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Abstract

Borgen plots are geometric constructions which repredensét of all nonnegative factorizations of spectral data
matrices for three-component systems. The classical rantisin by Borgen and Kowalski (Anal. Chim. Acta 174,
1-26 (1985)), is limited to nonnegative data and resultinmegative factorizations.

The new approach of generalized Borgen plots allows fagtidhssmall negative entries. This makes it possible to
construct Borgen plots for perturbed or noisy spectral dathstabilizes the computation. In the first part of this pape
the mathematical theory of generalized Borgen plots has mteduced. This second part presents the line-moving
algorithm for the construction of generalized Borgen pldtee algorithm is justified and the implementation in the
FACPACKSsoftware is validated.

Key words: factor analysis, Borgen plot, area of feasible soluticeawsgéent algorithm, line-moving algorithm.

1. Introduction well-known phenomenon, which is called the rotational
ambiguity of the solution [15].We refer to the intro-
The systematic analysis of the non-uniqueness of duction of the first part of this paper [7] for a short in-
pure component factorizations by multivariate curve troduction to the pure component factorization problem
resolution (MCR) methods is a challenging research and for many references to the literature.
area. Many results on the so-called rotational ambigu-  Due to their physical meaning the three matribe€
ity and the area of feasible solutions have been gainedandA should have only nonnegative components. How-
in recent years. Historically, the starting points of ever, for experimental and perturbed or noisy data the
such investigations are the Lawton-Sylvestre plots for factorsC andA can contain small negative components.
two-component systems [8] and the Borgen plots for Especially, if the spectral data iD has undergone a
three-component systems [3, 10]. These plots are low- background subtraction, then small negative entries can
dimensional representations of the sets of feasible non-occur. Then it is often necessary to allow slightly nega-
negative pure component factorizations for spectral data tive entries in the factor®€ andA in order to find factors
matrices with their underlying bilinear structure of the which approximate chemically meaningful solutions.

Lambert-Beer law. Our goal is to determine the set of all feasible factors
The pivotal point of these analyses are factorizations C andA so that the produdC A reconstructs the given
D = CA of k x n spectroscopic data matric&s with spectral data matri®. Here we consider only three-
nonnegative factor€ andA. The rows ofD containk component systems. For two- and four-component sys-
spectra, e.g., taken as a sequence in time from a chem+tems see the survey papers [12, 14] and [1, 5]. Bor-
ical reaction system. Each spectrum consista ab- gen plots [3, 10] are geometric constructions which
sorbance values. The mati& € R¥*S is the concen-  represent all nonnegative factorizationsidfor three-
tration factor,A € R¥" is the spectra matrix anslis component systems by two-dimensional plots. The two

the number of the chemical componentsgeneral this coordinates of the points in the planar Borgen plots are
factorization problem does not have a unique solution. the expansion cdicients of feasible solutions with re-
Even if the factors are scaled in a certain way, there are spect to the basis of singular vectors Bf One of
usually many substantially fierent solutions. Thisisa the three expansion cfiients for the three-component



systems is normalized to 1; this corresponds to a specific1.3. Notation

scaling of the solutions [7, 9].

The classical construction by Borgen and Kowalski
[3]is limited to nonnegative data and results in nonneg-
ative factorizations. However, Borgen plotgfeu from
their restriction to nonnegative data. In the first part of
this paper [7]generalized Borgen plotsave been in-
troduced in order to overcome this limitation. The ex-
tended concept includes a geometric algorithm which
allows to construct geometrically the area of feasible so-
lutions (AFS). In the limiting case of vanishing negative
entries inD, the generalized Borgen plots are equal to
the classical Borgen plots.

In any case, Borgen plots and generalized Borgen
plots provide a deeper understanding of the possible
manifestations of the rotational ambiguity. These are
unigueness, partial uniqgueness [11] up to high non-
unigue solutions. Such larger sets of feasible solutions
may have the form of a single-set AFS and AFS sets
consisting of three or even more isolated subsets [12].

1.1. Organization of this paper

Section 2 recapitulates the central definitions and
main properties of the AFS and Borgen plots. These ex-
planations depend decisively on the respective scaling,
which is sometimes a normalization. Here we focus on
the first singular vector scalingvhich is explained in
[7], see also [9]. Section 3 is dedicated to the riee-
moving algorithm This algorithm generalizes the clas-
sical tangent algorithm of Borgen and Kowalski [3, 10].
This algorithm is also introduced briefly at the begin-
ning of Section 3. Then the line-moving algorithm is
described in detail. Many graphical illustrations support
the explanations. The mathematical justification of the
line-moving algorithm is given in Section 4. Numerical
experiments in Section 5 conclude the paper.

1.2. Guideline for the reader

The reader who is familiar with the AFS and with the
construction of the inner polygon (called INNPOL by
Borgen and Kowalski [3]) and the outer polygon (called
FIRPOL) may skip Section 2. The new line-moving al-
gorithm and its numerical application are part of Sec-
tions 3 and 5. For readers who are mainly interested in
the justification of the line-moving algorithm we sug-
gest to focus on Section 4However, this section is de-
voted to the mathematical analysis of the line-moving
algorithm. The reader may skip this section if he is
mainly interested in the construction of the line-moving
algorithm and its applications.
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The following notation is used in the paper.
The references apply to the first usage of the symbol.

D € R*" spectral data matrix, see Sec. 1.

C e R*3  concentration matrix, see Sec. 1.

AeR>"  spectra matrix, see Sec. 1.

uxzvT truncated singular value decomposition
of D, see Sec. 2.

T e R®>3  transformation matrix, see Eq. (2).

te R? low-dimensional representation of
spectrabyt = T(1,2: 3), see Def. 2.1.

eeR" all-ones vector (1..,1)", see Sec. 2.2.

&c parameter which bounds negative
entries inC, see Def. 2.1.

EA parameter which bounds negative
entries inA, see Def. 2.1.

Mecen generalized AFS, see Def. 2.1.

Q e Rk scaling matrix, see Eq. (3).

I set of the vertices of INNPOL, see
Sec. 3.

I enumeration of the vertices of INNPOL,
see Sec. 4.

Ip set of displaced vertices of INNPOL

related to an initial poinP of

FIRPOL, see Eq. (5).

set of displaced vertices of INNPOL,

related to an initial poin of

FIRPOL, see Eq. (6).
We use the colon notation in order to extract submatri-
ces or vectors from a given matrx ThusA(, i) is the
ith column of A and A(i, :) is theith row. The vector
(¢1,€1+ 1,...,¢) of integer numbers is abbreviated by
{1 : £2. The submatrix ofA containing its columnsg;
up tofz is A(, £1 : £2). Rows ofA can be extracted by
swapping the arguments.

