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Abstract

Multivariate curve resolution (MCR) methods as MCR-ALSaR#: ab, the peak group analysis and SVD-based hard-
modeling methods dier in their algorithms and the underlying optimization prdares. These fiierences include
variants in the implementation of the algorithms andféeding weighting of the constraints. Depending on the MCR
method dfferent computational results can be obtained for the sanaesdat

The area of feasible solutions (AFS) comprises all possibleomes of MCR methods. It represents all nonnegative
factors of a given spectral data set. It therefoffiers an unbiased view of the problem. In a comparative study we
present within the AFS the various MCR results for a modehdat and for experimental FTIR data. For the model
data we observe that the spread of the MCR results correlétteshe so-called purity of the spectral data.

Key words: Multivariate Curve Resolution, Nonnegative Matrix Factation, Area of Feasible Solutions,
MCR-ALS, ReactLab, FACPACK,

1. Introduction law is assumed to hold at least approximately. The pure
component recovery problem amounts to determining
the nonnegative matrix factos and A for the given
matrix D of spectral data. The key-problem with the
factorization (1) is the so-called rotational ambiguity of
the solution [1, 2, 3]. This means that often continua
of nonnegative matriceS andA exist so thaD = CA

The so-called area of feasible solutions (AFS) is a low-
dimensional representation of the set of all these non-
negative matrix factors [4, 5, 6, 7]. In contrast to this,
MCR techniques aim at determining a single, namely
the chemical meaningful and hopefully correct solution.

Multivariate curve resolution (MCR) and self-
modeling curve resolution (SMCR) techniques serve
to extract the underlying pure component information
from spectroscopic mixture data. For example, these
data can be taken from spectral observation of an on-
going chemical reaction. If a number ofspectra is
recorded over the reaction time and if each spectrum
containamspectral channels, then the spectral measure-
ment can be stored in anby-m data matrixD. Itsith
row contains théth mixture spectrum.

The MCR problem is to determine the numbsr
of chemical components, their pure component spec- This paper presents and compares the results of some
tra together with the associated concentration profiles. frequently used MCR program codes within the AFS
The basis for the solution of the MCR problem is the setting. This includes variations in the constraint se-
Lambert-Beer law in matrix form lection and a varying weighting of the constraints. We

D=CA (1) use the MCR software packages MCR-ALS [8, 9], Re-

actLab [10] and the Peak group analysis (PGA) [11],

It expresses a bilinear relation betwd2and the matrix which is a part of the FACPACK software [12]. We also
of pure component spectrae R>™ together with the consider a hard-modeling approach [13, 14]. Further,
matrixC € R™S of the associated concentration profiles the AFS is computed and the various MCR results are

of thespure components. In the case of noisy data or af- graphically highlighted within the AFS. This demon-
ter approximate baseline subtraction the Lambert-Beer strates not only that the AFS comprises all possible non-



negative factorizations @, but also illustrates the pos-

the concentration profile€ with a kinetic model, to

sible variations of the program output of MCR meth- support unimodular or monotone concentration profiles

ods as a consequence of the underlying rotational am-

biguity. The “"MCR-in-AFS” representation is consid-
ered for model data and also for an experimental FTIR

spectral data set. Further, we analyze the relation of

or to find spectra with certain properties (either sharp
localized peaks or smooth spectra) and so on. See for
example [1, 15, 8, 16, 17] and the references therein.

A main dfect of these constraints is that they can re-

the closeness of measured spectra to the AFS and theduce the rotational ambiguity. The term “rotational am-

spread of the various MCR results within the AFS. We

biguity” refers to the fact that from a given matrix fac-

hope that our study can improve the awareness on thetorizationD = CAwith nonnegative factor€ andA of-

reliability of MCR methods, on the impact of a proper
parametrization and constraint selection of MCR meth-

ten many difering nonnegative factorizations = C A
can be constructed by means of a regular mafrixc-

ods and, last but not least, on the important influence of cording to

kinetic hard modeling, which can considerably reduce
the rotational ambiguity.

