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Abstract

Borgen plots are geometric constructions which represent the set of all nonnegative factorizations of spectral data
matrices for three-component systems. The classical construction by Borgen and Kowalski (Anal. Chim. Acta 174,
1-26 (1985)), is limited to nonnegative data and results in nonnegative factorizations.

The new approach of generalized Borgen plots allows factorswith small negative entries. This makes it possible to
construct Borgen plots for perturbed or noisy spectral dataand stabilizes the computation. In the first part of this paper
the mathematical theory of generalized Borgen plots has been introduced. This second part presents the line-moving
algorithm for the construction of generalized Borgen plots. The algorithm is justified and the implementation in the
FACPACKsoftware is validated.
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1. Introduction

The systematic analysis of the non-uniqueness of
pure component factorizations by multivariate curve
resolution (MCR) methods is a challenging research
area. Many results on the so-called rotational ambigu-
ity and the area of feasible solutions have been gained
in recent years. Historically, the starting points of
such investigations are the Lawton-Sylvestre plots for
two-component systems [8] and the Borgen plots for
three-component systems [3, 10]. These plots are low-
dimensional representations of the sets of feasible non-
negative pure component factorizations for spectral data
matrices with their underlying bilinear structure of the
Lambert-Beer law.

The pivotal point of these analyses are factorizations
D = CA of k × n spectroscopic data matricesD with
nonnegative factorsC andA. The rows ofD containk
spectra, e.g., taken as a sequence in time from a chem-
ical reaction system. Each spectrum consists ofn ab-
sorbance values. The matrixC ∈ R

k×s is the concen-
tration factor,A ∈ R

s×n is the spectra matrix ands is
the number of the chemical components.In general this
factorization problem does not have a unique solution.
Even if the factors are scaled in a certain way, there are
usually many substantially different solutions. This is a

well-known phenomenon, which is called the rotational
ambiguity of the solution [15].We refer to the intro-
duction of the first part of this paper [7] for a short in-
troduction to the pure component factorization problem
and for many references to the literature.

Due to their physical meaning the three matricesD, C
andA should have only nonnegative components. How-
ever, for experimental and perturbed or noisy data the
factorsC andA can contain small negative components.
Especially, if the spectral data inD has undergone a
background subtraction, then small negative entries can
occur. Then it is often necessary to allow slightly nega-
tive entries in the factorsC andA in order to find factors
which approximate chemically meaningful solutions.

Our goal is to determine the set of all feasible factors
C andA so that the productCA reconstructs the given
spectral data matrixD. Here we consider only three-
component systems. For two- and four-component sys-
tems see the survey papers [12, 14] and [1, 5]. Bor-
gen plots [3, 10] are geometric constructions which
represent all nonnegative factorizations ofD for three-
component systems by two-dimensional plots. The two
coordinates of the points in the planar Borgen plots are
the expansion coefficients of feasible solutions with re-
spect to the basis of singular vectors ofD. One of
the three expansion coefficients for the three-component



systems is normalized to 1; this corresponds to a specific
scaling of the solutions [7, 9].

The classical construction by Borgen and Kowalski
[3] is limited to nonnegative data and results in nonneg-
ative factorizations. However, Borgen plots suffer from
their restriction to nonnegative data. In the first part of
this paper [7]generalized Borgen plotshave been in-
troduced in order to overcome this limitation. The ex-
tended concept includes a geometric algorithm which
allows to construct geometrically the area of feasible so-
lutions (AFS). In the limiting case of vanishing negative
entries inD, the generalized Borgen plots are equal to
the classical Borgen plots.

In any case, Borgen plots and generalized Borgen
plots provide a deeper understanding of the possible
manifestations of the rotational ambiguity. These are
uniqueness, partial uniqueness [11] up to high non-
unique solutions. Such larger sets of feasible solutions
may have the form of a single-set AFS and AFS sets
consisting of three or even more isolated subsets [12].

1.1. Organization of this paper

Section 2 recapitulates the central definitions and
main properties of the AFS and Borgen plots. These ex-
planations depend decisively on the respective scaling,
which is sometimes a normalization. Here we focus on
the first singular vector scalingwhich is explained in
[7], see also [9]. Section 3 is dedicated to the newline-
moving algorithm. This algorithm generalizes the clas-
sical tangent algorithm of Borgen and Kowalski [3, 10].
This algorithm is also introduced briefly at the begin-
ning of Section 3. Then the line-moving algorithm is
described in detail. Many graphical illustrations support
the explanations. The mathematical justification of the
line-moving algorithm is given in Section 4. Numerical
experiments in Section 5 conclude the paper.

1.2. Guideline for the reader

The reader who is familiar with the AFS and with the
construction of the inner polygon (called INNPOL by
Borgen and Kowalski [3]) and the outer polygon (called
FIRPOL) may skip Section 2. The new line-moving al-
gorithm and its numerical application are part of Sec-
tions 3 and 5. For readers who are mainly interested in
the justification of the line-moving algorithm we sug-
gest to focus on Section 4.However, this section is de-
voted to the mathematical analysis of the line-moving
algorithm. The reader may skip this section if he is
mainly interested in the construction of the line-moving
algorithm and its applications.

1.3. Notation

The following notation is used in the paper.
The references apply to the first usage of the symbol.

D ∈ Rk×n spectral data matrix, see Sec. 1.
C ∈ Rk×3 concentration matrix, see Sec. 1.
A ∈ R3×n spectra matrix, see Sec. 1.
UΣVT truncated singular value decomposition

of D, see Sec. 2.
T ∈ R3×3 transformation matrix, see Eq. (2).
t ∈ R2 low-dimensional representation of

spectra byt = T(1, 2 : 3), see Def. 2.1.
e ∈ Rn all-ones vector (1, . . . , 1)T, see Sec. 2.2.
εC parameter which bounds negative

entries inC, see Def. 2.1.
εA parameter which bounds negative

entries inA, see Def. 2.1.
MεC,εA generalized AFS, see Def. 2.1.
Ω ∈ Rk×k scaling matrix, see Eq. (3).
I set of the vertices of INNPOL, see

Sec. 3.
Ii enumeration of the vertices of INNPOL,

see Sec. 4.
IP set of displaced vertices of INNPOL

related to an initial pointP of
FIRPOL, see Eq. (5).

IQ set of displaced vertices of INNPOL,
related to an initial pointQ of
FIRPOL, see Eq. (6).

We use the colon notation in order to extract submatri-
ces or vectors from a given matrixA. ThusA(:, i) is the
ith column ofA and A(i, :) is the ith row. The vector
(ℓ1, ℓ1 + 1, . . . , ℓ2) of integer numbers is abbreviated by
ℓ1 : ℓ2. The submatrix ofA containing its columnsℓ1
up to ℓ2 is A(:, ℓ1 : ℓ2). Rows ofA can be extracted by
swapping the arguments.

2. On almost nonnegative matrix factorizations

In the first part of this paper we have analyzed the
nonnegative matrix factorization problem forD and
more general factorizations which allow small negative
entries in the factorsC andA for s-component systems
[7]. Here, we consider only the case of three-component
systems withs= 3 for the geometric construction of the
AFS. This restriction also underlies the work of Borgen
and Kowalski [3]. Geometric constructions of the AFS
for four-component systems have not been developed so
far.

