influences the

Step 3 of the polygon inflation procedure can be stored size of the AFS. Thus should be selected carefully. A

as an attribute for each edge. If each of the three edge
of the initial triangle has been subdivided at least once,
thenA; has been assigned for each edge of the polygon.
The stopping control parametér> 0 is used to stop
the polygon refinement processAf < ¢ for all edges
of the polygon. Then the gain or loss of area in the
last subdivision of every edge is boundeddylf this
stopping condition is not fulfilled, then an edge with the
index¢ is selected for a subdivision &, = max; A;.

Figure 16 shows for the data set 2 with= 0 a typical
Aj convergence history in theACPACKsoftware. For
these computations the stopping control parameter
1072 has been used.

6.5.2. The control parameters

The polygon inflation algorithm in th&ACPACK
software includes the following control parameters:
& > 0is an upper bound for the acceptable relative
size of negative entries i@ andA, see Equations
(12) and (13).
&0l IS the tolerance parameter in the feasibility test,
see Equations (14) and (15).
¢ is the stopping parameter for the polygon refine-
ment. The iteration is stopped if the nonnegative
change of area attributg of each edge of the poly-
gon is bounded by. In the FACPACK software
§ = 1073 is the default value.
&y is the control parameter on the guaranteed pre
cision of the vertex localization close to the bound-
ary of the AFS. This parameter should satisfy<
0.
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Sreasonable choice is as follows: If a computational pro-

cedure for nonnegative matrix factorizations (an NNMF
routine) is only capable of producing a factorization
D = CA with matricesC and A with small negative
entries, there can be selected according to

octi) AG,)
S CE e S AG I )

£> max(O, - (16)

As arule of thumb, an increase of the valuesults in a
growth of the area of the AFS. The crucial point is that
increasinge means that the factoiG and A can con-
tain (in absolute values) larger negative entries. Hence
a larger number of approximate nonnegative matrix fac-
torizations can be accepted as feasible. Thus the AFS
grows. Figure 17 illustrates this relationship for the data

set 3 for four diferent values of.

6.5.3. Benefit of the adaptive AFS approximation

A strength of the polygon inflation method is its adap-
tive strategy for the boundary approximation. If the
boundary of the AFS is locally more or less a straight
line, then only few vertices of the polygon are neces-
sary for a high-quality boundary approximation. For
other boundary regions which are strongly curved or
non-smooth, a higher resolution of the polygon inflation
method is a result of the local error estimation together
with the local polygon refinement. Figures 12 and 13
demonstrate that only few vertices ardfitient for a
good approximation of rectilinear regions of the bound-
ary.

Table 1 provides a comparison of the numbers of ver-
tices which are necessary for an approximation with



Figure 15: Data set 2 witlv = 0: Polygon inflation (rows 1-4) and inverse polygon inflat{oows 5-8) are illustrated for the same data matrix. In
case of inverse polygon inflation the solid lines represlwmundaryloé\/ﬁ and the broken lines stand for the boundardf.
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Figure 16: Data set 2: The gdioss of area\; of the adaptive polygon inflation procedure is plotted asgjaine number of vertices of the polygon.
Left: A; for the three segments of the AFS. The polygon refinemenbjspsd if maxA; < 6 with 6 = 1073, Right: A; for the two polygonsm*
and M* for the case of the inverse polygon inflation procedure. {gFACPACKSsoftware these convergence history data are containee iogh
file “AFScomputation.log”. Alternatively, one can push tbg-file button.)

boundary|  grid triangle | polygon four-componentsystem is a bounded subset of the three-
precision| search | enclosure| inflation dimensional space. In this section a short overview is
101 632 175 29 given on already published methods and on an on-going
1072 6.32-10* 1775 85 research project.
1073 6.32-10° 17769 127
10 6.32-10° | 177735 299 7.1. The slicing method
10° 6.32:10' | 1777349| 901 In [14] the idea has been presented to compute the

three-dimensional AFS by two-dimensional slices. In
Table 1: Approximation of the shape of an Erlenmeyer flaskiey t  thiS paper the triangle enclosure method ha§ bee'_'] used
grid search approach, the triangle enclosure method angadlye to approximate the boundary of the two-dimensional
gon inflation method. Tabulated are the numbers of grid pdigtid slices. For example, a slicing #direction works with a

search approach), the total numbers of vertices of the ajpabing . - " .
triangle chain and the numbers of vertices of the approximgatoly- matrixT in (5) whose fourth columniis fixed to a certain

gons. The boundary precision values are 107,i = 1,...,5. These valueg, i.e.
data d@irm that the adaptive strategy has a clear advantage. See also
Figure 12 and the first row in Figure 13. T(,4)=2¢, i=1...,4