2. On almost nonnegative matrix factorizations

In the first part of this paper we have analyzed the
nonnegative matrix factorization problem f@ and
more general factorizations which allow small negative
entries in the factor€ andA for sscomponent systems
[7]. Here, we consider only the case of three-component
systems witts = 3 for the geometric construction of the
AFS. This restriction also underlies the work of Borgen
and Kowalski [3]. Geometric constructions of the AFS
for four-component systems have not been developed so
far.

Let D be ak-by-n spectral data matrix. We are inter-
ested in all factorization® = CA where the factor€
andA are bounded from below elementwise



A> —ga andQC > —s¢ (1)

for small tolerance parametetg, ec > 0, see Defini-
tion 2.1. The diagonal matri® is introduced in Defini-
tion 2.1. FIRPO

Any diagonal matrix® with positive diagonal ele-
ments together with its inverse can be inserted in the fac-
torization. In this wayD = CA = (CO™1)(OA) results
in rescaled solutions. However, these scaled solutions
do not gain any new insight. Various scaling strategies,
so-called Borgen norms have been suggested and teste@igure 1: The polygons INNPOL and FIRPOL for the model prob-
[9]_ lem introduced in Section 5.1. For the construction of FIRRRe

In [7] therow sum §caling (RS-saninghdfirst r.ight EZ;;T:]??:TQ;&O;S%Z?zvsr?ir;ZsrzS'nzngoundary of the half-planes
singular vector scaling (FSV-scaling)lay prominent
roles. These scalings can be used even for data with
small negative entries. The FSV-scaling is most com- for C andA can be weakened by assuming the inequal-
monly employed in the literature. We use this latter scal- ity (1). The resulting generalized AFS with respect to
ing for the following brief recapitulation of the impor-  FSV-scaling is defined next.
tant definitions and theorems. The proposed new line-
moving algorithm can be formulated with each of these Definition 2.1. Let D € R*" be a rank3 matrix, and let
scalings. D = UZVT be the truncated SVD of D with & R¥*3,
T e R¥3and Ve R™3, Ifthe diagonal matrix2 e R

2.1. Rotational ambiguity and the AFS

The starting point for a deeper study of tlogational
ambiguity[15] is the truncated singular value decompo- has positive diagonal elements (see Sec. 3.4 in [7] for
sition (SVD) of D [6]. The reduced SVD of a rank-3  the justification and the construction @j, then for pa-
matrix D € R*" readsD = UZVT with a diagonal ma-  rametersec > 0 andea > O the spectral factor AFS

Qi) = (US)T i=1....k 3)

trix = € R¥3 and orthogonall € R®3 andV e R™3, with respect to FSV-scaling is defined to be the set
This factorization allows to represent all possible fac-
torizations by inserting a regular matrix € R332 and Mic.en = {t € RP?: exists regular TT(L ) = (L),
its inverse according to QUST 1> —gc, TV > _gA}_
D=UST TV ) 2.2. INNPOL, FIRPOL and the construction of the AFS
————
c A The AFS is a subset of a first polygon (FIRPOL), see
. . . . _ Definition 2.3. The AFS lies outside the polygon (INN-
One is only interested in those matricBsvhich re- 5 ) \yhich is defined in Definition 2.2; see [3, 4, 10].

sult in nonnegative factoG andA or in factors which
are almost nonnegative in the sense of the component-
wise inequalities (1).

The AFS represents all possible factorizations (2) or
equivalently all feasible matricéb. A permutationar-  Definition 2.2. The convex hull of the row vectors

gument shows that it is fiicient to consider only all ~ of QDV/(;,2 : 3)is called inner polygon (INNPOL).
the first rows of feasible matricé. And even more,  ThereinQ is given by Eq(3).

the FSV-scaling [7] allows to fix the first entrly(1, 1)

of this row to 1. Hence the first column @fis the all- The polygon FIRPOL is defined by all ctheient

ones vector [7, 13]. The AFS is defined to be the set vectors which result in nonnegative linear combinations

of all vectorst = T(1,2 : 3) which are connected to a of the right singular vectors [3]. This condition is weak-

regular matrixT so thatC = UXT! andA = TV are ened in the following, namelA = TVT > —gpis a

nonnegative matrices. These nonnegativity constraints componentwise lower bound on the matrix elements of
3

INNPOL is a subset of FIRPOL, see Figure 1, where
these polygons are drawn for the spectral data matrix of
the model problem from Section 5.1.



A for aea > 0. Together with the scaling condition
T(;, 1) = (1,1,1)" the defining inequality is

3
DT@WHVEN 2=V —ene (4
i=2

wheree = (1,1,...,1)" € R"is the all-ones vector. The
set of row vectors = T(1,2 : 3) ¢ R™2 which satisfy
Eq. (4) defines the polygon FIRPOL.

Definition 2.3. Let D' D be an irreducible matrix. Then
the polygon given by

3
{t e R»2: Zti,l(V(:, N’ > (V1) - sAe}

i=2
is an intersection of k half-spaces and is called FIRPOL.
Therein § and b are the two components o&tR>2.

The chemical meaning of the polygons FIRPOL and
INNPOL is as follows: FIRPOL represents the set
of almost nonnegative spectra of a chemical three-

component system in the abstract space of expansion

codficients. Each point of FIRPOL represents a spec-
trum. Any point outside FIRPOL is chemically mean-

ingless as the associated “spectrum” contains compo-

nents which are smaller thatz,.
The vertices of the polygon INNPOL are the representa-
tives of the rows of the spectral data matbixn the AFS

Figure 2: Family of tangent lines (gray lines) at a vertex abavex
polygon (black bold lines).

t) € R™? in FIRPOL with A= TVT and T(¢,2 :
3) = t@ for ¢ = 1, 2, 3the convex hull of these three
points includes the polygon INNPOL.

II: Let D be a matrix, which fulfills the component-
wise inequalityQD > —e&a for a properea > O.
The diagonal matrixQ is given by Eq(3). Then
D = CA is a matrix factorization witl2C > —&c
and A > —ea with an FSV-scaled factor A if and
only if for three points®) € R™? in FIRPOL with
A=TV and T(¢,2 : 3) = tO for ¢ = 1,2,3 the
affine hull of these three point§)tincludes INN-
POL. All the expansion cgients of the gine lin-
ear combinations are greater than or equaHec.