Let D be ak-by-n spectral data matrix. We are inter-
ested in all factorizationsD = CA where the factorsC
andA are bounded from below elementwise
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A ≥ −εA andΩC ≥ −εC (1)

for small tolerance parametersεA, εC ≥ 0, see Defini-
tion 2.1. The diagonal matrixΩ is introduced in Defini-
tion 2.1.

Any diagonal matrixΘ with positive diagonal ele-
ments together with its inverse can be inserted in the fac-
torization. In this wayD = CA = (CΘ−1)(ΘA) results
in rescaled solutions. However, these scaled solutions
do not gain any new insight. Various scaling strategies,
so-called Borgen norms have been suggested and tested
[9].

In [7] the row sum scaling (RS-scaling)andfirst right
singular vector scaling (FSV-scaling)play prominent
roles. These scalings can be used even for data with
small negative entries. The FSV-scaling is most com-
monly employed in the literature. We use this latter scal-
ing for the following brief recapitulation of the impor-
tant definitions and theorems. The proposed new line-
moving algorithm can be formulated with each of these
scalings.

2.1. Rotational ambiguity and the AFS

The starting point for a deeper study of therotational
ambiguity[15] is the truncated singular value decompo-
sition (SVD) of D [6]. The reduced SVD of a rank-3
matrix D ∈ Rk×n readsD = UΣVT with a diagonal ma-
trix Σ ∈ R

3×3 and orthogonalU ∈ R
k×3 andV ∈ R

n×3.
This factorization allows to represent all possible fac-
torizations by inserting a regular matrixT ∈ R

3×3 and
its inverse according to

D = UΣT−1
︸  ︷︷  ︸

C

TVT
︸︷︷︸

A

. (2)

One is only interested in those matricesT which re-
sult in nonnegative factorsC andA or in factors which
are almost nonnegative in the sense of the component-
wise inequalities (1).

The AFS represents all possible factorizations (2) or
equivalently all feasible matricesT. A permutation ar-
gument shows that it is sufficient to consider only all
the first rows of feasible matricesT. And even more,
the FSV-scaling [7] allows to fix the first entryT(1, 1)
of this row to 1. Hence the first column ofT is the all-
ones vector [7, 13]. The AFS is defined to be the set
of all vectorst = T(1, 2 : 3) which are connected to a
regular matrixT so thatC = UΣT−1 andA = TVT are
nonnegative matrices. These nonnegativity constraints

INNPOLINNPOLINNPOLINNPOLINNPOLINNPOL FIRPOLFIRPOLFIRPOLFIRPOL

Figure 1: The polygons INNPOL and FIRPOL for the model prob-
lem introduced in Section 5.1. For the construction of FIRPOL the
parameterεA = 0.005 has been used. The boundary of the half-planes
defining FIRPOL are drawn by gray lines.

for C andA can be weakened by assuming the inequal-
ity (1). The resulting generalized AFS with respect to
FSV-scaling is defined next.

Definition 2.1. Let D ∈ Rk×n be a rank-3matrix, and let
D = UΣVT be the truncated SVD of D with U∈ R

k×3,
Σ ∈ R3×3 and V∈ Rn×3. If the diagonal matrixΩ ∈ Rk×k

Ω(i, i) = (UΣ)−1
i,1 i = 1, . . . , k, (3)

has positive diagonal elements (see Sec. 3.4 in [7] for
the justification and the construction ofΩ), then for pa-
rametersεC ≥ 0 and εA ≥ 0 the spectral factor AFS
with respect to FSV-scaling is defined to be the set

MεC,εA =
{

t ∈ R1×2 : exists regular T, T(1, :) = (1, t),

ΩUΣT−1
≥ −εC,TVT

≥ −εA

}

.

2.2. INNPOL, FIRPOL and the construction of the AFS

The AFS is a subset of a first polygon (FIRPOL), see
Definition 2.3. The AFS lies outside the polygon (INN-
POL), which is defined in Definition 2.2; see [3, 4, 10].
INNPOL is a subset of FIRPOL, see Figure 1, where
these polygons are drawn for the spectral data matrix of
the model problem from Section 5.1.

Definition 2.2. The convex hull of the row vectors
of ΩDV(:, 2 : 3) is called inner polygon (INNPOL).
ThereinΩ is given by Eq.(3).

The polygon FIRPOL is defined by all coefficient
vectors which result in nonnegative linear combinations
of the right singular vectors [3]. This condition is weak-
ened in the following, namelyA = TVT ≥ −εA is a
componentwise lower bound on the matrix elements of
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A for a εA ≥ 0. Together with the scaling condition
T(:, 1) = (1, 1, 1)T the defining inequality is

3∑

i=2

T(1, i)(V(:, i))T
≥ −V(:, 1)T − εAe, (4)

wheree= (1, 1, . . . , 1)T ∈ Rn is the all-ones vector. The
set of row vectorst = T(1, 2 : 3) ∈ R

1×2 which satisfy
Eq. (4) defines the polygon FIRPOL.

Definition 2.3. Let DTD be an irreducible matrix. Then
the polygon given by





t ∈ R1×2 :

3∑

i=2

ti−1(V(:, i))T
≥ −(V(:, 1))T − εAe






is an intersection of k half-spaces and is called FIRPOL.
Therein t1 and t2 are the two components of t∈ R1×2.

The chemical meaning of the polygons FIRPOL and
INNPOL is as follows: FIRPOL represents the set
of almost nonnegative spectra of a chemical three-
component system in the abstract space of expansion
coefficients. Each point of FIRPOL represents a spec-
trum. Any point outside FIRPOL is chemically mean-
ingless as the associated “spectrum” contains compo-
nents which are smaller than−εA.
The vertices of the polygon INNPOL are the representa-
tives of the rows of the spectral data matrixD in the AFS
plane. This explains why INNPOL should be contained
in the triangle whose vertices represent the pure com-
ponent spectra. If small perturbations are allowed, then
INNPOL might slightly intersect the triangle of the pure
component spectra.Figure 1 shows not only the poly-
gons INNPOL and FIRPOL, but also the half-spaces
by gray lines. The intersection of all these half-spaces
equals FIRPOL. In the case of a spectral data matrixD
which includes small negative components, the param-
eterεA has to be sufficiently large (so−εA is sufficiently
small) so that INNPOL is a subset of FIRPOL. This is
fulfilled, if and only if the inequality min(ΩDV) ≥ −εA

holds. Then the AFS is a subset of FIRPOL and is also
located outside INNPOL; this is the content of the next
theorem.

Theorem 2.4. The three points T(i, 2 : 3), i = 1, 2, 3, in
FIRPOL determine the existence of anonnegativema-
trix factorization (case I) or the existence of a nearly
nonnegative matrix factorization which can include
small negative components (case II).

I: Let D be a nonnegative matrix. Then D= CA is
a nonnegative matrix factorization with an FSV-
scaled factor A if and only if for the three points

Figure 2: Family of tangent lines (gray lines) at a vertex of aconvex
polygon (black bold lines).

t(ℓ) ∈ R1×2 in FIRPOL with A= TVT and T(ℓ, 2 :
3) = t(ℓ) for ℓ = 1, 2, 3 the convex hull of these three
points includes the polygon INNPOL.

