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Abstract

Multivariate curve resolution (MCR) methods as MCR-ALS, ReactLab, the peak group analysis and SVD-based hard-
modeling methods differ in their algorithms and the underlying optimization procedures. These differences include
variants in the implementation of the algorithms and a differing weighting of the constraints. Depending on the MCR
method different computational results can be obtained for the same data set.

The area of feasible solutions (AFS) comprises all possibleoutcomes of MCR methods. It represents all nonnegative
factors of a given spectral data set. It therefore offers an unbiased view of the problem. In a comparative study we
present within the AFS the various MCR results for a model data set and for experimental FTIR data. For the model
data we observe that the spread of the MCR results correlateswith the so-called purity of the spectral data.

Key words: Multivariate Curve Resolution, Nonnegative Matrix Factorization, Area of Feasible Solutions,
MCR-ALS, ReactLab, FACPACK,

1. Introduction

Multivariate curve resolution (MCR) and self-
modeling curve resolution (SMCR) techniques serve
to extract the underlying pure component information
from spectroscopic mixture data. For example, these
data can be taken from spectral observation of an on-
going chemical reaction. If a number ofn spectra is
recorded over the reaction time and if each spectrum
containsmspectral channels, then the spectral measure-
ment can be stored in ann-by-m data matrixD. Its ith
row contains theith mixture spectrum.

The MCR problem is to determine the numbers
of chemical components, their pure component spec-
tra together with the associated concentration profiles.
The basis for the solution of the MCR problem is the
Lambert-Beer law in matrix form

D = CA. (1)

It expresses a bilinear relation betweenD and the matrix
of pure component spectraA ∈ R

s×m together with the
matrixC ∈ Rn×s of the associated concentration profiles
of thespure components. In the case of noisy data or af-
ter approximate baseline subtraction the Lambert-Beer

law is assumed to hold at least approximately. The pure
component recovery problem amounts to determining
the nonnegative matrix factorsC and A for the given
matrix D of spectral data. The key-problem with the
factorization (1) is the so-called rotational ambiguity of
the solution [1, 2, 3]. This means that often continua
of nonnegative matricesC andA exist so thatD = CA.
The so-called area of feasible solutions (AFS) is a low-
dimensional representation of the set of all these non-
negative matrix factors [4, 5, 6, 7]. In contrast to this,
MCR techniques aim at determining a single, namely
the chemical meaningful and hopefully correct solution.

This paper presents and compares the results of some
frequently used MCR program codes within the AFS
setting. This includes variations in the constraint se-
lection and a varying weighting of the constraints. We
use the MCR software packages MCR-ALS [8, 9], Re-
actLab [10] and the Peak group analysis (PGA) [11],
which is a part of the FACPACK software [12]. We also
consider a hard-modeling approach [13, 14]. Further,
the AFS is computed and the various MCR results are
graphically highlighted within the AFS. This demon-
strates not only that the AFS comprises all possible non-



negative factorizations ofD, but also illustrates the pos-
sible variations of the program output of MCR meth-
ods as a consequence of the underlying rotational am-
biguity. The “MCR-in-AFS” representation is consid-
ered for model data and also for an experimental FTIR
spectral data set. Further, we analyze the relation of
the closeness of measured spectra to the AFS and the
spread of the various MCR results within the AFS. We
hope that our study can improve the awareness on the
reliability of MCR methods, on the impact of a proper
parametrization and constraint selection of MCR meth-
ods and, last but not least, on the important influence of
kinetic hard modeling, which can considerably reduce
the rotational ambiguity.

1.1. Organization of the paper

Section 2 contains a brief introduction to the non-
negative matrix factorization problem and an overview
about some widely used MCR software packages. A
short introduction to the AFS is given in Section 3. Sec-
tion 4 proposes two data sets and presents the compu-
tational results for the various MCR codes. The purity
of spectral mixture data is investigated in the context of
the spread of various MCR results.