The proof of case | is part of the classical analysis of

plane. T_his explains why INNPOL should be contained Borgen and Kowalski [3]. Case Il is proved by Theo-
in the triangle whose vertices represent the pure com-rem 3.11 in the first part of this paper [7]. Theorem 2.4
ponent spectra. If small perturbations are allowed, then describes the core idea of the (illustrative) geometric in-

INNPOL might slightly intersect the triangle of the pure
component spectraigure 1 shows not only the poly-
gons INNPOL and FIRPOL, but also the half-spaces

terpretation of the AFS: By construction each point of
the AFS is a vertex of a certain triangle in FIRPOL so
that each of the vertices of INNPOL can be represented

by gray lines. The intersection of all these half-spaces by an dfine combination of the vertices of this trian-

equals FIRPOL. In the case of a spectral data m&rix

which includes small negative components, the param-

eterea has to be sfliciently large (sG-¢a is suficiently
small) so that INNPOL is a subset of FIRPOL. This is
fulfilled, if and only if the inequality minQDV) > —ea
holds. Then the AFS is a subset of FIRPOL and is also
located outside INNPOL,; this is the content of the next
theorem.

Theorem 2.4. The three points {i,2 : 3),i =1,2,3,in
FIRPOL determine the existence ohannegativena-
trix factorization (case |) or the existence of a nearly
nonnegative matrix factorization which can include
small negative components (case Il).

I: Let D be a nonnegative matrix. Then B CA is
a nonnegative matrix factorization with an FSV-
scaled factor A if and only if for the three points
4

gle. The expansion céiecients in thesefine combina-
tions are all greater than or equakHe,. An example is
shown in Figure 3 where the three vertidgsQ andR
belong to the AFS since the triangle includes INNPOL
and is included in FIRPOL.

3. The line-moving algorithm

This section introduces the new line-moving algo-
rithm for the geometric construction of generalized Bor-
gen plots. The detailed justification of the algorithm is
not included in this section, but postponed to Section 4.

First, we describe the tangent algorithm by Borgen
and Kowalski [3]. The tangent algorithm and thien-
plex rotation algorithmsee also [3], allow to construct
the AFS for the nonnegative matrix factorization prob-
lem withec = ep = 0.



FIRPOL

Figure 3: The tangent algorithm of Borgen and Kowalski tostorct

the so-called Borgen plots. Starting from a tangent tit@INNPOL,

a trianglePQRis constructed so that each edge is a tangent to INN-
POL. The pointR belongs to the boundary of the AFS.

3.1. The tangent algorithm

According to Theorem 2.4, the key construction prin-
ciple of the tangent algorithm is to find triangles within
FIRPOL which enclose INNPOL. This relation between
a factorization ofD and a triangle within FIRPOL is
stated in case | of Theorem 2.4. Later, in Section 3.2
the line-moving algorithm generalizes the tangent algo-
rithm by constructing triplets of points according to case
Il of Theorem 2.4.

Next we explain precisely the meaning of tangents
at a vertex of a convex polygon. A tangent line at a
boundary point of a polygon is uniquely defined as far
as this boundary point is not a vertex. In a vertex the
boundary curve of the polygon is not afférentiable
function. For the general case the following definition
holds.

Definition 3.1. A tangent of a convex polygon is a
straight line which touches the polygon in at least one
point and which does not intersect the interior of the

polygon.

Hence, at a vertex a family of possible tangent lines
exists. This is illustrated by Figure 2.

The tangent algorithm [2, 3, 10] works as follows:
We start with a tangent lineto the inner polygon; see
Figure 3 for an illustration of the following steps.

1. Atangent ling of INNPOL intersects FIRPOL at
the pointsP andQ.

2. Construct the second tangent liggo INNPOL
starting inP.

3. Construct the third tangent lineto INNPOL start-
ing in Q.

4. The point of intersection afandpis R.

5. If Ris inside FIRPOL and the triangleQR en-
closes INNPOL, theR belongs to the boundary of
the AFS. IfPQRdoes not enclose INNPOL, then
the pointRis meaningless; proceed with step 6.

6. Rotate the initial tangemtaround INNPOL (in or-
der to construct all possible tangents to INNPOL)
and repeat the construction with step 1.

The set of all point®k which result from the tangent
rotation algorithm belongs to the AFS according to The-
orem 2.4. These points constitute a major part of the
boundary of the AFS. These parts of the boundary are
drawn by bold black lines in Figure 11. The remaining
parts of the boundary of the AFS belong to the boundary
of FIRPOL or are connecting lines between these two
types of boundaries. It can be proven tRas never an
interior point of the AFS but belongs to the boundary.
Otherwise, the ling would not be tangent at INNPOL
so thatR can be moved to the inside of the initial triangle
PQR Numerically, the tangent lineis rotated around
INNPOL where the possible angle values, which deter-
mine the slope of this tangent, are taken from a certain
discretization of the angle interval [B60) measured in
degrees. The following line-moving algorithm general-
izes the classical tangent algorithm.

3.2. The line-moving algorithm

This section provides the recipe how to construct the
AFS M, ... The mathematical justification of the algo-
rithm is provided in Section 4. The procedure is similar
to the tangent algorithm. The construction starts with
a tangent ling at INNPOL. First an auxiliary poinH
is constructed. The geometry underlying Procedure | is
illustrated by Figure 4.

Procedure |: Construction of the auxiliary point H.
1. For atangentlineto INNPOL the points of inter-
sectionP andQ with FIRPOL are determined.

. Construct the tangenqtto INNPOL throughP.

. Construct the tangemptto INNPOL throughQ.

. The intersection off andp is H.

. If the triangle PQH does not enclose INNPOL,
thenH is mirrored alongr. OtherwiseH is not
changed.

a b~ W DN

If H is inside FIRPOL and has not been flipped along
r, then the pointH belongs to the AFS of nonnega-
tive factorizations by construction. Howevet,is not
a point on the boundary of the AFS&d¢ > 0, cf. Theo-
rem 4.6. The poinH defines the search direction in the
following “Procedure I1”.
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Figure 4: Construction of the auxiliary poikt for the line-moving
algorithm. If the trianglePQH does not enclose INNPOL, then the
point H is mirrored along. The mirrored point is used to define a
search direction in the algorithm.

The line-moving algorithm constructs the AFS not
by tangent lines to INNPOL (as the tangent algorithm),

half-plane (which results from the division of the
plane byr) in which the pointH is located.

3. Construct the tangent linp to 7p through Q.
Again the point of tangency is to be determined
in the half plane (with respect 1 which contains
H.

4. The point of intersection af andpis R.
5. Check whetheRis in FIRPOL.

The pointR belongs to the generalized AFS if it is in-
side FIRPOL; the mathematical justification is provided
later in Theorem 4.6.