II: Let D be a matrix, which fulfills the component-
wise inequalityΩD ≥ −εA for a properεA ≥ 0.
The diagonal matrixΩ is given by Eq.(3). Then
D = CA is a matrix factorization withΩC ≥ −εC
and A≥ −εA with an FSV-scaled factor A if and
only if for three points t(ℓ) ∈ R1×2 in FIRPOL with
A = TVT and T(ℓ, 2 : 3) = t(ℓ) for ℓ = 1, 2, 3 the
affine hull of these three points t(ℓ) includes INN-
POL. All the expansion coefficients of the affine lin-
ear combinations are greater than or equal to−εC.

The proof of case I is part of the classical analysis of
Borgen and Kowalski [3]. Case II is proved by Theo-
rem 3.11 in the first part of this paper [7]. Theorem 2.4
describes the core idea of the (illustrative) geometric in-
terpretation of the AFS: By construction each point of
the AFS is a vertex of a certain triangle in FIRPOL so
that each of the vertices of INNPOL can be represented
by an affine combination of the vertices of this trian-
gle. The expansion coefficients in these affine combina-
tions are all greater than or equal to−εA. An example is
shown in Figure 3 where the three verticesP, Q andR
belong to the AFS since the triangle includes INNPOL
and is included in FIRPOL.

3. The line-moving algorithm

This section introduces the new line-moving algo-
rithm for the geometric construction of generalized Bor-
gen plots. The detailed justification of the algorithm is
not included in this section, but postponed to Section 4.

First, we describe the tangent algorithm by Borgen
and Kowalski [3]. The tangent algorithm and thesim-
plex rotation algorithm, see also [3], allow to construct
the AFS for the nonnegative matrix factorization prob-
lem with εC = εA = 0.

4



Q

P

R

r

q

p

INNPOL

FIRPOL

Figure 3: The tangent algorithm of Borgen and Kowalski to construct
the so-called Borgen plots. Starting from a tangent liner to INNPOL,
a trianglePQR is constructed so that each edge is a tangent to INN-
POL. The pointR belongs to the boundary of the AFS.

3.1. The tangent algorithm

According to Theorem 2.4, the key construction prin-
ciple of the tangent algorithm is to find triangles within
FIRPOL which enclose INNPOL. This relation between
a factorization ofD and a triangle within FIRPOL is
stated in case I of Theorem 2.4. Later, in Section 3.2
the line-moving algorithm generalizes the tangent algo-
rithm by constructing triplets of points according to case
II of Theorem 2.4.

Next we explain precisely the meaning of tangents
at a vertex of a convex polygon. A tangent line at a
boundary point of a polygon is uniquely defined as far
as this boundary point is not a vertex. In a vertex the
boundary curve of the polygon is not a differentiable
function. For the general case the following definition
holds.

Definition 3.1. A tangent of a convex polygon is a
straight line which touches the polygon in at least one
point and which does not intersect the interior of the
polygon.

Hence, at a vertex a family of possible tangent lines
exists. This is illustrated by Figure 2.

The tangent algorithm [2, 3, 10] works as follows:
We start with a tangent liner to the inner polygon; see
Figure 3 for an illustration of the following steps.

1. A tangent liner of INNPOL intersects FIRPOL at
the pointsP andQ.

2. Construct the second tangent lineq to INNPOL
starting inP.

3. Construct the third tangent linep to INNPOL start-
ing in Q.

4. The point of intersection ofq andp is R.

5. If R is inside FIRPOL and the trianglePQR en-
closes INNPOL, thenRbelongs to the boundary of
the AFS. IfPQRdoes not enclose INNPOL, then
the pointR is meaningless; proceed with step 6.

6. Rotate the initial tangentr around INNPOL (in or-
der to construct all possible tangents to INNPOL)
and repeat the construction with step 1.

The set of all pointsR which result from the tangent
rotation algorithm belongs to the AFS according to The-
orem 2.4. These points constitute a major part of the
boundary of the AFS. These parts of the boundary are
drawn by bold black lines in Figure 11. The remaining
parts of the boundary of the AFS belong to the boundary
of FIRPOL or are connecting lines between these two
types of boundaries. It can be proven thatR is never an
interior point of the AFS but belongs to the boundary.
Otherwise, the linep would not be tangent at INNPOL
so thatRcan be moved to the inside of the initial triangle
PQR. Numerically, the tangent liner is rotated around
INNPOL where the possible angle values, which deter-
mine the slope of this tangent, are taken from a certain
discretization of the angle interval [0, 360) measured in
degrees. The following line-moving algorithm general-
izes the classical tangent algorithm.

3.2. The line-moving algorithm

This section provides the recipe how to construct the
AFSMεC,εA. The mathematical justification of the algo-
rithm is provided in Section 4. The procedure is similar
to the tangent algorithm. The construction starts with
a tangent liner at INNPOL. First an auxiliary pointH
is constructed. The geometry underlying Procedure I is
illustrated by Figure 4.

Procedure I: Construction of the auxiliary point H.

1. For a tangent liner to INNPOL the points of inter-
sectionP andQ with FIRPOL are determined.

2. Construct the tangentq to INNPOL throughP.

3. Construct the tangentp to INNPOL throughQ.

4. The intersection ofq andp is H.

5. If the trianglePQH does not enclose INNPOL,
then H is mirrored alongr. OtherwiseH is not
changed.

If H is inside FIRPOL and has not been flipped along
r, then the pointH belongs to the AFS of nonnega-
tive factorizations by construction. However,H is not
a point on the boundary of the AFS ifεC > 0, cf. Theo-
rem 4.6. The pointH defines the search direction in the
following “Procedure II”.
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Figure 4: Construction of the auxiliary pointH for the line-moving
algorithm. If the trianglePQH does not enclose INNPOL, then the
point H is mirrored alongr . The mirrored pointH is used to define a
search direction in the algorithm.

The line-moving algorithm constructs the AFS not
by tangent lines to INNPOL (as the tangent algorithm),
but by tangents to certain displacements of the polygon
INNPOL. If I denotes the polygon INNPOL, then we
need the two displacementsIP andIQ of INNPOL.
These are given by

IP =

{

S + εCP
1+ εC

: S ∈ I

}

, (5)

IQ =

{

S + εCQ
1+ εC

: S ∈ I

}

. (6)

Therein the variableS runs through all vertices of INN-
POL. In words, the setIP results from addingεCP to
each point of INNPOL and by subsequent multiplica-
tion of the resulting vector by 1/(1+ εC). The setIQ is
a similar displacement ofI. The line-moving algorithm
requires that the setsIP andIQ are updated for each
line PQ. The indexesP andQ of these sets symbolize
the dependency on the pointsP andQ.

Then fromP,Q,IP andIQ a pointR is constructed.
This pointR is the intersection of the two tangents toIP

and toIQ, see Figure 5 for an illustration. With these
points each vertex of INNPOL is an affine combination
of P, Q andR and the linear coefficients ofP andQ in
the affine combination are greater than or equal to−εC,
see Theorem 2.4. (The proof of this fact is given later
in and after Theorem 4.6 in Section 4.) These steps are
summarized in the next procedure.