1.1. Organization of the paper

Section 2 contains a brief introduction to the non-
negative matrix factorization problem and an overview

D=CA=(CT? @ . (3)

C>0 A0

These new nonnegative fact@@sandA still reconstruct
D. Typically, continua of possible nonnegative factor-

about some W|de|y used MCR software packages_ A izations ofD exist. The trivial Scaling ambIQUIty, which

short introduction to the AFS is given in Section 3. Sec-

represents the fact that the factorization (3) may also

tion 4 proposes two data sets and presents the compudnclude the factord—*A with a nonnegative regular di-

tational results for the various MCR codes. The purity
of spectral mixture data is investigated in the context of
the spread of various MCR results.

2. Pure component recovery

MCR algorithms aim at extracting chemically inter-

pretable and in the best case correct pure componen

factorsC andA so thatD = CAreconstructs the spectral
data matrixD. To this end an MCR algorithm can solve
a minimization problem for a target function

f(C,A) = ID-CAZ + [Imin(C,0)|2
N——— N——— — ™

reconstruction error C>0

H 2
+[Imin(A,0)le + 9(C.A).
— S——

A>0

()

constraints

Therein,|| - ||r denotes the Frobenius norm (square root
of the sum of squares). The minimization &C, A)

by (2) with respect ta&C and A should result in a small
reconstruction error and should result in only few and
small negative entries i@ andA. A weighted sum of
constraints

g(C’ A) = w1 fkil"l (C’ A) + w2 funi(C, A)
+ w3 fmono(c, A) + ...

with positive weight constants; can be used in order

to favor specific properties of the solution. The addi-

tional constraints allow us to favor the consistency of
2

agonal matrixA can be neglected as all algorithms, see
Sec. 2.1, make use of a certain fixed scali@pmpu-
tationally,C andA are in many cases constructed from
the bases of left and right singular vector$of18, 17].
This requires a low-rank approximationBfby the sin-
gular value decomposition [19].

I2.1. MCR software packages

For our AFS analysis of MCR results we select the
following MCR software packages from the wide port-
folio of available software solutions:

e MCR-ALS The Multivariate Curve Resolution

Alternating Least Squares (MCR-ALS) code, see
httpy/www.mcrals.info

is the most prominent and potentially most often
used MCR software. It is available in the form
of a MarLas toolbox. MCR-ALS uses an SVD-
free minimization procedure which applies the
constraints to the approximate factd@sand A
within an iterative ALS optimization, see [8, 9].
MCR-ALS includes various constraints, e.g., those
on nonnegativity, unimodality, equality, closure
and on the consistency with a kinetic model.
MCR-ALS additionally allows the analysis of
multi-way data.

e ReactLab The ReactLab software tools
httpy/jplusconsulting.com
for revealing chemical reaction mechanisms, see

[10], combines EceL sheets for the data import



with an MarLas graphical user interface to right singular vectors (spectra) of the spectral data ma-
the computational core routines.In ReactLab trix D. In this sense the AFS represents the continua
the underlying ssg-based minimization uses an of all possible spectra and of all possible concentration
adapted Levenberg-Marquardt algorithm and the profiles. Most of the solutions cannot be interpreted
kinetic equations are numerically solved by a chemically and are calleabstract factors The top row
fourth order Runge-Kutta method. Further, the of Fig. 3 shows the concentrational AFS and the spec-
linearly independent components are identified in tral AFS for a three-component system; the underlying
a model-free analysis which uses a singular value three-component model problem is introduced later in
decomposition of the spectral data matrix. Section 4.1. The colored markers in the AFS sets repre-
sent certain spectra or concentration profiles which are
also plotted in the remaining rows of Fig. 3.

The AFS provides an unbiased overview of all feasi-
ble factorizations. AFS computations can be combined
with additional constraints [27, 28, 29, 30, 31]. An AFS
computation under additional constraints emulates an
MCR technique. However, the AFS-based approach has
the advantage that it always allows a full control of the
solution selection procedure. AFS computations can be
done by the FACPACK software [32, 12] which com-
bines a MirL aB graphical user interface (GUI) with core
programs written in C anddrrran. FACPACK with
the default parameter settings has been used for all AFS
e The peak group analys{fPGA), see [11], isawin-  computations in this paper.