(Additionally, the FSV scaling requires thati, 1) = 1
guaranteed boundary precision of the shape of an Er-for all i.) All other matrix elements of are free vari-
lenmeyer flask by the grid search approach, by the tri- ables and are determined within the optimization pro-
angle enclosure method and by the polygon inflation cedure. With such a choice @f, one can compute the
method. The boundary precision values are 10, intersection of the 3D AFS with the 2D plane with: ¢.

i =1,...,5. Further, Table 2 in [43] contains a simi-  The entire AFS is computed by settintp m+1 equidis-
lar comparison of the triangle enclosure method and the tant values in the intervakf, z,] with
polygon inflation method for a three-component model

problem. §j=2b+nl1(2u—2b),’ ji=0,...,m

In each of the slices any of the AFS approximation
7. AFScomputationsfor four-component systems methods from Section 6 can be applied.
Figure 18 illustrates the slicing method for the four-
All the methods for AFS computations for three- component data set 4. In each of the slices the polygon
component systems as explained in Section 6 can beinflation method has been applied in order to compute
extended to four-component systems. The AFS for a the 2D intersections (the slices) with the 3D AFS. A
17
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~--with & = 0.0025 <
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- with & = 0.0075
10 with & = 0.008 RY
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— with & = 0.005
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-1 -0.5 0 0.5 -0.5 0 0.5 1
X1 X1

Figure 17: Data set 3: Variation of the control parameten the acceptable relative size of negative entrigs amdA, see Section 6.5.2. The area
of the AFS segments increases with rising-or ¢ > 0.008 the initially isolated three segments are grown togstite a single AFS with a hole
(black dotted lines). The continua of feasible bands forpdw@metee = 0.005 are shown in the two rightmost plots of Figure 7.

Slicing in x direction Slicing iny direction Slicing in z direction

0.4
0.2 ‘ﬁg
2 ° § _

Figure 18: Data set 4 withr = 750: Computation of the AFS for the spectral factoby slicing along the three coordinate axes. A number of 30
slices is used for each plot. The same AFS computed by paighedfiation is shown in the right subplot of Figure 19.

number of 30 slices has been used for the slicing in the spectral AFS for the four-component model system of
coordinate directions. The achievable resolution in the the data set 4 withr = 750.
slicing direction depends on the number of slices.

7.2. Polyhedron inflation method 8. Reduction of therotational ambiguity by soft con-

The direct generalization of the adaptive polygon in- straintsrepresented in the AFS

flation method is the polyhedron inflation method. To
this end the 3D AFS is approximated by a series of The AFS construction includes the nonnegativity of
polyhedrons. Each face of the polyhedron is a triangle. the factorsC and A as the one and only constraint.
Thus the AFS is approximated by a 3D triangle mesh. Sometimes additional information is available on the
The principles of the triangle subdivision and of the lo- chemical reaction system. Such information is welcome
cal error estimation are similar to those of the 2D AFS; in order to reduce the rotational ambiguity. For instance
but there are various technical challenges. Once again,known concentration profiles or pure component spectra
adaptivity is an advantage of the inflation algorithm. We lead to a significant reduction of the rotational ambigu-
will explain the method in detail in a future work. ity by means of the duality- and complementarity theory

The method is demonstrated by the approximation of [18, 34, 40, 4, 46, 17]. Alternatively, soft constraints can
the shape of a 3D Erlenmeyer flask in Figure 13. Fur- be very useful for extracting chemically meaningful so-
ther, Figure 19 shows the concentrational AFS and the lutions from the AFS [3, 47, 33].