The linePQtouches but does not intersect INNPOL.
Next we move the line by a parallel shift into the two
possible directions, namely either towards the interior
of INNPOL or away from INNPOL. First we move
towards INNPOL so thatintersects INNPOL. The new
points of intersection of with FIRPOL are denoted,

but by tangents to certain displacements of the polygon once again, byP and Q. The auxiliary pointH is not

INNPOL. If T denotes the polygon INNPOL, then we
need the two displacemenis and 7g of INNPOL.
These are given by

Ip:{S+SCP:S€I}, (5)
1 EC

_ S+ScQ
RelSisl g

Therein the variabl& runs through all vertices of INN-
POL. In words, the sefp results from addingcP to
each point of INNPOL and by subsequent multiplica-
tion of the resulting vector by/{1 + &c). The setl g is

a similar displacement of. The line-moving algorithm
requires that the setfp and 7 are updated for each
line PQ. The indexe$? andQ of these sets symbolize
the dependency on the poiRandQ.

Then fromP, Q, 7p andZq a pointRis constructed.
This pointRis the intersection of the two tangentsitp
and toZq, see Figure 5 for an illustration. With these
points each vertex of INNPOL is arffane combination
of P, Q andR and the linear cd@&cients ofP andQ in
the dfine combination are greater than or equatig,
see Theorem 2.4. (The proof of this fact is given later

changed. As described above we compute the two sets
Ip andIq and the poinR. Figure 6 illustrates these
steps. The shift increment of these parallel shifts isf
denoted byd. This parallel translation can be stopped

if the construction cannot find a point of the AFS. Then

r is moved away from INNPOL, until leaves FIRPOL.

If r does not intersect INNPOL arid has success-

fully been constructed so th&is in FIRPOL, thenR
belongs to the AFS, see Theorem 4.6.r lintersects
INNPOL, then the expansion cfiients of the #ine
combinations which express the vertices of INNPOL in
terms ofP, Q andR are partially negative. In this case
one has to check, whether or fdbelongs to the AFS.
If Ris outside the polygon FIRPOL, théhcan be ne-
glected. Otherwise, one has to check whether or not
all vertices of INNPOL areféine combinations oP, Q
andR and the linear cd&cients ofR are greater than
or equal to—&c, see Theorem 2.4. If this condition for
the dfine combination condition is fulfilled, theR be-
longs to the AFS. Further, the convex polygon, which is
limited by the boundary of FIRPOL and the two lines
passing through eithd? andR or Q andR, belongs to
the AFS, e.g. the blue filled polygon in Figure 5.

If Ris inside FIRPOL but thefine combination con-

in and after Theorem 4.6 in Section 4.) These steps aredition is not fulfilled, then we search for points of the

summarized in the next procedure.

Procedurell: Construction of the point R.

1. Compute the setbp and7q.
2. Construct the tangent liregto 7o throughP. The

AFS which are located on the lines passing throigh
andR or throughQ andR. The justification for this

is given later in Theorem 4.6. Therefore we compute
the point of intersectioi®; of the line throughP andR
with the boundary of FIRPOL. If all vertices of INN-
POL fulfill the afine combination condition foP, Q

point of tangency is to be determined in the same andR;y, thenR; belongs to the AFS. Now, by using the

6



FIRPOL

FIRPOL

FIRPOL

Figure 5: Construction of the poifR by the line-moving algorithm.
Top: The initial tangent to INNPOL, the displacemenig of INN-
POL and the tangentto the set/ . Center: The second tangemto

the displacemenip of INNPOL is constructed. Bottom: The point
Ris the intersection op andqg and belongs to the generalized AFS
Mec.en- The further computation shows that the complete blue filled
polygon belongs to the AFS.

Figure 6: Computation of a part of the AFS by parallel tratista
of the liner towards the center of INNPOL. The blue filled polygon
belongs to the AFS. The poirﬁ?g anng are constructed as described
in Procedure I1.

bisection method, one can find the pdRjton the same
line which is closest t& and still fulfills the dfine com-
bination condition. Then the convex polygon, which is
limited by the boundary of FIRPOL, the line passing
throughR? and P and also the line througR? and Q,
belongs to the AFS. In the same way the pdiatis
computed as the point of intersection of FIRPOL with
the line passing throug® andR. If R, belongs to the
AFS, then we compute the poiﬁg which is closest to
R on the line througR andQ and which belongs to the
AFS.

A short summary of this step of the algorithm is as
follows:

Procedurel11: Computation of Rand R.

e If Ris outside FIRPOL, then neglect R.

e ElseifRdoes not belong to the AFS, then compute
the two pointdR; andR; of intersection ofp andq
with the boundary of FIRPOL.

— If Ry belongs to the AFS, then compLR%.
— If R; belongs to the AFS, then compLR%

After the liner has been shifted parallel to maximal
distances into the two possible directions away from its
initial position, then the rotation process ofaround
INNPOL is continued. The discrete numerical process
requires that is rotated by a fixed small angle incre-
menté¢. After rotation ofr, the pointsP and Q are
recomputed and the poiht is to be updated.

Algorithm 1 combines the three procedures I-Ill with
the tangent rotation process. The required input data are
the two polygons FIRPOL and INNPOL, the shift in-
crement parameted (which is determined byc) and
the rotation angle incremen. An illustration of the
line-moving algorithm is given in Figure 7.
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Figure 7: lllustration of the AFS construction by the line-moving alighm from the starting stage (left uppermost subfigure)l wompletion

(right lowermost subfigure). The closely adjacent two reédiare the innermost and outermost lines which are usecdebgidgbrithm. For the
inner red tangent line the two blue lines start at the poifitetersection with FIRPOL. The blue lines are tangents atdbts/p respectively
Tq. The point of intersection of these two blue lines belongth®AFS if it is contained in FIRPOL. The two blue dots (thems®&tblue dot is
constructed by the second red line in the same way) repréeeintnermost and outermost AFS points which are constitfoden the lines parallel
to the red lines. The green areas inside FIRPOL belong to H®; fhese areas are growing in the AFS construction prodédsslast subfigure

shows the final AFS. 8



Algorithm 1 The line-moving algorithm
Require: INNPOL, FIRPOL,5d andéée.
Construct initial tangentto INNPOL
| = smallest integer larger than 361
fori=1:1do
Rotate tangent linearound INNPOL by the
rotation angle incremem (in degrees).
Procedure |- computeH
Procedure [l— computeR
while R, R or R belongs to the AFSlo
mover parallel towards center of INNPOL
(the parallel shift increment i&d).
Procedure Il—- computeR
if Ris in FIRPOL,Ris not in the AFShen
Procedure Il computeR?, R).
end if
end while
while r intersects FIRPOIdo
mover parallel away from INNPOL
(the parallel shift increment isd).
Procedure [l— computeR
end while
end for