dowed MCR approach which constructs step-by-

step a pure component decomposition. PGA starts 4 aAn MCR-in-AFS analysis

with a user-selected frequency window of the spec-

tral data set and tries to detect peak correlations This section contains a short comparative study of

from the selected window to the remaining spectra MCR results and their AFS representations. First Sec-

outside the window. In this respect PGA is similar tion 4.1 introduces a model data set and an experimental
to the window factor analysis (WFA) [20]. PGA al- FTIR data set. In Section 4.2 the four MCR algorithms
lows the user to select problem adapted constraints from Section 2.1 are applied to these data sets. Addi-
and the associated weight factors. The software tionally, the associated AFS sets are computed. Then
is an explorative analysis method for spectral data the MCR results are marked within the AFS. In order
which contains many unknown quantities. It re- to represent the MCR-ALS results in the AFS (MCR-
quires a steering of the decomposition process by ALS does not use an SVD @), the computed spec-
an experienced chemist who can find and iden- tra and concentration profiles are expanded with re-
tify possible pure components. PGA is a part of spect to the bases of either right or left singular vec-
the FACPACK toolbox, see htigwww.math.uni-  tors[3, 33, 34, 35]. The resulting expansion fiméents
rostock.dg¢facpack [12]. are the basis for the AFS representation. The presen-
tation of the MCR results is accompanied by a critical
discussion. Finally, Section 4.3 investigates the refatio
of data purity and the spread of the MCR results in the

A global approach to solving the MCR problem is AFS.
to determine the set &ll possiblefactorizationsD =
CA with nonnegative matrix factor€ and A. This 4.1. Data sets
set of feasible factorizations can be represented in a We consider the following three-component
low-dimensional way by the Area of Feasible Solutions (sub)systems:

(AFS), see e.g. [4, 5, 21, 22, 23, 6, 24, 25, 26]. The 1 Model data:

e The kinetic SVD-based hard-modelingproach is
described in [14]. This approach minimizes a con-
straint functiong which measures the consistency
of the spectral data with a given kinetic model.
The model fit by means of a numerical optimiza-
tion procedure includes the computation of opti-
mal reaction rate constants. The predicted con-
centration profilesC and the associated specta
minimize the reconstruction err@ — CA. This
hard-modeling approach with integrated rate con-
stants optimization is very strong in reducing the
rotational ambiguity.

3. Areaof feasible solutions

AFS for a chemicak-component system is a bounded The reaction scheme

subset of §— 1)-dimensional space. A pointin the AFS

) . . . . ky ko

is a vector of expansion cfieeients with respect to ei X Y. G (4)

ther the left singular vectors (concentration profiles) or
3

ki



with the rate constantg = 4, k.y = 1 andk, = 2 of D allows us to compute a feasible concentration pro-
and initial concentrations ofX Y, Z) att = 0 are file. Correspondingly, a vector (&, ) of expansion co-
(1,0,0). Then numerical integration of the kinetic  efficients with respect to the three dominant right sin-
equations yields the concentration profiles. The gular vectors yields a feasible spectrum. In these two
pure component spectra of, Y andZ are taken AFS sets the MCR results are marked by colored sym-
as Gaussian profiles with a moderate overlap. The bols. Especially for the largest AFS segments (we call
concentration profiles and the spectra are shown in the isolated subsets of the ABBgmenfsthese markers
Fig. 1. The model is discretized by taking= 101 show a wide dispersion. The line style (solid, dashed
equidistant time-points in [@] and a number of  or dotted) of the boundary of an AFS segment has been

m = 201 spectral channels. Thiisis a 101x 201 used again for the same chemical components in the re-
matrix. maining plots of Fig. 3 in its rows 2 up to 5 in order to
2. Rhodium catalyzed hydroformylation: represent the associated concentration profiles and spec-

The experimental FTIR data set includes 1353 tra. These plots show the results of MCR-ALS with
spectra, each witm = 610 data channels. The andwithoutkinetic regularization, of ReactLab, of PGA
s = 3 main absorbing components in the frequency and of SVD-based kinetic modeling. The fivefdi-
window [196Q2120]cm® are the olefin compo-  €ntline colors of the markers in the AFS plots indicate
nent, a hydrido complex and an acyl complex. See Which one of the MCR methods has been used (green
[36] for the chemical details on this homogeneous for MCR-ALS with kinetic modeling, red for MCR-
catalytic reaction (sub)system; here we used the ALS without kinetic modeling and so on). The rows
p(H.) = 1.01MPa data set from [36]. The reaction ©Of D are represented in the spectral AFS by stars chang-

complies with the Michaelis-Menten kinetic model  ing from dark black to gray in the course of the reaction.
Correspondingly, the columns &F are represented by

5 stars in the concentrational AFS.