18



AFS forC

AFS forA

Figure 19: Data set 4 far = 750: For this four-component model problem the left plotvghithe concentrational AFS and the right plot is the

spectral AFS. The concentrational AFS is also shown in Eig@:.

8.1. Equality constraints: locked points in the AFS

tor of the same component for which the spectrum is

The knowledge of a certain pure component spectrum given. All these restrictions can be combined if more
is often called an equality constraint. It means that a than one point is locked. Iy points in the AFS foA

certain point of the AFS is fixed (or locked). Thffext

are locked, then the admissible poigts the AFS for

on the remaining components is a reduction of the rota- C for the complementary concentration profiles are in
tional ambiguity or equivalently a reduction of the area S - 1 — S-dimensional subspaces. This means for the
of the AFS segments. The reduced AFS can either beimportant case of a three-component system that one
constructed geometrically (then one vertex in the sim- known spectrum restricts the complementary two con-
plex rotation algorithm [6] is fixed) or numerically (then ~ centration profiles to a straight line in the AFS for
a certain row ofT is fixed). One observes that the re- Further the concentration profile of the chemical com-
duction efect on the remaining segments of the AFS is ponent whose spectrum is given is located in an AFS
relatively large if a point close to the origin is fixed. segment with a reduced area.

All these concepts also apply to known concentration
profiles. Then the whole procedure works wit =

’ 8.1.2. Equality constraints applied to experimental IR
ATCT whereC andA have changed their places.

spectral data

Figure 20 illustrates for the data set 2 with= 0 the
reduction of the AFS for the cases of one or two given
spectra. The left column shows the AFS setsGaand
A only under the nonnegativity constraint. In the cen-
tered column the pure component spectrum of the com-
ponentX is locked as a constraint (that is an equality
constraint). The position of this spectrum is marked by
a blue cross in the spectral AFS. This known spectrum
results in a reduction of the areas of the AFS segments
for the components andZ in the spectral AFS. Further
the AFS segment foX in the concentrational AFS is re-
duced (black dashed lines). Due to the complementarity
theory the AFS-segments for the componentsnd Z
st in the concentrational AFS are reduced to linear AFS
Zyixi =-1 segments (black dashed lines). In the right column of
=1 Figure 20 a second spectrum is locked. The remaining

Additionally locked points have an area-reduction segment in the AFS foh is reduced a second time. In
impact on the AFS segment of the concentration fac- the AFS forC a second line-restriction has been added.

19

8.1.1. Complementarity theory and the AFS

The restrictions on the fact@ which results from a
given pure component spectrum are theoretically well
understood by the complementarity theory or duality
theory [34, 40, 4, 46, 31].

In general the AFS for as-component system is a
bounded subset of tHeSX. The complementarity the-
ory provides a reduction of the rotational ambiguity to
(s— 2)-dimensional fiine spaces. Theorem 3.1 in [46]
proves that a given pointin the AFS forA forces the
complementary concentration profiles representey by
to fulfill



AFS forC Restricted AFS foC Double restricted AFS fo€
0.8 | | 0.8]]- - -restriction byx for A | 0.8l[---restriction byx for A
—restriction byo for A
0.6 0.6} 0.6
0.4 0.4} 0.4f
0.2 0.2F \ 0.25"\
0 of o . ~
-0.2 -0.2/ -0.2/ *
-0.4 -0.4f N -0.4f "
-0.5 0 0.5 1 -0.5 0 0.5 1 -0.5 0 0.5 1
AFS forA Restricted AFS foA Double restricted AFS foA
‘ " [~~-restriction byx ' " [-~-restriction byx
1 1 A 1 1 —restriction byo
/ \ /
0.8 0.8/ 0.8r/ \
0.6 0.6 0.6\
0.4 04 NN 7 NN ]
0.2 02 e {1 020 QLD ]
0 of 1 or 1
-0.2 <; -0.2}, ‘ ‘ 4 -02 S, ‘ .
-1 -0.5 0 05 1 -1 -0.5 0 05 1 -1 -0.5 0 05 1

Figure 20: Data set 2: Application of equality constrairiteég(is the lock mode ifFFACPACK) to the AFS forC and the AFS forA. The three
segments of the AFS sets and their associated chemical camisX, Y andZ are shown in the left column.