Procedure II: Construction of the point R.

1. Compute the setsIP andIQ.

2. Construct the tangent lineq to IQ throughP. The
point of tangency is to be determined in the same

half-plane (which results from the division of the
plane byr) in which the pointH is located.

3. Construct the tangent linep to IP through Q.
Again the point of tangency is to be determined
in the half plane (with respect tor) which contains
H.

4. The point of intersection ofq andp is R.

5. Check whetherR is in FIRPOL.

The pointRbelongs to the generalized AFS if it is in-
side FIRPOL; the mathematical justification is provided
later in Theorem 4.6.

The linePQ touches but does not intersect INNPOL.
Next we move the liner by a parallel shift into the two
possible directions, namely either towards the interior
of INNPOL or away from INNPOL. First we mover
towards INNPOL so thatr intersects INNPOL. The new
points of intersection ofr with FIRPOL are denoted,
once again, byP andQ. The auxiliary pointH is not
changed. As described above we compute the two sets
IP andIQ and the pointR. Figure 6 illustrates these
steps. The shift increment of these parallel shifts ofr is
denoted byδd. This parallel translation can be stopped
if the construction cannot find a point of the AFS. Then
r is moved away from INNPOL, untilr leaves FIRPOL.

If r does not intersect INNPOL andR has success-
fully been constructed so thatR is in FIRPOL, thenR
belongs to the AFS, see Theorem 4.6. Ifr intersects
INNPOL, then the expansion coefficients of the affine
combinations which express the vertices of INNPOL in
terms ofP, Q andR are partially negative. In this case
one has to check, whether or notR belongs to the AFS.
If R is outside the polygon FIRPOL, thenR can be ne-
glected. Otherwise, one has to check whether or not
all vertices of INNPOL are affine combinations ofP, Q
andR and the linear coefficients ofR are greater than
or equal to−εC, see Theorem 2.4. If this condition for
the affine combination condition is fulfilled, thenR be-
longs to the AFS. Further, the convex polygon, which is
limited by the boundary of FIRPOL and the two lines
passing through eitherP andR or Q andR, belongs to
the AFS, e.g. the blue filled polygon in Figure 5.

If R is inside FIRPOL but the affine combination con-
dition is not fulfilled, then we search for points of the
AFS which are located on the lines passing throughP
and R or throughQ and R. The justification for this
is given later in Theorem 4.6. Therefore we compute
the point of intersectionR1 of the line throughP andR
with the boundary of FIRPOL. If all vertices of INN-
POL fulfill the affine combination condition forP, Q
andR1, thenR1 belongs to the AFS. Now, by using the
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Figure 5: Construction of the pointR by the line-moving algorithm.
Top: The initial tangentr to INNPOL, the displacementIQ of INN-
POL and the tangentq to the setIQ. Center: The second tangentp to
the displacementIP of INNPOL is constructed. Bottom: The point
R is the intersection ofp andq and belongs to the generalized AFS
MεC,εA . The further computation shows that the complete blue filled
polygon belongs to the AFS.
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Figure 6: Computation of a part of the AFS by parallel translation
of the liner towards the center of INNPOL. The blue filled polygon
belongs to the AFS. The pointsR0

1 andR0
2 are constructed as described

in Procedure III.

bisection method, one can find the pointR0
1 on the same

line which is closest toRand still fulfills the affine com-
bination condition. Then the convex polygon, which is
limited by the boundary of FIRPOL, the line passing
throughR0

1 andP and also the line throughR0
1 andQ,

belongs to the AFS. In the same way the pointR2 is
computed as the point of intersection of FIRPOL with
the line passing throughQ andR. If R2 belongs to the
AFS, then we compute the pointR0

2 which is closest to
Ron the line throughRandQ and which belongs to the
AFS.

A short summary of this step of the algorithm is as
follows:

Procedure III: Computation of R01 and R0
2.

• If R is outside FIRPOL, then neglect R.

• Else ifRdoes not belong to the AFS, then compute
the two pointsR1 andR2 of intersection ofp andq
with the boundary of FIRPOL.

– If R1 belongs to the AFS, then computeR0
1.

– If R2 belongs to the AFS, then computeR0
2.

After the liner has been shifted parallel to maximal
distances into the two possible directions away from its
initial position, then the rotation process ofr around
INNPOL is continued. The discrete numerical process
requires thatr is rotated by a fixed small angle incre-
mentδφ. After rotation of r, the pointsP and Q are
recomputed and the pointH is to be updated.

Algorithm 1 combines the three procedures I-III with
the tangent rotation process. The required input data are
the two polygons FIRPOL and INNPOL, the shift in-
crement parameterδd (which is determined byεC) and
the rotation angle incrementδφ. An illustration of the
line-moving algorithm is given in Figure 7.
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Figure 7: Illustration of the AFS construction by the line-moving algorithm from the starting stage (left uppermost subfigure) until completion
(right lowermost subfigure). The closely adjacent two red lines are the innermost and outermost lines which are used by the algorithm. For the
inner red tangent line the two blue lines start at the points of intersection with FIRPOL. The blue lines are tangents at the setsIP respectively
IQ. The point of intersection of these two blue lines belongs tothe AFS if it is contained in FIRPOL. The two blue dots (the second blue dot is
constructed by the second red line in the same way) representthe innermost and outermost AFS points which are constructed from the lines parallel
to the red lines. The green areas inside FIRPOL belong to the AFS; these areas are growing in the AFS construction process.The last subfigure
shows the final AFS.
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Algorithm 1 The line-moving algorithm
Require: INNPOL, FIRPOL,δd andδφ.

Construct initial tangentr to INNPOL
l = smallest integer larger than 360/δφ
for i = 1 : l do

Rotate tangent liner around INNPOL by the
rotation angle incrementδφ (in degrees).

Procedure I→ computeH
Procedure II→ computeR
while R, R0

1 or R0
2 belongs to the AFSdo

mover parallel towards center of INNPOL
(the parallel shift increment isδd).

Procedure II→ computeR
if R is in FIRPOL,R is not in the AFSthen

Procedure III→ computeR0
1,R

0
2.

end if
end while
while r intersects FIRPOLdo

mover parallel away from INNPOL
(the parallel shift increment isδd).

Procedure II→ computeR
end while

end for

3.3. Parameter selection in the line-moving algorithm

The line-moving algorithm needs four parameters to
be defined. The two parametersεC andεA have a direct
impact on the AFS as they limit the acceptable size of
negative entries in the factorsC andA, see Eq. (1). For
εA the inequalityΩD ≥ −εA has to be fulfilled so that
the inner polygon INNPOL is still contained in the poly-
gon FIRPOL. If the limit min(ΩD) = −εA is attained,
then a vertex of INNPOL is located on the boundary
of FIRPOL. In order to stabilize the numerical compu-
tation one should chooseεA slightly greater than this
minimum. We foundεA = −1.05 min(ΩD) to be a good
choice for many AFS computations for perturbed data.
The parameterεC limits the acceptable size of negative
entries in the factorC. An increasing value ofεC in-
creases the size of the AFS and the computation time.
HenceεC should be as small as possible, but the param-
eter must be increased with an increasing noise level.
In general, by increasingεA or εC the size of the AFS
increases, see Lemma 3.12 in [7]. The geometric AFS
construction works well for data with relatively small
perturbations. Moreover, the algorithm is more stable if
the negative entries are mainly concentrated in the fac-
tor A.