2. Pure component recovery

MCR algorithms aim at extracting chemically inter-
pretable and in the best case correct pure component
factorsC andA so thatD = CA reconstructs the spectral
data matrixD. To this end an MCR algorithm can solve
a minimization problem for a target function

f (C,A) = ‖D −CA‖2F︸       ︷︷       ︸
reconstruction error

+ ‖min(C, 0)‖2F︸          ︷︷          ︸
C≥0

+ ‖min(A, 0)‖2F︸          ︷︷          ︸
A≥0

+ g(C,A)︸  ︷︷  ︸
constraints

.
(2)

Therein,‖ · ‖F denotes the Frobenius norm (square root
of the sum of squares). The minimization off (C,A)
by (2) with respect toC andA should result in a small
reconstruction error and should result in only few and
small negative entries inC andA. A weighted sum of
constraints

g(C,A) = ω1 fkin(C,A) + ω2 funi(C,A)

+ ω3 fmono(C,A) + . . .

with positive weight constantsωi can be used in order
to favor specific properties of the solution. The addi-
tional constraints allow us to favor the consistency of

the concentration profilesC with a kinetic model, to
support unimodular or monotone concentration profiles
or to find spectra with certain properties (either sharp
localized peaks or smooth spectra) and so on. See for
example [1, 15, 8, 16, 17] and the references therein.

A main effect of these constraints is that they can re-
duce the rotational ambiguity. The term “rotational am-
biguity” refers to the fact that from a given matrix fac-
torizationD = CAwith nonnegative factorsC andA of-
ten many differing nonnegative factorizationsD = C̃ Ã
can be constructed by means of a regular matrixT ac-
cording to

D = CA= (CT−1)︸  ︷︷  ︸
C̃≥0

(T A)︸︷︷︸
Ã≥0

. (3)

These new nonnegative factors̃C andÃ still reconstruct
D. Typically, continua of possible nonnegative factor-
izations ofD exist.The trivial scaling ambiguity, which
represents the fact that the factorization (3) may also
include the factors∆−1∆ with a nonnegative regular di-
agonal matrix∆ can be neglected as all algorithms, see
Sec. 2.1, make use of a certain fixed scaling.Compu-
tationally,C andA are in many cases constructed from
the bases of left and right singular vectors ofD [18, 17].
This requires a low-rank approximation ofD by the sin-
gular value decomposition [19].

2.1. MCR software packages

For our AFS analysis of MCR results we select the
following MCR software packages from the wide port-
folio of available software solutions:

• MCR-ALS The Multivariate Curve Resolution
Alternating Least Squares (MCR-ALS) code, see

http://www.mcrals.info
is the most prominent and potentially most often
used MCR software. It is available in the form
of a MatLab toolbox. MCR-ALS uses an SVD-
free minimization procedure which applies the
constraints to the approximate factorsC and A
within an iterative ALS optimization, see [8, 9].
MCR-ALS includes various constraints, e.g., those
on nonnegativity, unimodality, equality, closure
and on the consistency with a kinetic model.
MCR-ALS additionally allows the analysis of
multi-way data.

• ReactLab The ReactLab software tools
http://jplusconsulting.com

for revealing chemical reaction mechanisms, see
[10], combines Excel sheets for the data import

2



with an MatLab graphical user interface to
the computational core routines.In ReactLab
the underlying ssq-based minimization uses an
adapted Levenberg-Marquardt algorithm and the
kinetic equations are numerically solved by a
fourth order Runge-Kutta method. Further, the
linearly independent components are identified in
a model-free analysis which uses a singular value
decomposition of the spectral data matrix.

• The kinetic SVD-based hard-modelingapproach is
described in [14]. This approach minimizes a con-
straint functiong which measures the consistency
of the spectral data with a given kinetic model.
The model fit by means of a numerical optimiza-
tion procedure includes the computation of opti-
mal reaction rate constants. The predicted con-
centration profilesC and the associated spectraA
minimize the reconstruction errorD − CA. This
hard-modeling approach with integrated rate con-
stants optimization is very strong in reducing the
rotational ambiguity.