Left column: Areas of feasible solutions without restacis. Center column: The pure component spectrum of the coempX is locked as a
constraint. The position of the spectrum in the spectral A=®arked by a blue cross. This known spectrum results in actenh of the areas
of the AFS segments for the componeltandZ in the spectraA. Further the AFS segment fof in the concentrational AFS is reduced (black
dashed lines). Due to complementarity [40, 46] and dualigoty [34], the AFS-segments for the componentandZ in the AFS forC are
reduced to linear AFS segments (black dashed lines). Ra@htm: If additionally the pure component spectrum for comgntZ is locked (red
o), then the segment for the compon&hin the AFS forAis reduced a second time (solid line) and the concentratiofilgof Y is unique (green

x symbol). Finally, the reduced AFS segmentsXaandZ in the AFS forC

The point of intersection of these two lines uniquely de-
termines the concentration profile of the componént
(green color).

8.2. Further soft constraints

The target functionf by Equation (13) or thessg
function in Section 5.2 can easily be extended by ad-
ditional soft constraints in order to strengthen certain
desired characteristics of the solution [4, 3, 33, 47]. In
other words, one hopes to extract only those points from
the AFS which additionally satisfy certain (soft) con-
straints. Finally and by using various constraints, one
hopes to extract only one and chemically meaningful
solution. Tauler [49] uses a similar approach within the
MCR-Bands method.

Possible soft constraints are the unimodality con-
straint for the concentration profiles or even stronger a
monotonicity constraint. Alternatively, one can use as-
sumptions on closure or windowing, see Section 4.3 in
[47]. Figure 21 for the data set 2 withh = O illustrates
how the unimodality soft constraints can be used for a

20

are line segments (solid lines).

reduction of the AFS. Additionally, Figure 21 shows the
associated reductions of the feasible bands.

9. Geometric shapes of the AFS and AFS dynamics

The AFS can have various geometric shapes depend-
ing on the numbes of independent components. For
two-component systems the AFS always consists of two
separated intervals. These intervals can degenerate to
single-point intervals. One of these intervals contains
only negative numbers and the other interval only pos-
itive numbers. Fos > 3 the diversity of possible ge-
ometric shapes of AFS segments is much larger.
this section the focus is on thefidirent (and partially
degenerated) geometric shapes of the segments of an
AFS. Furthermore the transition from an AFS with iso-
lated segments to a one-segment AFS is demonstrated
for model data sets with either three or four independent
components.

In
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Figure 21: Data set 2 faw = 0: Application of the unimodality soft constraint.

Left column: AFS sets fo€ and A without restrictions. Center column: Application of momwoicity soft constraints only to the concentration
profiles reduces the concentrational AFS and the spectr&l Right column: The associated feasible band€fand A without unimodality soft
constraint (pale colors) and with the unimodality soft deaist for the factorC (bright colors).

9.1. Shapes of AFS segments and degenerated segmenis = 1 refers to a line-shaped AFS segment.) For these
The segments of an AFS for amcomponent sys-  segments the polygon inflation algorithm (and also the
tem are subsets of thBS!. Very often the ¢ — triangle enclosure method), see Sections 6, as well as
1)-dimensional volume of these segments is nonzero. the polyhedron inflation method, see Section 7, are to
However, certain problems can contain one or more be adapted properly. The start-up phase of the polygon