The parametersδd and δφ influence the accuracy
and computation time of the algorithm. The distance
between the parallel lines in FIRPOL from which the

pointsR of the AFS are computed is given byδd. The
smaller the value ofδd, the greater the accuracy and the
computation time. The parameterδφ is the rotation an-
gle of the linesPQ in the line-moving algorithm. This
control parameter influences the accuracy and computa-
tion time in a similar way asδd. The smaller the value
of δφ, the greater are the accuracy and the computation
time. Tables 1 and 2 demonstrate these relations for the
three-component model problem presented in Section
5.1.

3.4. Implementation in the FACPACKsoftware

The line-moving algorithm is implemented in the
Generalized Borgen plot moduleof theFACPACKsoft-
ware. This software and a tutorial can be accessed at

http://www.math.uni-rostock.de/facpack/

FACPACKallows to construct the generalized Borgen
plots with respect to the RS-scaling and alternatively
with the FSV-scaling. The parameters forεC and εA

can be modified. It is also possible to change the paral-
lel shift incrementδd and the rotation angle increment
δφ. By a live-view modethe AFS can be explored inter-
actively. While the mouse pointer is moved through the
AFS the related spectra or profiles are displayed. Cer-
tain spectra or concentration profiles can be fixed and a
reduced AFS can be computed. This smaller AFS takes
into account this additional knowledge on the pure com-
ponent factorization.

4. Justification of the line-moving algorithm

According to Theorem 2.4 feasible points in AFS are
associated with triangles in FIRPOL. The line-moving
algorithm works with the premise that for a construc-
tion of the boundary of the AFS always two vertices of
the triangles can be fixed to the boundary of FIRPOL.
Further, the edges of these triangles can be assumed to
be tangents to the setsIP or IQ; see Equations (5) and
(6). This section provides a justification for these as-
sumptions. First we show that it is possible to construct
the AFS starting from pointsP and Q located on the
boundary of FIRPOL.

Lemma 4.1. For each point R inside the AFS there ex-
ist two points P and Q so that all vertices of INNPOL
are affine combinations of P, Q and R with expansion
coefficients greater than or equal to−εC.

It is possible to choose at least one of the points P
and Q to be located on the boundary of FIRPOL.

9
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P′

INNPOL

FIRPOL

Figure 8: Illustration of the idea of the proof of Lemma 4.1. For
each pointR in the AFS there exist two pointsP and Q so that the
affine hull ofP, Q andR encloses INNPOL and where the affine hull
includes only expansion coefficients greater than or equal to−εC. By
stretching the triangleP′Q′Rwith fixed Rat least one of the pointsP′

andQ′ is moved to the boundary of FIRPOL.

Proof. Let I1,I2, . . . be an enumeration of the finite
number of vertices of the polygon INNPOLI. Taking
an arbitrary vertexIi , then this point is an affine combi-
nation ofRand two additional pointsP′ andQ′, i.e.

Ii = αiP
′ + βi Q

′ + γiR. (7)

For this affine combination Theorem 2.4 guarantees
αi ≥ −εC, βi ≥ −εC, γi ≥ −εC andαi + βi + γi = 1.

Next we consider a pointP so thatP′ is a convex
combination ofP andR, i.e. P′ = λP + (1 − λ)R for
λ ∈ [0, 1]. We also consider a pointQ so thatQ′ =
λQ + (1 − λ)R with the sameλ. Inserting these two
convex combinations in (7) results in

Ii =αi(λP+ (1− λ)R) + βi(λQ+ (1− λ)R) + γiR

=αiλP+ βiλQ+ (αi(1− λ) + βi(1− λ) + γi) R.

This geometry is illustrated by Figure 8. For this rep-
resentation ofIi in terms ofP, Q andR the sum of co-
efficients is equal to 1 since

αiλ + βiλ + αi(1− λ) + βi(1− λ) + γi = αi + βi + γi = 1.

For the expansion coefficients of the linear combination
it holds thatβiλ ≥ −εC, γiλ ≥ −εC and

αi(1− λ) + βi(1− λ) + γi =αi + βi + γi
︸       ︷︷       ︸

=1

−λ (αi + βi)
︸   ︷︷   ︸

=1−γi

=1− λ + λγi ≥ λγi ≥ −εC.

This proves thatIi is also an affine combination ofP,
Q andR with linear coefficients greater than or equal to

R
P

Q

Q′

INNPOL

FIRPOL

Figure 9: Illustration of Theorem 4.2. For each pointR of the AFS
there exist two pointsP and Q so that the affine hull of P, Q and
R with expansion coefficients greater than or equal to−εC encloses
INNPOL. P andQ can be located on the boundary of FIRPOL.

−εC. Geometrically, we have analyzed a stretching of
the triangle. The trianglePQRis similar to the triangle
P′Q′R, and the triangleP′Q′R can be stretched with a
fixed-point inRuntil (at least) one of the pointsP andQ
is located on the boundary of FIRPOL. This completes
the proof.

The next theorem shows thatP together withQ can
be located on the boundary of FIRPOL.

Theorem 4.2. For each point R in the AFS there exist
two points P and Q on the boundary of FIRPOL so that
all vertices of INNPOL are affine combinations of P, Q
and R with linear coefficients greater than or equal to
−εC.

Proof. By Lemma 4.1 for any pointR in the AFS there
exist two other pointsP and Q′ in the AFS so that at
least one of the points, sayP, is located on the boundary
of FIRPOL, and each vertex of INNPOL is a feasible
affine combination ofP, Q′ andR. Suppose thatQ′ is
not on the boundary of FIRPOL. Then a ray starting in
R and passing throughQ′ intersects FIRPOL inQ, see
Figure 9. The pointQ′ is a convex combination ofQ
andR

Q′ = λQ+ (1− λ)R

with 0 < λ < 1. LetIi be theith vertex of INNPOL.
Then the following relation holds

Ii =αi P+ βi Q
′ + γiR

=αi P+ βi(λQ+ (1− λ)R) + γiR

=αi P+ βiλQ+ (γi + βi(1− λ))R
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Figure 10: Signs of the barycentric coordinates in a triangle.

with αi , βi , γi ≥ −εC andαi + βi + γi = 1.
Let us suppose that the coefficient of R breaks the
−εC bound, i.e.γi + βi(1 − λ) < −εC. Next we derive
a contradiction. The inequality implies thatβi as well
asγi must then be negative. The negative coefficientγi

of R means thatIi belongs to the half-plane which is
on the other side of the linePQ′ than the pointR, cf.
Remark 4.3. Simultaneously, a negative coefficient βi

of Q′ means thatIi belongs to the half-plane which is
on the other side of the linePRthan the pointQ.

This means thatIi is outside FIRPOL, sinceP is on
the boundary of FIRPOL. ThereforeIi is not a vertex of
INNPOL. This is a contradiction so thatγi + βi(1− λ) ≥
−εC must be true.

This proves that all vertices of INNPOL are each
affine combinations ofP, Q andR with expansion co-
efficients greater than or equal to−εC.