• The peak group analysis(PGA), see [11], is a win-
dowed MCR approach which constructs step-by-
step a pure component decomposition. PGA starts
with a user-selected frequency window of the spec-
tral data set and tries to detect peak correlations
from the selected window to the remaining spectra
outside the window. In this respect PGA is similar
to the window factor analysis (WFA) [20]. PGA al-
lows the user to select problem adapted constraints
and the associated weight factors. The software
is an explorative analysis method for spectral data
which contains many unknown quantities. It re-
quires a steering of the decomposition process by
an experienced chemist who can find and iden-
tify possible pure components. PGA is a part of
the FACPACK toolbox, see http://www.math.uni-
rostock.de/facpack [12].

3. Area of feasible solutions

A global approach to solving the MCR problem is
to determine the set ofall possiblefactorizationsD =
CA with nonnegative matrix factorsC and A. This
set of feasible factorizations can be represented in a
low-dimensional way by the Area of Feasible Solutions
(AFS), see e.g. [4, 5, 21, 22, 23, 6, 24, 25, 26]. The
AFS for a chemicals-component system is a bounded
subset of (s− 1)-dimensional space. A point in the AFS
is a vector of expansion coefficients with respect to ei-
ther the left singular vectors (concentration profiles) or

right singular vectors (spectra) of the spectral data ma-
trix D. In this sense the AFS represents the continua
of all possible spectra and of all possible concentration
profiles. Most of the solutions cannot be interpreted
chemically and are calledabstract factors. The top row
of Fig. 3 shows the concentrational AFS and the spec-
tral AFS for a three-component system; the underlying
three-component model problem is introduced later in
Section 4.1. The colored markers in the AFS sets repre-
sent certain spectra or concentration profiles which are
also plotted in the remaining rows of Fig. 3.

The AFS provides an unbiased overview of all feasi-
ble factorizations. AFS computations can be combined
with additional constraints [27, 28, 29, 30, 31]. An AFS
computation under additional constraints emulates an
MCR technique. However, the AFS-based approach has
the advantage that it always allows a full control of the
solution selection procedure. AFS computations can be
done by the FACPACK software [32, 12] which com-
bines a MatLab graphical user interface (GUI) with core
programs written in C and Fortran. FACPACK with
the default parameter settings has been used for all AFS
computations in this paper.

4. An MCR-in-AFS analysis

This section contains a short comparative study of
MCR results and their AFS representations. First Sec-
tion 4.1 introduces a model data set and an experimental
FTIR data set. In Section 4.2 the four MCR algorithms
from Section 2.1 are applied to these data sets. Addi-
tionally, the associated AFS sets are computed. Then
the MCR results are marked within the AFS. In order
to represent the MCR-ALS results in the AFS (MCR-
ALS does not use an SVD ofD), the computed spec-
tra and concentration profiles are expanded with re-
spect to the bases of either right or left singular vec-
tors [3, 33, 34, 35]. The resulting expansion coefficients
are the basis for the AFS representation. The presen-
tation of the MCR results is accompanied by a critical
discussion. Finally, Section 4.3 investigates the relation
of data purity and the spread of the MCR results in the
AFS.

4.1. Data sets
We consider the following three-component

(sub)systems:

1. Model data:
The reaction scheme

X
k1

GGGGGBF GGGGG

k−1

Y
k2

GGGA Z (4)
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with the rate constantsk1 = 4, k−1 = 1 andk2 = 2
and initial concentrations of (X,Y,Z) at t = 0 are
(1, 0, 0). Then numerical integration of the kinetic
equations yields the concentration profiles. The
pure component spectra ofX, Y andZ are taken
as Gaussian profiles with a moderate overlap. The
concentration profiles and the spectra are shown in
Fig. 1. The model is discretized by takingn = 101
equidistant time-points in [0, 3] and a number of
m = 201 spectral channels. ThusD is a 101× 201
matrix.