unigue spectra or concentration profiles. A further inflation algorithm tries to build an initial triangle (with
possible case is that the nonnegative matrix factor- a nonzero area) and the polyhedron inflation algorithm
ization problem for a giverD has a unique solution tries to generate an initial non-degenerated tetrahedron,
[9, 25]. Such unique solutions are associated with see left column of Figure 13. In other words, the al-
single-point AFS segments. Furthdegenerated cases gorithms aim at the construction of arsimplex with a
are line-shaped AFS segments in the case of 2D AFS nonzero volume. If this is not successful, the algorithms
sets for three-component systems. In the case oftrytoconstructang-1)-simplex with a nonzero$(-1)-
four-component systems the possible degenerated casegimensional) volume, and so on. The extreme and final
are single-point, line-shaped or planar AFS segments. case is that the algorithm ends in a 1-simplex, which is
These degenerated AFS segments have only been oba unique point.
served for model data. For perturbed or noisy experi-  For three-component systems there is only the case of
mental data the control parameteon tolerated nega-  a line-shaped AFS segment between the extreme cases
tive entries inflates degenerated AFS segments, see Fig-of a planar AFS segment with a nonzero area and a
ure 17. unigue point. The numerical strategy for the computa-
Computationally, single-point AFS segments can eas- tion of line-shaped AFS segments by polygon inflation
ily be computed. The initial nonnegative matrix factor- is explained in Section 4.6 of [44]. The idea can easily
ization of D provides their coordinates. Somewhat more be explained by means of a lighthouse. Starting from an
complicated is the computation gf-dimensional seg- initial feasible pointx, which is considered as the posi-
ments with 1< ip < s—1. (E.g. fors = 2 the case  tion of the lighthouse, one determines a feasible beam
21
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Figure 22: The AFS sets of the fact@sandA for a three-component model problem. Each AFS consistgeg¢tisolated segments. One segment
is a unigue point (i.e. one spectrum and one concentratiofilgpare uniquely determined), a further segment is lingpsld and the remaining
third AFS segment has a geometric area larger than zero.

AFS forC AFS for A

Figure 23: The AFS sets for a four-component model problere €gment is a unique point (i.e. one spectrum and one doatien profile are
uniquely determined), a second segment is line-shapedawitinzero interval length, a third segment is planar withrezam planar area and the
fourth segment is a volume segment with a nonzero volume.

direction so that the line trates the analogue of this for a four-component model
. problem.
gt =x+r( 0 )
r,X =
cosf) 9.2. AFS dynamics

covers the desired line-shaped AFS segment. In a sec- Section 3.6 contains a discussion on the possible
ond step one determines the beam ranges in the form ofntumbers of segments of an AFS. The obvious ques-

bounds, andr, so thatM = £, U £, with tion on the inherent connection of this segment structure
is discussed next. We demonstrate for the parameter-

£=Ixar sin(p — ) withr €0, ]!, dependent data sets .2 and 4 that continuous changes of
COSfp — 1) the parameter result in continuous changes of the AFS.

sin() _ Within this process of a dynamically changing AFS, the
L= {X+ f( cos() ) withr € [0, rr]}- number of isolated segments of the AFS varies in a dis-
continuous way.
This idea can easily be extended to the computation
of planar AFS segments for the case of four-component 9.2.1. The three-component model data set 2
systems; then two angles are to be determined. We compute for the data set 2 the AFS sets for a
Figure 22 shows for a three-component model system sequence of parameter values € [100,240]. For
that the three shapes of AFS segments can occur simul-w = 100 the signal width and thus the overlap of the
taneously. Both the AFS fdC and the AFS foiA con- pure component spectra is relatively small. The AFS for
tain a single-point segment, a line-shaped segment andthe spectral factor contains three separated segments,
a planar segment with a nonzero area. Figure 23 illus- see Figure 24. For increasing the segments show
22
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Figure 24: Data set 2: AFS dynamics with respect to a vaniaithe model parametev. The shape of the spectral AFS is changing from three
isolated segments to a one-segment AFS with a hole. An ARSextctly two isolated segments is not possible.

an increasing geometric area; the distances between thelution of the computations is not high enough. This
segments decrease. Fer> 170 the AFS computa- question has to be investigated analytically.

tion by the FACPACK software should better be done

by the inverse polygon inflation procedure. kop 192

the AFS consists of only one segment, which contains a 10. The FACPACK -toolbox for AFS-computations
hole. The point of discontinuitw for which the three-
segment AFS turns into a one-segment AFS is the same

for the spectral AFS and the concentrational AFS. TheFACPACKtoolbox [45] is a software package for

AFS computations and can be applied to experimental
spectroscopic data, to model data or even to any nonneg-
9.2.2. The four-component model data set 4 ative matrixD. The software contains implementations