3.3. Parameter selection in the line-moving algorithm

The line-moving algorithm needs four parameters to
be defined. The two parametexsandea have a direct
impact on the AFS as they limit the acceptable size of
negative entries in the facto&andA, see Eg. (1). For
ea the inequalityQD > —&p has to be fulfilled so that
the inner polygon INNPOL is still contained in the poly-
gon FIRPOL. If the limit min{Q2D) = —g, is attained,
then a vertex of INNPOL is located on the boundary
of FIRPOL. In order to stabilize the numerical compu-
tation one should choosa, slightly greater than this
minimum. We found:a = —1.05 min(@QD) to be a good
choice for many AFS computations for perturbed data.
The parametetc limits the acceptable size of negative
entries in the facto€. An increasing value ofc in-
creases the size of the AFS and the computation time.
Hencesc should be as small as possible, but the param-
eter must be increased with an increasing noise level.
In general, by increasings or ec the size of the AFS
increases, see Lemma 3.12 in [7]. The geometric AFS
construction works well for data with relatively small
perturbations. Moreover, the algorithm is more stable if
the negative entries are mainly concentrated in the fac-
tor A.

The parametergd and é¢ influence the accuracy
and computation time of the algorithm. The distance
between the parallel lines in FIRPOL from which the
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pointsR of the AFS are computed is given bg. The
smaller the value afd, the greater the accuracy and the
computation time. The paramet&s is the rotation an-

gle of the linesPQ in the line-moving algorithm. This
control parameter influences the accuracy and computa-
tion time in a similar way asgd. The smaller the value

of 6¢, the greater are the accuracy and the computation
time. Tables 1 and 2 demonstrate these relations for the
three-component model problem presented in Section
5.1.

3.4. Implementation in the FACPACKsoftware

The line-moving algorithm is implemented in the
Generalized Borgen plot modudd the FACPACKsoft-
ware. This software and a tutorial can be accessed at

http;y/www.math.uni-rostock.déacpack

FACPACKallows to construct the generalized Borgen
plots with respect to the RS-scaling and alternatively
with the FSV-scaling. The parameters far and ep

can be modified. It is also possible to change the paral-
lel shift incrementsd and the rotation angle increment
6¢. By alive-view modehe AFS can be explored inter-
actively. While the mouse pointer is moved through the
AFS the related spectra or profiles are displayed. Cer-
tain spectra or concentration profiles can be fixed and a
reduced AFS can be computed. This smaller AFS takes
into account this additional knowledge on the pure com-
ponent factorization.

4. Justification of the line-moving algorithm

According to Theorem 2.4 feasible points in AFS are
associated with triangles in FIRPOL. The line-moving
algorithm works with the premise that for a construc-
tion of the boundary of the AFS always two vertices of
the triangles can be fixed to the boundary of FIRPOL.
Further, the edges of these triangles can be assumed to
be tangents to the sef$ or 7q; see Equations (5) and
(6). This section provides a justification for these as-
sumptions. First we show that it is possible to construct
the AFS starting from point® and Q located on the
boundary of FIRPOL.

Lemma 4.1. For each point R inside the AFS there ex-
ist two points P and Q so that all vertices of INNPOL
are gfine combinations of P, Q and R with expansion
cogficients greater than or equal tesc.

It is possible to choose at least one of the points P
and Q to be located on the boundary of FIRPOL.



FIRPOL

Figure 8: lllustration of the idea of the proof of Lemma 4.1orF
each pointR in the AFS there exist two point® and Q so that the
affine hull of P, Q andR encloses INNPOL and where théfiae hull
includes only expansion cfiiients greater than or equal tec. By
stretching the triangl®” Q'R with fixed R at least one of the poin®®’
andQ’ is moved to the boundary of FIRPOL.

Proof. Let 71, 75,,... be an enumeration of the finite
number of vertices of the polygon INNPQL Taking
an arbitrary vertex;, then this point is anfine combi-
nation ofR and two additional point®” and@’, i.e.

Ii=aiP +5Q +yR (7)
For this dfine combination Theorem 2.4 guarantees
aj > —&c, fBi = —ec, ¥ = —&c anda; + B + i = 1.
Next we consider a poinP so thatP’ is a convex
combination ofP andR, i.e. P = AP + (1 — )R for
A € [0,1]. We also consider a poir® so thatQ’ =
AQ + (1 — )R with the samelt. Inserting these two
convex combinations in (7) results in

7 =ai(/1P+ (1— /l)R) +,8i(/1Q + (1— A)R) +viR
=@idP + BidAQ + (¢i(1 - )+ Bi(1- ) +vi)R

This geometry is illustrated by Figure 8. For this rep-
resentation of’; in terms ofP, Q andR the sum of co-
efficients is equal to 1 since

aid+Bid+ai(l-D)+Bi(l-D+yi=a+B +yi =1

For the expansion céigcients of the linear combination
it holds thatBid > —&c, yid = —ec and

ai(1=) +Bi(1 =) +vi =ai +fi +yi —A(ai + i)
=1 =1~y

=1-21+ Ay = lyi = —ec.

This proves thaf; is also an ffine combination oP,
Q andR with linear codficients greater than or equal to
10

FIRPOL

Figure 9: lllustration of Theorem 4.2. For each pdibf the AFS
there exist two point$® and Q so that the fiine hull of P, Q and
R with expansion cad@cients greater than or equal t&c encloses
INNPOL. P andQ can be located on the boundary of FIRPOL.

—gc. Geometrically, we have analyzed a stretching of
the triangle. The triangl®QRis similar to the triangle
P'Q'R, and the triangld>” Q'R can be stretched with a
fixed-pointinR until (at least) one of the poinBandQ
is located on the boundary of FIRPOL. This completes
the proof.

O

The next theorem shows thRttogether withQ can
be located on the boundary of FIRPOL.

Theorem 4.2. For each point R in the AFS there exist
two points P and Q on the boundary of FIRPOL so that
all vertices of INNPOL are gine combinations of P, Q
and R with linear coficients greater than or equal to
—E&C.

Proof. By Lemma 4.1 for any poinR in the AFS there
exist two other pointd®> and Q’ in the AFS so that at
least one of the points, s#@ is located on the boundary
of FIRPOL, and each vertex of INNPOL is a feasible
affine combination oP, Q" andR. Suppose thaf) is
not on the boundary of FIRPOL. Then a ray starting in
R and passing througY’ intersects FIRPOL i, see
Figure 9. The pointY is a convex combination o
andR

Q =1Q+(1- )R

with 0 < A < 1. Let7; be theith vertex of INNPOL.
Then the following relation holds

I =aiP + giQ + ¥R
=a'iP+,8i(/1Q+ (1—/1)R) +viR
=aiP +6i1Q + (yi +Bi(1 - )R



Figure 10: Signs of the barycentric coordinates in a triangl

with @, Bi,vi = —ec anda; + B + i = 1.