Remark 4.3. The barycentric coordinate of the point

αP+ βQ+ γR

in the triangle PQR is the triplet(α, β, γ) with α ≥ 0,
β ≥ 0, γ ≥ 0 andα + β + γ = 1. All points in area 1
in Figure 10 can be addressed in this way. If negative
barycentric coordinatesα, β andγ are allowed andα+
β+ γ = 1 is still assumed to hold, then the (generalized)
barycentric coordinates in the areas 2 up to 7 in Figure
10 satisfy the following sign conditions:

2 α ≥ 0, β ≤ 0, γ ≥ 0,
3 α ≤ 0, β ≥ 0, γ ≥ 0,
4 α ≥ 0, β ≥ 0, γ ≤ 0,
5 α ≤ 0, β ≤ 0, γ ≥ 0,
6 α ≤ 0, β ≥ 0, γ ≤ 0,
7 α ≥ 0, β ≤ 0, γ ≤ 0.

Theorem 4.2 guarantees that the construction of the
full AFS is possible starting from the pointsP andQ on

the boundary of FIRPOL. These points on the boundary
of FIRPOL are said to belong to theouter boundaryof
the AFS. The key idea of the tangent algorithm and of
the line-moving algorithm is to construct all points on
the inner boundaryof the AFS.

Definition 4.4 (Inner and outer boundary of the AFS).
A point R belongs to the inner boundaryof the AFS, if
for all triangles PQR, whose affine hull with expansion
coefficients greater than or equal to−εC includes INN-
POL, there is no point R′ inside PQR, such that INN-
POL is enclosed in the affine hull of PQR′ with expan-
sion coefficients greater than or equal to−εC.
The outer boundaryof the AFS is given by the intersec-
tion of the AFS with the boundary of the polygon FIR-
POL.

It is possible that a certain point can belong to the
inner and to the outer boundary of the AFS simultane-
ously. Surprisingly, it is also possible that points on the
boundary of the AFS belong neither to the inner nor to
the outer boundary. An example is shown and explained
in Figure 11. Then the remaining parts of the boundary
of the AFS are constructed by connecting the endpoints
of the inner boundary with the associated endpoints of
the outer boundary by straight lines, as illustrated by the
blue polygons in Figures 5 and 6. The points on the in-
ner boundary of the AFS (and sometimes interior points
of the AFS) are constructed by tangent lines to the sets
IP andIQ, see Equations 5 and 6.

Lemma 4.5. Let R be a point of the inner boundary
of the AFS with additional two points P and Q on the
boundary of FIRPOL such that INNPOL is enclosed in
the affine hull of P, Q and R with expansion coefficients
greater than or equal to−εC. Then for at least one ver-
tex of INNPOL at least one expansion coefficient of the
affine combination of this vertex in terms of P, Q and R
is equal to−εC.

Proof. LetIi be the enumeration of the vertices of INN-
POL. If PQRis a triangle in FIRPOL, whose affine hull
with expansion coefficients greater than or equal to−εC
encloses INNPOL, then eachIi ∈ I is an affine combi-
nation ofP, Q andR. This reads

Ii = αiP+ βiQ+ γiR

with αi + βi + γi = 1 andαi , βi , γi ≥ −εC. Suppose that
the strict inequalityαi , βi , γi > −εC would hold for each
vertex of INNPOL. LetR′ be a convex combination of
P, Q andRgiven by

R′ = λP+ λQ+ (1− 2λ)R

11



INNPOL

FIRPO
L

IN
NPOL

FIRPOL

Figure 11: Top: One edge of INNPOL coincides with an edge of
FIRPOL. ForεC = 0 the inner boundary of the AFS consists of the
three points marked by bold black dots. The outer boundary isgiven
by the bold gray line. The remaining part of the boundary of the AFS
does neither belong to the inner boundary nor to the outer boundary.
Bottom: The inner boundary is given by the bold black lines and the
inner boundary by the bold gray lines.

with 0 < λ < 0.5. ThenR can be expressed as

R=
R′ − λP− λQ

1− 2λ
.

The verticesIi of INNPOL can be rewritten as affine
combinations ofP, Q andR′ so that

Ii =

(

αi −
λγi

1− 2λ

)

P+
(

βi −
λγi

1− 2λ

)

Q+
γi

1− 2λ
R′.

The three coefficients in this representation ofIi can
be decreased so that for a sufficiently smallλ0 the three
inequalities

(

αi −
λ0γi

1− 2λo

)

≥ −εC, (8)

(

βi −
λ0γi

1− 2λ0

)

≥ −εC, (9)

γi

1− 2λ0
≥ −εC (10)

hold and that equality is attained for at least one of the
three inequalities. In order to verify this we consider
the three possible casesγi > 0, γi < 0 or γi = 0. First,
for γi > 0 a positive quantity is subtracted fromαi in
(8) and alsoβi in (9). This allows to attain equality for
a sufficiently largeλ0. If γi < 0, then equality can be
attained in (10) for a sufficiently largeλ0. Finally, the
caseγi = 0 means that the vertexIi is located on the
line throughP andQ so that the construction ofR′ is
not meaningful.

All this means thatR′ belongs to the AFS and thatR
is not a point on the inner boundary as a smaller triangle
PQR′ has been constructed withR′ closer to INNPOL.

The following theorem provides the justification that
the boundary of the AFS can be constructed only from
the points of the AFS which result from a certain tan-
gent construction to INNPOL. Subsequent to this theo-
rem the geometric AFS construction with respect to the
shifted setsIP andIQ is justified.

Theorem 4.6.Let R be a point on the inner boundary of
the AFS and let the points P and Q be on the boundary
of FIRPOL so that INNPOL is enclosed in the affine hull
of P, Q and R with expansion coefficients greater than
or equal to−εC. Then for at least two of the points P,
Q and R there exists (at least) one vertex of INNPOL so
that the expansion coefficients of the affine combination
being associated with these two points are equal to−εC.

12
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Figure 12: A typical geometry underlying the idea of the proof of
Theorem 4.6.

Proof. LetIi be an enumeration of the vertices of INN-
POL. If PQRis a triangle in FIRPOL whose affine hull
with expansion coefficients greater than or equal to−εC
encloses INNPOL, then eachIi is an affine combination
of P, Q andR with

Ii = αiP+ βiQ+ γiR

andαi +βi +γi = 1 together withαi , βi , γi ≥ −εC. These
expansion coefficients depend on the indexi of the ver-
tex.

In the following we analyze three different cases:
Namely we assume that for two of the three verticesP,
Q and R all expansion coefficients are strictly greater
than−εC. We derive for each of these three cases a con-
tradiction. This finally proves the theorem.

Case I: Suppose that the coefficients ofP andQ are
strictly greater than−εC for each vertex of INNPOL,
i.e.αi > −εC andβi > −εC for each vertexIi of INN-
POL. LetQ′ be a convex combination ofP andQ

Q′ = λP+ (1− λ)Q

with 0 < λ < 1. The pointQ can be expressed as
Q = (Q′ − λP)/(1− λ). Inserting this in the affine rep-
resentation ofIi results in the affine combination ofP,
Q′ andR

Ii =

(

αi −
λβi

1− λ

)

︸         ︷︷         ︸

ᾱi

P+
βi

1− λ
︸︷︷︸

β̄i

Q′ + γiR.