Next the spectral AFS sets are computed for the Of the polygon inflation method [44], the inverse poly-
model problem 4 for a sequence of parameter valuesgon inflation method and the geometric constructive ap-
o with o € [550,850]. The associated AFS sets are Proach of generalized Borgen plots [22]. Moreover, it
shown in Figure 25. Far- = 550 the AFS consists of  allows to apply the complementarity theory [46] within
four isolated segments. These segments grow togethethe AFS representation. The main functionalities are
for increasing values af. Finally, foro = 810 all four implemented in separate software modules. The current
segments are connected and form a Swiss-cheese likesoftware revision is th€ACPACKTrevision 1.2. Addi-

3D object with a complicated hole structure; the origin tionally, modules are contained for baseline corrections
is contained in the hole. of spectroscopic data and for a library management of
computed pure component spectra. The software can be
Remark 9.1. Itis not clear by the results shown in Fig- downloaded on thEACPACKhomepage
ure 25 if an AFS for a four-component system can con-
sist of exactly two or exactly three segments. The res-
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o =550 o =600 o =650

o =700 o =750 o =760

=770 o =780 o =790

o =800 o =810 o =820

o =830 o =840 o =850

Figure 25: Data set 4: AFS-dynamics with respect to a vanabf the model parameter. Foro = 550 the spectral AFS contains four separated
segments. Finally, farr- = 850 these segments are grown together to a one-segment A8 hdle.
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For more details oRACPACKsee the manual [41]. This  10.3. The Complementariéy AFS module
includes a guide on how to install and to start the soft-
ware.

The FACPACKsoftware comes with a graphical user
interface in MarLas. The time-consuming computa-
tional procedures are externalized in precompiled C-
programs. Up to now the AFS-computation and the vi-
sualization is available fog = 2 ands = 3 component
systems. For the future we plan to present an extension
to four-component systems.

Section 8.1.1 and in more detailed form the refer-
ence [46] explain the (possibly drastic) reduction of
the rotational ambiguity by the complementarity theory.
The module “Complementarity & AFS” illustrates this
within the AFS.

The module is activated by pressing the button “Com-
plementarity & AFS” in the start window of thEAC-
PACK software. After data loading the third step is to
compute the AFS sets f@ andA. Alternatively, it is
possible to compute only the set FIRPOIL*. The live-

10.1. Data import view mode allows to move the mouse-pointer through
the AFS and to see simultaneously the associated spec-

The spectral data matri is to be provided in a  tra or concentration profile. By clicking the mouse but-
MarLas compatiblex.mat file and is assumed to con-  ton the current pointer position is locked and serves as
tain row-wise thek spectra. Additionally, a vector of  a restriction for the complementarity theory. If three
spectral wavenumbefeequencies can be provided by points either in AFS fo€ or A are locked, then a unique
ann-component vector variabbetogether with a vector  factorizationD = CAis defined. If some of these points
t of time coordinate values. are to be modified, then the user can repeat the steps
4-6. All steps are illustrated in Figure 27.

10.2. The AFS computation module
10.4. The Generalized Borgen Plot module

The core of theFACPACK software is the polygon
inflation algorithm for three-component systems. This
software is contained in th&FS computatioirmodule.

See F!gure 26 fo_r a screen shot of tbkFS geometry methods.
computatioamodule window with a short explanation . . . u

: , . ! . First, the module is activated by the button “General-
of the possible users’ operations. The first step in order .

. W ized Borgen Plot” in the start window. Then the data is
tp run the software'|s to push the button AFS'computa- loaded and the desired scaling is selected. The further
tion” in the start window. The second step is to load

the data. The third step is to select whether a two- steps (AFS computation and live-view mode) are briefly

or three-component system is considered. The singu—EXplallneol In Figure 28.

lar valueso, . .., o4 of D are displayed and serve in-

dicators for the selection of the number of independent 11, outlook and open problems

components. In step 4 an initial nonnegative matrix fac-

torization is computed, which supplies the initial point  The AFS analysis which was launched by Lawton
for the construction of the initial triangles. Then, step anqg Sylvestre [26] in 1971 and Borgen et al. [6, 5]
5 allows to select either the standard polygon inflation , 1985 has produced a continuous stream of results
algorithm or the inverse polygon inflation algorithm.  for 5 deeper understanding of the rotational ambigu-
The AFS is computed by pressing the button "“Compute ity of MCR methods. Especially, in the last decade
AFS”. A special feature of the software is its “live- 5 |arge number of papers have been published, see
view mode”, see [45], which allows to move the mouse- e.g.[34, 2,12, 13, 43, 14, 44, 4, 3, 46, 22, 37].

pointer through the AFS and to see simultaneously the Many challenges and open questions remain for the
associated spectrum (or the concentration profile in caseft,re. 'Some of them are:

of the concentrational AFS).