SKk— P+K, (5) For this first-order reaction systel = Y — Z

1 the analysis in [14] shows that even with the inclusion
which is the central ingredient for a kinetic hard- of a kinetic model with optimally adapted reaction rate
modeling approach. The absorption of the prod- constantssee Table Ino unique nonnegative factoriza-
uct component, namely the aldehyde, can be ig- tion D = CAcan be found. This result is confirmed by
nored in the given frequency window. The data the various MCR results. The two AFS plots in Fig. 3
is shown in Fig. 2. The spectral data were taken Show black dotted lines in each of the largest AFS sub-
by a Bruker Tensor 27 FTIR spectrometer with a Sets. All points on these lines belong to solutions which
MCT-A (mercury-cadmium-telluride) IR detector. ~are consistent with an optimally parametrization of the

Further details on the experimental setup are de- given kinetic model, see [14]. In fact, we observe that
scribed in [36]. the MCR results of all methods which use a kinetic reg-

ularization are located on these lines. Not surprisingly
the MCR-ALS result without kinetic modeling (marked
by a red+ symbol) is not located on this line in the spec-
tral AFS.

ke

S+K

4.2. Comparative MCR-idFSanalysis

This section reports on the application of the MCR
variants to the two spectral data sets. Necessary con- . .
P y Remark 4.1. For a given reaction scheme, e.g. by

straints ar® - CA~ 0 andC, A > 0. A kinetic regular- Eq. (4), and for given reaction rate constants the con-
ization has been used in the ReactLab package and the q. (%), g !

SVD-based hard-modeling approach. MCR-ALS has centrat{og F;rg?le_s '(t)'f Ia” chemt|cat! componlfnts canFct:e
been applied with and without kinetic modeling. computed 1T the iniial concentrations are known. or

an s-component system and if a discrete time grid with

n points is considered, then these discrete concentration

4.2.1. Model data profiles can be stored in the columns of an n-by-s matrix
All MCR and AFS results for the model data are pre- C°®. We call such a vector of reaction rate constants

sented in Fig. 3. The top row shows the AFS for the D-consistent if the resulting matrix % is a possible

factorC and also the AFS for the factéy. If we take factor in a nonnegative matrix factorization £ C°%A

a point in the concentrational AFS with the coordinates of the given spectral data matrix D, see [14] for the de-

(a,B), then the vector of expansion dheients (1«, ) tails.

with respect to the three dominant left singular vectors  In [14] the set of all D-consistent reaction rate con-

4
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Figure 1: The model data set: The left subplot shows eaclifoaw of the spectral data matrix. The line color starts with a dark black and ends
in gray in the course of the reaction. The centered plot shbe/goncentration profiles accordingXo— Y — Z. The pure component spectra
are shown on the right. The color assignmerX islue,Y green,Z red.
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Figure 2: Experimental FTIR data set on the rhodium catalyredroformylation process: The left subplot shows each 8@ of the data matrix.
The line color starts with a dark black and ends in gray in th@se of the reaction. The first 15 singular values of thetspledata matrixD are
plotted on the right. The three largest singular valugsfe clearly separated from the remaining smaller ongsThis clearly indicates a (noisy)
three-component system.

Computed reaction rate constants and relative reconiirnuetrors

Model data set Experimental FTIR data
MCR software | kg ki | ko erp err k1 k.1 ko erp erf
MCR-ALS 531] 0.18] 1.51( 29-107 [ 12-10° [ 77.18| 6.46 | 466 | 2-107 8.3-10°
ReactLab 360 1.18] 222|| 1.6-10° | 35-103 || 3707 3442| 428 || 6-10°3 1-10°
hard-modeling | 434] 0.82] 1.85|| 1.8-10™ | 1.8.10° | 3208] 10° | 463 || 4-10°3 8.8-10°