Now it is possible to choose 0< λ0 < 1 sufficiently
small so that the coefficients ¯αi = αi−(λ0βi)/(1−λ0) and
β̄i = (βi)/(1− λ0) are greater than−εC for all indexesi
(as we have assumedαi > −εC andβi > −εC). Then let

the pointQ′′ be the point of intersection of the boundary
of FIRPOL with a ray starting inR and passing through
Q′. The geometry of this construction is illustrated in
Figure 12.

Next the pointQ′ can be expressed as a convex com-
bination ofQ′′ andR in the form

Q′ = µQ′′ + (1− µ)R

with a parameter 0< µ < 1. Then the vertices of INN-
POL can be written as

Ii = ᾱi P+ µβ̄i Q+ (γi + (1− µ)β̄i)R,

see Figure 12. The coefficients ¯αi andµβ̄i are strictly
greater than−εC. Supposeγi + (1 − µ)β̄i < −εC to
be valid, thenγi and β̄i must each be negative, which
contradicts the fact thatP is located on the boundary
of FIRPOL. Sinceγi and β̄i cannot both be negative,
the equalityγi + (1 − µ)β̄i = −εC holds, if and only if
γi = −εC and β̄i = 0 is valid. This would mean that
the pointIi is located outside FIRPOL, which is again
a contradiction. Therefore all expansion coefficients are
strictly greater than−εC. For this case, Lemma 4.5 says
that R cannot be located on the inner boundary of the
AFS. This means that the assumption ofαi > −εC and
βi > −εC cannot hold for all verticesIi of INNPOL.

Case II: Now we assumeαi > −εC andγi > −εC
for all verticesIi . The pointR′ is defined as a convex
combination ofP andR

R′ = λP+ (1− λ)R

with 0 < λ < 1. ThenR is given byR= (R′−λP)/(1−λ).
Now the vertices of INNPOLIi can be expressed as
affine combinations ofP, Q andR′

Ii =

(

αi −
λγi

1− λ

)

P+ βiQ+
γi

1− λ
R′

and it is possible to choose a parameter 0< λ0 <

1 sufficiently small so that the expansion coefficients
αi − (λ0γi)/(1 − λ0) and (γi)/(1 − λ0) are greater than
or equal to−εC for all vertices of INNPOL, and for
at least one coefficient equality holds. But this means
thatPQR′ is a triangle, which is included in the triangle
PQRand whose affine hull with expansion coefficients
greater than or equal to−εC encloses INNPOL. Then
R cannot be a point of the inner boundary of the AFS
according to Definition 4.4. Therefore the assumption
αi > −εC andγi > −εC has led to a contradiction.

Case III: The assumptionβi > −εC andγi > −εC
for each vertexIi of INNPOL results a contradiction by
the arguments as used for the case II. This completes the
proof.
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Assume each vertex of INNPOL to be an affine com-
bination of the pointsP, Q andR with expansion coef-
ficients greater than or equal to−εC. Further, for one
vertex of INNPOL the expansion coefficient ofP is as-
sumed to be equal to−εC. Thus each vertexIi of INN-
POL can be written as

Ii = αiP+ βiQ+ γiR

with αi +βi +γi = 1 andαi , βi , γi ≥ −εC. If εCP is added
to the latter equation and the sum is divided by 1+ εC,
then the result is

Ii + εCP
1+ εC

=
αi + εC

1+ εC
P+

βi

1+ εC
Q+

γi

1+ εC
R. (11)

Since the sum of the expansion coefficients on the right-
hand side of (11) equals 1, the point (Ii + εCP)/(1+ εC)
is an affine combination ofP, Q andR. If αi = −εC
holds, then (Ii + εCP)/(1+ εC) is on the line throughQ
andR. Otherwise the point is located on the same side
of this line asP because the coefficient (αi+εC)/(1+εC)
is positive.

In the line-moving algorithm sets of shifted points of
INNPOLIP andIQ are used to construct points within
the AFS, see Eqs. (5) and (6). The setIP is given by the
points (Ii + εCP)/(1+ εC) we examined above. Equiva-
lent conditions can be formulated for the pointQand the
setIQ. From Theorem 4.6 follows that it is sufficient to
search for points on the inner boundary of the AFS on
the tangents to the setsIP andIQ. This is exactly what
is done in the line-moving algorithm.

Remark 4.7. At the end of this section we would like
to comment on the position of the constructed points
R in the AFS. On the one hand, the tangent-algorithm
in Section 3.1 guarantees that the constructed points R
are located on the boundary of the AFS. On the other
hand, the line-moving algorithm does not necessarily
construct AFS elements R in a way that they belong to
the inner boundary of the AFS, cf. Definition 4.4. In
order to check whether or not R belongs to the inner
boundary, one has to try to decrease a feasible triangle
PQR to PQR′ with R′ moved closer to INNPOL so that
PQR′ still includes INNPOL. If this is possible, then R
does not belong to the inner boundary.

5. Numerical experiments

Next the line-moving algorithm is to be tested for a
model problem and with respect to different levels of
(pseudo-random) noise. For these investigations our fo-
cus is on the effect of the parametersεC, δd and δφ.

The same model problem has already been used in the
first part of this paper [7] for a comparison of the line-
moving algorithm with the polygon inflation algorithm
and the classical Borgen plots.Additionally, we con-
sider an example problem of an AFS with two line-
shaped segments which is computed by the tangent-
algorithm. If we apply the line-moving algorithm and if
we allow small negative entries in the factorsC andA,
then the line-shaped AFS segments grow to thin stripes.

5.1. The model problem

The three concentration profiles of our three-
component model problem are taken as

c1(t) = exp(−(t − 20)2/150),

c2(t) = exp(−(t − 50)2/200),

c3(t) = exp(−(t − 70)2/250)

with 0 ≤ t ≤ 100. The associated pure component spec-
tra are

a1(x) = exp(−(x− 50)2/500)

+ 0.5 exp(−(x− 125)2/500)+ 0.1,

a2(x) = exp(−(x− 100)2/740)

+ 0.4 exp(−(x− 100)2/1500)+ 0.15,

a3(x) = exp(−(x− 150)2/1000)

+ 0.3 exp(−(x− 75)2/2500)+ 0.2

for 0 ≤ x ≤ 200. The time and the frequency axes are
each discretized to 0.5 units so that the resulting matrix
D0 of mixture data has the dimensions 201×401. Figure
13 shows the concentration profiles and pure component
spectra.

Normal distributed noiseσ with a standard deviation
of 0.15 is added toD0 in a way which cuts off any neg-
ative entries

D(i, j) := max((1+ σ)D0(i, j), 0) .

5.2. Effects of the parameter selection on the line-
moving algorithm

The AFS ofD with respect to FSV-scaling and for
the parametersεC = 0.01,εA = 0.005,δd = 0.0001 and
δφ = 0.1deg is plotted in Figure 14.