Let us suppose that the dfieient of R breaks the
—gc bound, i.ey; + Bi(1 - 1) < —ec. Next we derive
a contradiction. The inequality implies thatas well
asy; must then be negative. The negativefticeenty;
of R means thafl; belongs to the half-plane which is
on the other side of the linPQ than the poinR, cf.
Remark 4.3. Simultaneously, a negative fticeent 3
of @ means thaf; belongs to the half-plane which is
on the other side of the lineRthan the poinQ.

This means thaf; is outside FIRPOL, sincP is on
the boundary of FIRPOL. Therefo#g is not a vertex of
INNPOL. This is a contradiction so that+gi(1— 1) >
—&c must be true.

This proves that all vertices of INNPOL are each
affine combinations oP, Q andR with expansion co-
efficients greater than or equaltec.

O

Remark 4.3. The barycentric coordinate of the point
aP+BQ+yR

in the triangle PQR is the triplefe, 3, y) with @ > O,
B=20,yv=>0anda+p+y =1 Allpointsinareal

in Figure 10 can be addressed in this way. If negative
barycentric coordinates, g andy are allowed andr +
B+v = lis stillassumed to hold, then the (generalized)
barycentric coordinates in the areas 2 up to 7 in Figure
10 satisfy the following sign conditions:

y =0,
Y20,
y <0,
y 20,
y <0,
v<0.
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Theorem 4.2 guarantees that the construction of the

full AFS is possible starting from the poinBsandQ on
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the boundary of FIRPOL. These points on the boundary
of FIRPOL are said to belong to tleaiter boundaryof

the AFS. The key idea of the tangent algorithm and of
the line-moving algorithm is to construct all points on
theinner boundaryof the AFS.

Definition 4.4 (Inner and outer boundary of the AES)
A point R belongs to the inner boundarf/the AFS, if
for all triangles PQR, whosefgine hull with expansion
cogficients greater than or equal teec includes INN-
POL, there is no point Rinside PQR, such that INN-
POL is enclosed in thefne hull of PQR with expan-
sion cogficients greater than or equal teec.

The outer boundargf the AFS is given by the intersec-
tion of the AFS with the boundary of the polygon FIR-
POL.

It is possible that a certain point can belong to the
inner and to the outer boundary of the AFS simultane-
ously. Surprisingly, it is also possible that points on the
boundary of the AFS belong neither to the inner nor to
the outer boundary. An example is shown and explained
in Figure 11. Then the remaining parts of the boundary
of the AFS are constructed by connecting the endpoints
of the inner boundary with the associated endpoints of
the outer boundary by straight lines, as illustrated by the
blue polygons in Figures 5 and 6. The points on the in-
ner boundary of the AFS (and sometimes interior points
of the AFS) are constructed by tangent lines to the sets
Ipandlg, see Equations 5 and 6.

Lemma 4.5. Let R be a point of the inner boundary
of the AFS with additional two points P and Q on the
boundary of FIRPOL such that INNPOL is enclosed in
the gfine hull of P, Q and R with expansion gheents
greater than or equal te-ec. Then for at least one ver-
tex of INNPOL at least one expansion giéent of the
affine combination of this vertex in terms of P, Q and R
is equal to—&c.

Proof. Let 7; be the enumeration of the vertices of INN-
POL. If PQRis a triangle in FIRPOL, whosefine hull
with expansion coéicients greater than or equaltec
encloses INNPOL, then eadh € 7 is an dfine combi-
nation ofP, Q andR. This reads

Zi = aiP+BQ+ 7R
with a; + 8 +vi = 1 anda;, Bi,yi = —ec. Suppose that
the strict inequalityy;, Bi, 7i > —&c would hold for each

vertex of INNPOL. LetR’ be a convex combination of
P, Q andR given by

R =AP+1Q+ (1-22)R



Figure 11: Top: One edge of INNPOL coincides with an edge of
FIRPOL. Forec = O the inner boundary of the AFS consists of the
three points marked by bold black dots. The outer boundagywen

by the bold gray line. The remaining part of the boundary efAlrS
does neither belong to the inner boundary nor to the outendemy.
Bottom: The inner boundary is given by the bold black lined tre
inner boundary by the bold gray lines.
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with 0 < 4 < 0.5. ThenR can be expressed as

R - AP-1Q

R=
1-22

The verticesZ; of INNPOL can be rewritten asfiine
combinations oP, Q andR’ so that

Ayi
1-22

11—%2/1)P+(ﬁi -

The three cofficients in this representation df can
be decreased so that for ditiently smallig the three
inequalities

R.

Ii:(“i_ )Q+1—%2/1

/l "
(ai -7 _072"/10) > —&c, (8)
Aoy B
(ﬂ' 1- 240) = e ®)
Yi
1-21 > —&c (10)

hold and that equality is attained for at least one of the
three inequalities. In order to verify this we consider
the three possible casgs> 0, y; < 0 ory; = 0. First,
for i > 0 a positive quantity is subtracted fram in
(8) and alsgg; in (9). This allows to attain equality for
a suficiently largedo. If 3 < 0, then equality can be
attained in (10) for a dticiently largedo. Finally, the
casey; = 0 means that the vertek is located on the
line throughP and Q so that the construction &¥ is
not meaningful.

All this means thaR belongs to the AFS and th&t
is not a point on the inner boundary as a smaller triangle
PQR has been constructed wiRi closer to INNPOL.

O

The following theorem provides the justification that
the boundary of the AFS can be constructed only from
the points of the AFS which result from a certain tan-
gent construction to INNPOL. Subsequent to this theo-
rem the geometric AFS construction with respect to the
shifted setd'p andZq is justified.

Theorem 4.6. Let R be a point on the inner boundary of
the AFS and let the points P and Q be on the boundary
of FIRPOL so that INNPOL is enclosed in thggme hull

of P, Q and R with expansion cfieients greater than

or equal to—ec. Then for at least two of the points P,
Q and R there exists (at least) one vertex of INNPOL so
that the expansion cgfcients of the fine combination
being associated with these two points are equalde.
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Figure 12: A typical geometry underlying the idea of the ffrob
Theorem 4.6.

Proof. Let 7; be an enumeration of the vertices of INN-
POL. If PQRIs a triangle in FIRPOL whosefiane hull
with expansion coficients greater than or equaltec
encloses INNPOL, then eadhis an dfine combination
of P, Q andR with

Ii = aiP+BiQ+7R

andq; +B; +v; = 1 together withy;, 8i,y; > —ec. These
expansion co@cients depend on the indéwf the ver-
tex.