Table 1: The table lists the reaction rate constants as ctafiy the kinetic-model-based MCR tools as introduced i 34.. Two data sets are
considered, see Sec. 4.1. For each of these data sets thetedmate constants show majoffdiences whose cause is explained in the remarks
4.1 and 4.2. Small (relative) reconstruction errorge#r [|[D — CA|r/|ID||r indicate that the MCR codes have produced correct factmirm

D ~ CA Additionally, small errors of the kinetic fit rr= ||C — C°%|/|IC|Ir (the matrixC°% contains in its columns the numerical solution of
the kinetic equations for the given parametrizatigrronfirm the correctness of the reaction rate constantsseltiata show that even kinetic hard
modeling cannot always produce unique MCR results (if trerdhal reaction contains reversible steps).



."‘°
Orér "
* ° et
% -10} g e |
*
*
ES
=20t N
_30 L L L L
1 2 3
a
ReactLak
1 T - 1{
c c It c
2 il il
— — —
© © ©
= = =
o o o
Q%® Dos Bos
c c c
o o o
o o o
00 - . 3 00 . . 3 O0 . 3
time time time
1 1 1
c c c
il 2 il
— — +—
o o o
S S f—
Qos Qos Qos
o] o] o]
© « ©
0 0 0
15( 15( 15(
data channel data channel data channel
peak group analysis ) kinetic hard-modelingx) all tools
1
c c c
il il il
— — —
© © ©
= = =
5 5 g \
% o Bos /
c c c
o o o
13} 13} 13} \
o N = e
0 . 3 0 . 3 0 1 . 2 3
time time time
1 1 1
c c c
il 2 el
— — +—
o o o
S S f—
Qos Qos Qos
o] o] o)
© « ©
0

15(
data c%annel

15(
data c%annel

15(
data c%annel

Figure 3: Results of the MCR-in-ALS analysis for the modeadset. Top row: AFS for the fact®® and the AFS for the factoA. A triple

of expansion ca@écients (1a,B) with respect to the left singular vectors represents a@umation profile and with respect to the right singular
vectors a spectrum is represented. In these two AFS sets @ tdsults are tagged by colored markers. The row afe represented in the
spectral AFS by stars changing from dark black to gray in these of the reaction. Correspondingly, the columnB afre represented by stars
in the concentrational AFS.

Second to fifth row: The colored markers in the AFS for theassi MCR methods correspond to specific concentration psadifel spectra.
These are shown in the same line color for MCR-ALS with andheuit kinetic regularization, for ReactLab, for PGA and fMI3based kinetic
modeling. The line style (solid, dashed, pointed) corresigao the lire style of the boundary curve of the associate8 subset. Bold dashed
lines are used to mark in the two AFS sets those solutionshadrie consistent with a kinetic model for optimally adaptei@ iconstants, see [14]
for the theoretical background. In the spectral AFS thislbdashed line is mostly covered by result markers.

The last two plots show all MCR results in overlaid form whinHicates that the MCR codes have produced to some extelitatjualy different
results.



stantsk for the model reactiofd) has been determined
analytically as follows

e

W=k A KK, o= (K + K+ K — 4Kk,

2

pl)=- L2V ey =g o )
07

and the given k = (4,1,2)" for the model data set.
The strongly varying values of kk ; and k for the
model data set in Table 1 reflect the fact that even an
underlying kinetic model cannot result in unique re-
action rate constants. The correctness of these rela-
tions is confirmed by small reconstruction errorsge
IID — CAlr/IID|lr and by small errors of the kinetic fit
errg = ||IC — C°%9|=/|ICllr. See [14] for all analytical
details.

Y- N¢ Y+ Vb
2 2

a
B(a)
¥(@)

The last two plots in Fig. 3 (all lines are plotted black)
show all MCR results in overlaid form. To some ex-
tent we observe qualitativelyfiiérent results especially
for the computed spectra of the intermedifteMore-
over, the concentration profiles of the reactdrshow a
somewhat dferent decay behavior.

For this model problem the analysis underlines the
advantage of the global AFS approach. All possible

lar values are characteristically larger than the remain-
ing singular values. This indicates a three-component
system and justifies to work with a rank-3 approxima-
tion of D in the SVD-based MCR algorithms. Figure
4 shows all MCR- and AFS-computational results. The
meaning of the line-styles, markers and marker colors is
explained in Sec. 4.2.1 and the caption of Fig. 3.