The AFS computation module allows to apply equal- 1. How to integrate AFS methods to the toolboxes of
ity constraints. Either one-, two- or three pure com- practically working chemometricians? Up to now,
ponent spectra can be locked. Then the reduced AFS AFS methods are more or less in the niche of re-
can be computed, see Section 8.1. External spectra search tools. AFS methods should be popularized
(e.g. from a spectra library) can be imported; their coor- as useful instruments for the investigation of the
dinates are marked within the AFS. possible outcome of MCR methods.
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The Generalized Borgen Planodule, see Section
6.1 for more details, allows the construction of the AFS
for noisy of perturbed data by means of computational



2. How to compute and to visualize the AFS for sys- [13] A. Golshan, H. Abdollahi, and M. Maeder. The reductidna

tems with five or more independent chemical com-
ponents? Then the AFS is a four- or even higher-
dimensional bounded set whose graphical repre-
sentation is very diicult. The derived representa-
tion by the dimension-independent feasible bands
is a possible solution.

. The nonnegative matrix factorization problem ap-

pears in various research fields as bio-informatics,
text mining, neural sciences and others. It remains
to be analyzed to which extent the global AFS

approach could be helpful in order to investigate

the inherent ambiguity for these factorization prob-

lems.
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Figure 26: Quick-start in seven steps for the data set 2.

Step 1: Press the butt@S computation in the start window to activate this GUI.
Step 2: Load the data. Here data set 2 is used.

Step 3: Selecs as the number of components.

Step 4: Compute an initial nonnegative matrix factorizaNMF).

Step 5: ChoosPolygon inflation.

Step 6: Compute the AFS which consists of three isolated satgn

Step 7: Plot the range of spectral factors (spectral bards),for the lowermost AFS segment.
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Figure 27: Complementarity theory and AFS implementatiemdnstrated for the data set 2.

Step 1: Press the butt@omplementarity & AFSto activate this GUI.
Step 2: Load the data. Here data set 2 is used.

Step 3: EitheFIRPOL or the AFS sets fo€ and A can be computed. The computation of the AFS may be time-
consuming.

Step 4: After clicking the buttofirst, the mouse pointer can be moved through the spectral AFSa3seciated
spectra are plotted in the live-view mode. A certain speoctA(l, :) can be locked by clicking in the AFS.

Step 5: Click the buttosecond to repeat the spectrum selection for a second speci{@n). For the remaining
third component the concentration profile is shown whichigjuely determined by the complementarity theory.

Step 6: A lastthird spectrumA(3,:) can be selected by moving the mouse pointer through thetrshFS. The
resulting predictions on the spectral factor are shownaatévely.

Step 7: These three buttons and also the buttiosts second, third can be clicked and then a spectrum or concen-
tration profile can be modified by moving the mouse pointeodlgh the AFS. This allows to modify the two
triangles which represent a pure component factorizatioheogiven spectral data matrix.
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Figure 28: The Borgen plot module demonstrated for the dzita.s

Step 1: Press the butt@eneralized Borgen Plot to activate this GUI.

Step 2: Load the data. Here data set 2 is used.

Step 3: The scaling options are tRew Sum scaling and theFirst Singular Vector scaling.
Step 4: The AFS is computed and consists of three isolatedestg.

Step 5: Activate théve-view on mode.

Step 6: Move the mouse pointer through the AFS and watch tkeaictively computed solutions. Points in the AFS
can be fixed by clicking the left mouse button.

Step 7: If a point is fixed, then the reduced AFS segments &rdmaining components are computed.
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