2. Rhodium catalyzed hydroformylation:
The experimental FTIR data set includesn = 1353
spectra, each withm = 610 data channels. The
s= 3 main absorbing components in the frequency
window [1960, 2120]cm−1 are the olefin compo-
nent, a hydrido complex and an acyl complex. See
[36] for the chemical details on this homogeneous
catalytic reaction (sub)system; here we used the
p(H2) = 1.01MPa data set from [36]. The reaction
complies with the Michaelis-Menten kinetic model

S + K
k1

GGGGGBF GGGGG

k−1

S K
k2

GGGA P+ K, (5)

which is the central ingredient for a kinetic hard-
modeling approach. The absorption of the prod-
uct component, namely the aldehyde, can be ig-
nored in the given frequency window. The data
is shown in Fig. 2.The spectral data were taken
by a Bruker Tensor 27 FTIR spectrometer with a
MCT-A (mercury-cadmium-telluride) IR detector.
Further details on the experimental setup are de-
scribed in [36].

4.2. Comparative MCR-in-AFSanalysis

This section reports on the application of the MCR
variants to the two spectral data sets. Necessary con-
straints areD−CA≈ 0 andC,A ≥ 0. A kinetic regular-
ization has been used in the ReactLab package and the
SVD-based hard-modeling approach. MCR-ALS has
been applied with and without kinetic modeling.

4.2.1. Model data

All MCR and AFS results for the model data are pre-
sented in Fig. 3. The top row shows the AFS for the
factorC and also the AFS for the factorA. If we take
a point in the concentrational AFS with the coordinates
(α, β), then the vector of expansion coefficients (1, α, β)
with respect to the three dominant left singular vectors

of D allows us to compute a feasible concentration pro-
file. Correspondingly, a vector (1, α, β) of expansion co-
efficients with respect to the three dominant right sin-
gular vectors yields a feasible spectrum. In these two
AFS sets the MCR results are marked by colored sym-
bols. Especially for the largest AFS segments (we call
the isolated subsets of the AFSsegments) these markers
show a wide dispersion. The line style (solid, dashed
or dotted) of the boundary of an AFS segment has been
used again for the same chemical components in the re-
maining plots of Fig. 3 in its rows 2 up to 5 in order to
represent the associated concentration profiles and spec-
tra. These plots show the results of MCR-ALS with
and without kinetic regularization, of ReactLab, of PGA
and of SVD-based kinetic modeling. The five differ-
ent line colors of the markers in the AFS plots indicate
which one of the MCR methods has been used (green
for MCR-ALS with kinetic modeling, red for MCR-
ALS without kinetic modeling and so on). The rows
of D are represented in the spectral AFS by stars chang-
ing from dark black to gray in the course of the reaction.
Correspondingly, the columns ofD are represented by
stars in the concentrational AFS.

For this first-order reaction systemX ⇋ Y → Z
the analysis in [14] shows that even with the inclusion
of a kinetic model with optimally adapted reaction rate
constants, see Table 1,no unique nonnegative factoriza-
tion D = CA can be found. This result is confirmed by
the various MCR results. The two AFS plots in Fig. 3
show black dotted lines in each of the largest AFS sub-
sets. All points on these lines belong to solutions which
are consistent with an optimally parametrization of the
given kinetic model, see [14]. In fact, we observe that
the MCR results of all methods which use a kinetic reg-
ularization are located on these lines. Not surprisingly
the MCR-ALS result without kinetic modeling (marked
by a red+ symbol) is not located on this line in the spec-
tral AFS.

Remark 4.1. For a given reaction scheme, e.g. by
Eq. (4), and for given reaction rate constants the con-
centration profiles of all chemical components can be
computed if the initial concentrations are known. For
an s-component system and if a discrete time grid with
n points is considered, then these discrete concentration
profiles can be stored in the columns of an n-by-s matrix
Code. We call such a vector of reaction rate constants
D-consistent if the resulting matrix Code is a possible
factor in a nonnegative matrix factorization D= CodeA
of the given spectral data matrix D, see [14] for the de-
tails.