This AFS is used as a reference in order to compare
the accuracy of the AFS approximations for different
parameter settings. The control parametersδφ andδd
are chosen relatively small to guarantee a high resolu-
tion or accuracy of the computed AFS. We have used a
standard PC with a 2.93GHz Intel CPU and with 8 GB
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Figure 13: The model problem. Left: Concentration profiles.Right: Pure component spectra. (1,2,3)=(Blue, Green, Red).
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Figure 14: The AFS for the model problem with normal distributed
noise (standard deviationσ = 0.15) computed for the parametersεC =
0.01,εA = 0.005,δd = 0.0001 andδφ = 0.1 (degrees).

RAM for all numerical experiments. The program code
is written in C and uses the Matlab graphical user inter-
face (GUI) of theFACPACKsoftware. The numerical
results are listed in the Tables 1, 2 and 3.

First we study the rotation angle incrementδφ by
which the tangent is rotated around INNPOL and which
is the starting point for the construction of a triangle
in FIRPOL which encloses INNPOL. Ifδφ is halved,
then twice as much tangents to INNPOL are used for the
AFS construction. Then the computational costs grow
approximately by the factor two. This behavior is doc-
umented by Table 1. A reasonable balance between the
computational costs and accurate AFS approximations
is achieved by the default value forδφ which is 0.1 (de-
grees) in theFACPACKsoftware.

Second, the parameterδd describes the distance
between parallel lines in the line-moving algorithm.
Again, halvingδd approximately doubles the required
computing times. In theFACPACKtoolbox the default
value isδd = 0.001. The results for different settings of
δd are listed in Table 2.

Finally, we examine the influence of the parameter
εC which bounds the smallest entries ofC from below,
i.e. C ≥ −εC. For εC = 0 the classical tangent al-

δφ [deg] computation time Hausdorff distance
0.1 198.9292s 0
0.2 74.6640s 2.68 · 10−5

0.5 30.5176s 0.0011
0.7 22.1705s 0.0012

1 15.9477s 0.002

Table 1: Computation times in seconds for the AFS with different
values of the parameterδφ. The remaining parameters are fixed to
εC = 0.01, εA = 0.005 andδd = 0.0001. The small Hausdorff dis-
tances of the AFS to the reference-AFS (withδφ = 0.1 degrees) are
tabulated in the right column.

δd computation time Hausdorff distance
1.0 · 10−4 198.9292s 0
5.0 · 10−4 30.0994s 5.2359· 10−5

1.0 · 10−3 15.3952s 8.3515· 10−5

5.0 · 10−3 4.0317s 3.2512· 10−4

1.0 · 10−2 2.5332s 4.527· 10−4

Table 2: Computation times in seconds for the AFS computation by
the line-moving algorithm with different settings of the parameterδd.
The remaining parameters are fixed toεC = 0.01, εA = 0.005 and
δφ = 0.1 (degrees). The column “Hausdorff distance” contains the
distances to the reference-AFS withδd = 0.0001.
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εC computation time Hausdorff distance
0 2.5445s 0.0173

1.0 · 10−4 181.5765s 0.0171
5.0 · 10−4 163.6554s 0.0183
1.0 · 10−3 186.6769s 0.0173
5.0 · 10−3 162.0274s 0.0065
1.0 · 10−2 198.9292s 0
5.0 · 10−2 258.6348s 0.0423

Table 3: Computation times in seconds for the AFS with different
settings ofεC. The remaining parameters were fixed toεA = 0.005,
δφ = 0.1 (degrees) andδd = 0.001. The Hausdorff distances refer to
the reference valueεC = 0.01.
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Figure 15: Effect of a growing size (surface area) of the AFS for an
increasing value of the parameterεC. The parameterεC is set to the
four values 0, 0.02 and 0.05. The remaining parameters are fixed to
εA = 0.005, δφ = 0.1 degrees andδd = 0.0001. The smallest AFS
segments of each of the three segments of the AFS belongs toεC = 0
and the largest belongs toεC = 0.05.

gorithm is used to compute the AFS; only less than 3
seconds are required for this computation. ForεC > 0
the computation times considerably increase as the line-
moving algorithm constructs a larger number of parallel
shifted tangents. Interestingly the computation times do
not monotonously increase with growingεC. However,
the largest computation time was found for the largest
value ofεC. The results are given in Table 3.

The parametersδd andδφ characterize the spatial res-
olution of the AFS computation, whereasεC and εA

have a direct influence on the size (i.e. the surface area)
of the AFS. The parametersεC andεA are to be chosen
properly with the knowledge of the smallest acceptable
entries ofC andA and with the knowledge to which ex-
tent the spectral raw data has been perturbed. The effect
of εC on the AFS is illustrated in Figure 15.

5.3. Line-moving algorithm for line-shaped segments

If a point of INNPOL is located on the boundary of
FIRPOL, then the AFS is empty or consists either of a
one-point segment or a line-shaped segment. This case
occurs if the matrixD has a zero entry (or in the case of
perturbed data: an entry equal to−εA). If εA is greater
than−min(D, 0), then none of the segments are degen-
erated, but all segments have a nonzero surface area.
Additionally, the caseεA = −min(D, 0) andεC ≥ 0
does not result in single-point or line-shaped AFS seg-
ments. An example is given in Figure 16.

TheFACPACKmoduleGeneralized Borgen plotscan
compute one-point or line-shaped AFS segments if the
ε parameters are set to 0. However, the necessary zero
entries ofD make this situation numerically less stable
compared to the general case.

6. Conclusion

The new line-moving algorithm breaks the limitation
of the classical tangent algorithm for the construction
of Borgen plots. Generalized Borgen plots can be con-
structed for noisy and perturbed experimental spectral
data which can even include slightly negative matrix en-
tries, which can result, e.g., from a background subtrac-
tion. We hope that generalized Borgen plots resulting
from the line-moving algorithm can be a valuable tool
for a deeper understanding of the rotational ambiguity
underlying MCR-methods. Generalized Borgen plots
combine the strength of a geometric construction of the
AFS with various options to control and steer the com-
putations for a proper treatment of perturbed and noisy
data.

The line-moving algorithm is implemented in the
generalized Borgen plot module of theFACPACKsoft-
ware. All results can directly be compared, e.g., with
the purely numerical approximation of the AFS by the
polygon inflation algorithm.
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[12] M. Sawall, A. Jürß, H. Schröder, and K. Neymeyr.On the anal-
ysis and computation of the area of feasible solutions for two-,
three- and four-component systems, volume in Resolving Spec-
tral Mixtures, Ed. C. Ruckebusch, chapter ..., page ... Elsevier,
Cambridge, 2016.

[13] M. Sawall, C. Kubis, D. Selent, A. Börner, and K. Neymeyr. A
fast polygon inflation algorithm to compute the area of feasible
solutions for three-component systems. I: Concepts and appli-
cations.J. Chemom., 27:106–116, 2013.

[14] M. Sawall and K. Neymeyr.How to compute the Area of Feasi-
ble Solutions, A practical study and users’ guide to FAC-PACK,
volume in Current Applications of Chemometrics, ed. by M.
Khanmohammadi, chapter 6, pages 97–134. Nova Science Pub-
lishers, New York, 2014.

[15] M. Vosough, C. Mason, R. Tauler, M. Jalali-Heravi, and
M. Maeder. On rotational ambiguity in model-free analyses of
multivariate data.J. Chemom., 20(6-7):302–310, 2006.

17