In the following we analyze three ftierent cases:
Namely we assume that for two of the three vertiBes
Q andR all expansion coficients are strictly greater

than—ec. We derive for each of these three cases a con-

tradiction. This finally proves the theorem.

Case |: Suppose that the cfiicients of P andQ are
strictly greater than-gc for each vertex of INNPOL,
i.e.q; > —ec andB; > —ec for each vertex?; of INN-
POL. LetQ be a convex combination ¢fandQ

Q =AP+(1-2)Q

with 0 < 1 < 1. The pointQ can be expressed as
Q = (Q = AP)/(1 - 2). Inserting this in the @ine rep-
resentation off; results in the iine combination oP,
Q andR

(. ABi B~
].—(a/, —1_/1)P+—1_/1Q 7R
\-—f_/ —

@i Bi

Now it is possible to choose @ 1y < 1 suficiently
small so that the cdicientse; = ai—(4081)/(1-10) and
Bi = (B1)/(1 - Ap) are greater tharec for all indexes
(as we have assumegl > —ec andg; > —&c¢). Then let
13

the pointQ” be the point of intersection of the boundary
of FIRPOL with a ray starting ifR and passing through
Q. The geometry of this construction is illustrated in
Figure 12.

Next the pointY can be expressed as a convex com-
bination of @” andRin the form

Q=pQ"+(1-pwR

with a parameter & u < 1. Then the vertices of INN-
POL can be written as

Ti=aP+uBiQ+ (i + (- wB)R

see Figure 12. The céiwientse; andug; are strictly
greater than-ec. Supposey; + (1 — u)8 < —&c to
be valid, theny; andB; must each be negative, which
contradicts the fact tha® is located on the boundary
of FIRPOL. Sincey; andg; cannot both be negative,
the equalityy; + (1 — ©)8i = —ec holds, if and only if
vi = —&c andB; = 0 is valid. This would mean that
the point7; is located outside FIRPOL, which is again
a contradiction. Therefore all expansion ffa@ents are
strictly greater thar-ec. For this case, Lemma 4.5 says
that R cannot be located on the inner boundary of the
AFS. This means that the assumptiomgf> —ec and

Bi > —ec cannot hold for all verticeg; of INNPOL.

Case Il: Now we assume; > —gc andy; > —&c
for all verticesZ;. The pointR is defined as a convex
combination ofP andR

R =AP+(1-A)R

with 0 < A < 1. ThernRis given byR = (R -1P)/(1-2).
Now the vertices of INNPOLZ; can be expressed as
affine combinations o, Q andR

yi Yi
Ti= (“‘ - m)PJrﬂ'QJF —an

and it is possible to choose a parametex041p <
1 suficiently small so that the expansion ¢heents
ai — (Aoyi)/(A — 20) and §)/(1 — Ap) are greater than
or equal to—&c for all vertices of INNPOL, and for
at least one cdicient equality holds. But this means
thatPQR is a triangle, which is included in the triangle
PQRand whose fline hull with expansion cdicients
greater than or equal teec encloses INNPOL. Then
R cannot be a point of the inner boundary of the AFS
according to Definition 4.4. Therefore the assumption
aj > —gc andy; > —&c has led to a contradiction.

Case lll: The assumptio; > —ec andy; > —&c
for each vertex'; of INNPOL results a contradiction by
the arguments as used for the case II. This completes the
proof. O



Assume each vertex of INNPOL to be affiae com-
bination of the point$, Q andR with expansion coef-
ficients greater than or equal t&c. Further, for one
vertex of INNPOL the expansion cfigient of P is as-
sumed to be equal teec. Thus each verteX; of INN-
POL can be written as

Ii=aiP+6Q+ ¥R

with a; +8;i +v; = 1 anda;, 8i,yi = —&c. If ecPis added
to the latter equation and the sum is divided by &c,
then the resultis

Ii+eP  a+ec
1+8C 1+SC

Bi Yi

P+ +
1+SC 1+8C

R (11)
Since the sum of the expansion @@aents on the right-
hand side of (11) equals 1, the poift ¢ ecP)/(1+ &c)

is an dfine combination o, Q andR. If aj = —&¢
holds, then [; + ecP)/(1 + &c) is on the line throug®
andR. Otherwise the point is located on the same side
of this line asP because the cigcient @ +&c)/(1+&c)

is positive.

In the line-moving algorithm sets of shifted points of
INNPOL I'p andZq are used to construct points within
the AFS, see Egs. (5) and (6). The $etis given by the
points (7 + ecP)/(1+ &c) we examined above. Equiva-
lent conditions can be formulated for the papand the
setfq. From Theorem 4.6 follows that it is ficient to
search for points on the inner boundary of the AFS on
the tangents to the sef andZq. This is exactly what
is done in the line-moving algorithm.

Remark 4.7. At the end of this section we would like
to comment on the position of the constructed points

The same model problem has already been used in the
first part of this paper [7] for a comparison of the line-
moving algorithm with the polygon inflation algorithm
and the classical Borgen plot#dditionally, we con-
sider an example problem of an AFS with two line-
shaped segments which is computed by the tangent-
algorithm. If we apply the line-moving algorithm and if
we allow small negative entries in the fact@sandA,

then the line-shaped AFS segments grow to thin stripes.

5.1. The model problem
The three concentration profiles of our three-

component model problem are taken as
ci(t) = exp(=(t — 20)?/150),
Ca(t) = exp(=(t — 50)?/200),
ca(t) = exp(=(t — 70)?/250)
with 0 <t < 100. The associated pure component spec-
tra are
ay(x) = exp((x — 50)?/500)
+ 0.5 exp((x — 125)/500)+ 0.1,
a(x) = exp(=(x — 100%/740)
+ 0.4 exp((x — 100¥/1500)+ 0.15,
ag(x) = exp((x — 150)*/1000)
+ 0.3 exp((x — 75)2/2500)+ 0.2
for 0 < x < 200. The time and the frequency axes are
each discretized to 0.5 units so that the resulting matrix

Do of mixture data has the dimensions 20101. Figure
13 shows the concentration profiles and pure component

Riin the AFS. On the one hand, the tangent-algorithm gpectra,
in Section 3.1 guarantees that the constructed points R Normal distributed noise with a standard deviation

are located on the boundary of the AFS. On the other
hand, the line-moving algorithm does not necessarily

construct AFS elements R in a way that they belong to

the inner boundary of the AFS, cf. Definition 4.4. In
order to check whether or not R belongs to the inner
boundary, one has to try to decrease a feasible triangle
PQR to PQRwith R moved closer to INNPOL so that
PQOR still includes INNPOL. If this is possible, then R
does not belong to the inner boundary.