In [14] the set of all D-consistent reaction rate con-
4
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Figure 1: The model data set: The left subplot shows each fourth row of the spectral data matrixD. The line color starts with a dark black and ends
in gray in the course of the reaction. The centered plot showsthe concentration profiles according toX ↔ Y→ Z. The pure component spectra
are shown on the right. The color assignment isX blue,Y green,Z red.

2000 2050 2100
0

0.05

0.1

wavenumbers [cm−1]

ab
so

rp
tio

n

Time series of FTIR spectra

0 5 10 15
10

−2

10
0

10
2

Singular values ofD

i

lo
g(
σ

i)

Figure 2: Experimental FTIR data set on the rhodium catalyzed hydroformylation process: The left subplot shows each 30th row of the data matrix.
The line color starts with a dark black and ends in gray in the course of the reaction. The first 15 singular values of the spectral data matrixD are
plotted on the right. The three largest singular values (x) are clearly separated from the remaining smaller ones (+). This clearly indicates a (noisy)
three-component system.

Computed reaction rate constants and relative reconstruction errors
Model data set Experimental FTIR data

MCR software k1 k−1 k2 errD errk k1 k−1 k2 errD errk
MCR-ALS 5.31 0.18 1.51 2.9 · 10−7 1.2 · 10−6 77.18 6.46 4.66 2 · 10−2 8.3·10−5

ReactLab 3.60 1.18 2.22 1.6 · 10−5 3.5 · 10−3 370.7 34.42 4.28 6 · 10−3 1 · 10−2

hard-modeling 4.34 0.82 1.85 1.8 · 10−15 1.8·10−10 32.08 10−9 4.63 4 · 10−3 8.8·10−5

Table 1: The table lists the reaction rate constants as computed by the kinetic-model-based MCR tools as introduced in Sec. 2.1. Two data sets are
considered, see Sec. 4.1. For each of these data sets the computed rate constants show major differences whose cause is explained in the remarks
4.1 and 4.2. Small (relative) reconstruction errors errD = ‖D − CA‖F/‖D‖F indicate that the MCR codes have produced correct factorizations
D ≈ CA. Additionally, small errors of the kinetic fit errk = ‖C − Code‖F/‖C‖F (the matrixCode contains in its columns the numerical solution of
the kinetic equations for the given parametrizationk) confirm the correctness of the reaction rate constants. These data show that even kinetic hard
modeling cannot always produce unique MCR results (if the chemical reaction contains reversible steps).
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Figure 3: Results of the MCR-in-ALS analysis for the model data set. Top row: AFS for the factorC and the AFS for the factorA. A triple
of expansion coefficients (1, α, β) with respect to the left singular vectors represents a concentration profile and with respect to the right singular
vectors a spectrum is represented. In these two AFS sets the MCR results are tagged by colored markers. The rows ofD are represented in the
spectral AFS by stars changing from dark black to gray in the course of the reaction. Correspondingly, the columns ofD are represented by stars
in the concentrational AFS.
Second to fifth row: The colored markers in the AFS for the various MCR methods correspond to specific concentration profiles and spectra.
These are shown in the same line color for MCR-ALS with and without kinetic regularization, for ReactLab, for PGA and for SVD-based kinetic
modeling. The line style (solid, dashed, pointed) corresponds to the line style of the boundary curve of the associated AFS subset. Bold dashed
lines are used to mark in the two AFS sets those solutions which are consistent with a kinetic model for optimally adapted rate constants, see [14]
for the theoretical background. In the spectral AFS this black dashed line is mostly covered by result markers.
The last two plots show all MCR results in overlaid form whichindicates that the MCR codes have produced to some extent qualitatively different
results.
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stantsK for the model reaction(4) has been determined
analytically as follows

K =





α

β(α)
γ(α)