MCR-ALS with kinetic modeling, ReactLab and
SVD-based kinetic hard modeling all include the con-
sistency with an optimally parametrized Michaelis-
Menten model. However, the computed reaction rate
constants in Table 1 show strong variations as the
Michaelis-Menten model due to its reversible subreac-
tion does not allow to determine unique rate constants,
see Remark 4.2T'he concentration profiles, spectra and
boundaries of the respective AFS segments are drawn
by solid lines for the olefin, by dashed lines for the hy-
drido complex and by dotted lines for the acyl complex,
see also [36]. For these three MCR methods with ki-
netic modeling small deviations can be seen in the con-
centration profiles of the hydrido complex and the acyl
complex as well as in the spectra of olefin and the acyl
complex. The resulting factorizations are chemically in-
terpretable which is a result of the strong regularization
of the underlying Michaelis-Menten model.

MCR-ALS without kinetic regularization results in
an almost feasible factorization with some small neg-
ative entries. The associated AFS representations of the

nonnegative factorizations are easily accessible. Thefactors (red+ markers) are partially located outside the
user can locate the MCR results in the AFS and he can AFS segments. A further approximation is needed for
decide whether or not a certain spectrum or concentra-the graphical representation of the MCR-ALS results in

tion profile is chemically meaningful. For this model
problem the peak shape of the componémxhibits a
considerable variation, which might help the chemist to

steer the factorization process in the desired and chemi-

cally interpretable direction.

The MCR experiments for this data set show that even
MCR methods without kinetic regularization work sur-
prisingly well. In principle, an MCR method which only
requires thaC, A > 0 andD ~ CAcan produce any so-
lution which is represented in the AFS. However, these

the AFS: Since MCR-ALS is an SVD-free method we
need for the AFS representation of the MCR-ALS re-
sults a projection to the spaces of the three dominant
left (respectively right) singular vectors. We also ob-
serve in Fig. 4 that the concentration profile of the olefin
is not a monotone function with a minimum at about
t = 800min. Such a non-monotone function is an ab-
stract factor without useful chemical interpretation.

The PGA focuses on the reconstruction of the spec-
tral profiles. The optimal results from [36] can be re-

methods in some cases tend to yield pure componentsproduced very well. Then the concentration profiles are
which are close to the purest components in the mea- calculated after the complete determination of the factor
sured data, see also the discussion in Section 4.3 on dataA. This results in small negative entries in the concen-
purity. For instance, MCR-ALS allows to initialize the tration profile of the olefin component.

iterative alternating least squares procedure by the “pure  Once again, this experimental data set documents
variables” of eithelA or C. Thenit is plausible that the  the usefulness of the AFS approach. Chemically inter-
iteration terminates in a close neighborhood. pretable pure components can easily be extracted from

the AFS. The user is not limited to a certain MCR solu-

4.2.2. Rhodium catalyzed hydroformylation tion but can explore the set of all other feasible factor-
For this noisy FTIR data set we first compute the sin- jzations.

gular values oD, see Fig. 2. The three largest singu-
7
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overlaid form, indicate a much stronger variation of the M@Rults foghis experimental FTIR data set.
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Spectral data purity

distance to nearest AFS segment

30

11

) 60 90
row index ofD

Figure 5: Plot of the Euclidean distances of the row reprasiens

of D to the closest points in the AFS for the model data set. This
is a measure for the closeness of a measured spectrum toibl@oss
pure component spectrum. We call tiiata purity The curve has
three local minima, namely in the first, 11th and last spectrihis
corresponds to maximal concentrations of the reactargrrirediate
and reaction product.

Remark 4.2.

I Analogously to the situation as explained in Re-
mark 4.1, the Michaelis-Menten kinetic model is
not syficient to guarantee a unique MCR factor-
ization if the ratio §/Kg of initial concentrations
is large. If a certain optimally adapted vector &f
kinetic constants is known, then the set of all these
vectors of rate constant& can be computed. The
reaction rate constantks unique (aside from per-
turbations) and kand k ; satisfy the relation

K+ K5
ki '

k_1= Kmkl—kz with Km =

Il For our computational experiments we had to sub-
stitute theMarL as ordinary diferential equation
(ode) solver “ode45” in the MCR-ALS code by the
stiff ode solver “odel5s”. This has reduced the
computation from about three hours to less than a
minute. Additionally, we had to thin out the matrix
D for the ReactLab MCR code as the dimensions
of the data sets exceed the limitations of Exerr
software, which is used for data import in React-
Lab.