5. Numerical experiments

Next the line-moving algorithm is to be tested for a
model problem and with respect tofi@irent levels of

(pseudo-random) noise. For these investigations our fo-

cus is on the fect of the parametersc, 6d and 6¢.
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of 0.15 is added t®y in a way which cuts fi any neg-
ative entries

D(i, j) := max((1 + o)Do(i, j),0).

5.2. Hfects of the parameter selection on the line-
moving algorithm

The AFS ofD with respect to FSV-scaling and for
the parametersc = 0.01,e5 = 0.005,6d = 0.0001 and
6¢ = 0.1deg is plotted in Figure 14.

This AFS is used as a reference in order to compare
the accuracy of the AFS approximations foffeient
parameter settings. The control parametegrsand 5d
are chosen relatively small to guarantee a high resolu-
tion or accuracy of the computed AFS. We have used a
standard PC with a 2.93GHz Intel CPU and with 8 GB
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Figure 13: The model problem. Left: Concentration profiRight: Pure component spectra. (1,Z®lue, Green, Red).
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Figure 14: The AFS for the model problem with normal disttéal
noise (standard deviatian = 0.15) computed for the parametess =
0.01,ea = 0.005,5d = 0.0001 ands¢ = 0.1 (degrees).

RAM for all numerical experiments. The program code
is written in C and uses the Matlab graphical user inter-
face (GUI) of theFACPACKsoftware. The numerical
results are listed in the Tables 1, 2 and 3.

First we study the rotation angle incremefst by
which the tangent is rotated around INNPOL and which
is the starting point for the construction of a triangle
in FIRPOL which encloses INNPOL. B¢ is halved,
then twice as much tangents to INNPOL are used for the
AFS construction. Then the computational costs grow
approximately by the factor two. This behavior is doc-

é¢ [deg] | computation time| Hausdoft distance
0.1 198.9292s 0
0.2 74.6640s 2.68-10°

0.5 30.5176s 0.0011

0.7 22.1705s 0.0012

1 15.9477s 0.002

Table 1: Computation times in seconds for the AFS witfiedent
values of the parametéi. The remaining parameters are fixed to
gc = 0.01,ep = 0.005 andsd = 0.0001. The small Hausdfbrdis-

tances of the AFS to the reference-AFS (with = 0.1 degrees) are
tabulated in the right column.

umented by Table 1. A reasonable balance between the 5.0- 10
computational costs and accurate AFS approximations 1.0-1072

is achieved by the default value fé&p which is Q1 (de-
grees) in the"FACPACKSsoftware.

Second, the parameteid describes the distance
between parallel lines in the line-moving algorithm.
Again, halvingsd approximately doubles the required
computing times. In thEACPACKtoolbox the default
value issd = 0.001. The results for dlierent settings of
6d are listed in Table 2.

Finally, we examine the influence of the parameter
&c which bounds the smallest entries@ffrom below,
i.e.C > —gc. Forec = 0 the classical tangent al-

15

6d | computation time| Hausdoff distance
1.0-10% 198.9292s 0
30.0994s 5.2359- 107
15.3952s 8.3515-10°°
50-10°3 4.0317s 3.2512.10*
1.0-102 2.5332s 4527-10%

Table 2: Computation times in seconds for the AFS computatiip
the line-moving algorithm with dierent settings of the paramett.
The remaining parameters are fixedetp = 0.01, eo = 0.005 and
6¢ = 0.1 (degrees). The column “Hausdibdistance” contains the
distances to the reference-AFS wdith = 0.0001.



Hausdoff distance

gc | computation time

0 2.5445s 0.0173
1.0-10* 181.5765s 0.0171
50-10* 163.6554s 0.0183
1.0-10°3 186.6769s 0.0173
5.0-10°2 162.0274s 0.0065
1.0-1072 198.9292s 0
50-1072 258.6348s| 0.0423

Table 3: Computation times in seconds for the AFS witfiedent
settings ofec. The remaining parameters were fixedsio = 0.005,
6¢ = 0.1 (degrees) andd = 0.001. The Hausddk distances refer to
the reference valuec = 0.01.
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Figure 15: Hfect of a growing size (surface area) of the AFS for an
increasing value of the parametgf. The parametetc is set to the
four values 0, M2 and 005. The remaining parameters are fixed to
ea = 0.005,6¢ = 0.1 degrees andd = 0.0001. The smallest AFS
segments of each of the three segments of the AFS belorgs=d
and the largest belongs #g = 0.05.

gorithm is used to compute the AFS; only less than 3
seconds are required for this computation. &er> 0

the computation times considerably increase as the line-

moving algorithm constructs a larger number of parallel

shifted tangents. Interestingly the computation times do

not monotonously increase with growiag. However,
the largest computation time was found for the largest
value ofec. The results are given in Table 3.

The parameter&d ands¢ characterize the spatial res-
olution of the AFS computation, whereas and ea

have a direct influence on the size (i.e. the surface area)

of the AFS. The parametets andep are to be chosen
properly with the knowledge of the smallest acceptable
entries ofC andA and with the knowledge to which ex-
tent the spectral raw data has been perturbed. ffhete

of ec on the AFS is illustrated in Figure 15.

5.3. Line-moving algorithm for line-shaped segments
16

If a point of INNPOL is located on the boundary of
FIRPOL, then the AFS is empty or consists either of a
one-point segment or a line-shaped segment. This case
occurs if the matrbD has a zero entry (or in the case of
perturbed data: an entry equaltea). If ea is greater
than— min(D, 0), then none of the segments are degen-
erated, but all segments have a nonzero surface area.
Additionally, the casesa = —min(D,0) andec > 0

does not result in single-point or line-shaped AFS seg-
ments. An example is given in Figure 16.

TheFACPACKmoduleGeneralized Borgen plotsan
compute one-point or line-shaped AFS segments if the
& parameters are set to 0. However, the necessary zero
entries ofD make this situation numerically less stable
compared to the general case.

6. Conclusion

The new line-moving algorithm breaks the limitation
of the classical tangent algorithm for the construction
of Borgen plots. Generalized Borgen plots can be con-
structed for noisy and perturbed experimental spectral
data which can even include slightly negative matrix en-
tries, which can result, e.g., from a background subtrac-
tion. We hope that generalized Borgen plots resulting
from the line-moving algorithm can be a valuable tool
for a deeper understanding of the rotational ambiguity
underlying MCR-methods. Generalized Borgen plots
combine the strength of a geometric construction of the
AFS with various options to control and steer the com-
putations for a proper treatment of perturbed and noisy
data.

The line-moving algorithm is implemented in the
generalized Borgen plot module of tRACPACKSsoft-
ware. All results can directly be compared, e.g., with
the purely numerical approximation of the AFS by the
polygon inflation algorithm.
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