4.3. Data purity and spread of MCR results
In this section we investigate the relationdzfta pu-
rity and the spread of the MCR results in the AFS rep-
resentation. (Euclidean distances in the spectral AFS
9

Spread in AFS segment

solid | dotted| dashed
All MCR methods 0.041 | 0.309 | 0.0046
Only MCR w/ kin. mod.| 1077 | 0.26 10°°

Table 2: Spread of MCR results by Eq. (6) in the AFS segmeats, s
Sec. 4.2.1.

MCR spread in AFS segments
Noise solid | dotted dashed
Heteroscedastic 2% 0.257 | 0.475 0.007
Homoscedastic 2% 0.086 | 0.403 0.025
Heteroscedastic 5% 0.462 | 0.534 0.029
Homoscedastic 5% 0.260 | 0.480 0.022

Table 3: Homoscedastic and heteroscedastic noise wittalsign
noise ratios of 2% and 5% is added to the model data set. Thitings
spread, see Eq, (6), of the MCR results in the AFS represemtest
listed.

are equal to the Euclidean distances of the associated
spectra; see the remark after Eq. (&))derdata purity

we understand how close a measured spectrum (taken
from the chemical reaction system) is to the possible
pure component spectra. In other words a spectrum is
called pure, if only one chemical component contributes
to the absorption. Typically, spectra are nearly pure at
the beginning of a chemical reaction if only the reac-
tant is present and at the end of a complete chemical
reaction, see also [3]. For the following analysis we use
only the model data set as introduced in Sec. 4.2. Our
hypothesis is that a high data purity makes it easy for
MCR algorithms to extract the pure components. This
would result in a small variation or spread of the MCR
results in their AFS representation.

We start with the data purity analysis in the spectral
AFS as shown in the right subplot of the top row in Fig.
3. The series of gray stars represent the rows of the
spectral data matrix. The spectral data start at the right
AFS segment with the solid boundary line which repre-
sents the possible spectra of the reackarithe series of
data representing stars tends to the small left AFS seg-
ments which represent the more or less unique spectrum
of the producZ. The Euclidean distances to the nearest
AFS points are plotted in Fig. 5 against the row index
of D. The curve has three local minima, namely in the
first spectrum (approximately the spectrum of the reac-
tantX), the 11th row oD, which is close to the possible
spectra of the intermedia¥ and last spectrum. As the
reaction is nearly complete the last spectrum is a good
approximation of the produ@. Minima of the distance
curve represent spectra which are close to pure spectra.
The distances of the first and last roni®to the closest



AFS points are each less thai®04. The distance ofthe  results can systematically be represented in the AFS.
11th row ofD AFS segment representing possible spec- The spread of theseftierent results decreases under ad-
tra of Y is about 023, that is a relatively low purity of  ditional constraints, e.g., the consistency of the factor-
the measured spectra with respect to the chemical com-ization with a kinetic model of the reaction system. The
ponentY. AFS representation of MCR results is a clear, compre-
Next, the data purity is related with the spread of the hensible approach for increasing the awareness on the
MCR results in their AFS representations. In order to potential non-uniqueness of MCR results. A combina-
form a measure for this spread we compute the sum of tion of MCR computations with an AFS representation

absolute diferences of the possible pure component factorization can help to
n find the “true” components or at least chemically inter-
Z IIF = rill2 (6) pretable pure components.
= We have also observed for the model data set that a

. ] ) high data purity, i.e. the existence of spectra in the se-
with r; being the AFS representation of an MCR result jeg of measurements which are close to possible pure
andT being the geometric center (arithmetic mean) of component spectra, can reduce the spread of the MCR

all ri. The indexi runs over all MCR methodsWe results. This might be a starting point of a deepened
remark that Euclidean distances in the spectral AFS are analysis.

equal to distances of the associated spectra due to the or-

thogonal invariance of the Euclidean norm [19]. In the
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