 : α ∈
[
ψ −
√
φ

2
,
ψ +
√
φ

2

]

with

ψ =k∗1 + k∗−1 + k∗2, φ = (k∗1 + k∗−1 + k∗2)2 − 4k∗1k∗2,

β(α) = − 1
4

(ψ − 2α)2 − φ
α

, γ(α) = ψ − α − β(α).

and the given k∗ = (4, 1, 2)T for the model data set.
The strongly varying values of k1, k−1 and k2 for the
model data set in Table 1 reflect the fact that even an
underlying kinetic model cannot result in unique re-
action rate constants. The correctness of these rela-
tions is confirmed by small reconstruction errors errD =

‖D − CA‖F/‖D‖F and by small errors of the kinetic fit
errk = ‖C − Code‖F/‖C‖F . See [14] for all analytical
details.

The last two plots in Fig. 3 (all lines are plotted black)
show all MCR results in overlaid form. To some ex-
tent we observe qualitatively different results especially
for the computed spectra of the intermediateY. More-
over, the concentration profiles of the reactantX show a
somewhat different decay behavior.

For this model problem the analysis underlines the
advantage of the global AFS approach. All possible
nonnegative factorizations are easily accessible. The
user can locate the MCR results in the AFS and he can
decide whether or not a certain spectrum or concentra-
tion profile is chemically meaningful. For this model
problem the peak shape of the componentY exhibits a
considerable variation, which might help the chemist to
steer the factorization process in the desired and chemi-
cally interpretable direction.

The MCR experiments for this data set show that even
MCR methods without kinetic regularization work sur-
prisingly well. In principle, an MCR method which only
requires thatC,A ≥ 0 andD ≈ CA can produce any so-
lution which is represented in the AFS. However, these
methods in some cases tend to yield pure components
which are close to the purest components in the mea-
sured data, see also the discussion in Section 4.3 on data
purity. For instance, MCR-ALS allows to initialize the
iterative alternating least squares procedure by the “pure
variables” of eitherA or C. Then it is plausible that the
iteration terminates in a close neighborhood.

4.2.2. Rhodium catalyzed hydroformylation
For this noisy FTIR data set we first compute the sin-

gular values ofD, see Fig. 2. The three largest singu-

lar values are characteristically larger than the remain-
ing singular values. This indicates a three-component
system and justifies to work with a rank-3 approxima-
tion of D in the SVD-based MCR algorithms. Figure
4 shows all MCR- and AFS-computational results. The
meaning of the line-styles, markers and marker colors is
explained in Sec. 4.2.1 and the caption of Fig. 3.

MCR-ALS with kinetic modeling, ReactLab and
SVD-based kinetic hard modeling all include the con-
sistency with an optimally parametrized Michaelis-
Menten model. However, the computed reaction rate
constants in Table 1 show strong variations as the
Michaelis-Menten model due to its reversible subreac-
tion does not allow to determine unique rate constants,
see Remark 4.2.The concentration profiles, spectra and
boundaries of the respective AFS segments are drawn
by solid lines for the olefin, by dashed lines for the hy-
drido complex and by dotted lines for the acyl complex,
see also [36]. For these three MCR methods with ki-
netic modeling small deviations can be seen in the con-
centration profiles of the hydrido complex and the acyl
complex as well as in the spectra of olefin and the acyl
complex. The resulting factorizations are chemically in-
terpretable which is a result of the strong regularization
of the underlying Michaelis-Menten model.

MCR-ALS without kinetic regularization results in
an almost feasible factorization with some small neg-
ative entries. The associated AFS representations of the
factors (red+ markers) are partially located outside the
AFS segments. A further approximation is needed for
the graphical representation of the MCR-ALS results in
the AFS: Since MCR-ALS is an SVD-free method we
need for the AFS representation of the MCR-ALS re-
sults a projection to the spaces of the three dominant
left (respectively right) singular vectors. We also ob-
serve in Fig. 4 that the concentration profile of the olefin
is not a monotone function with a minimum at about
t = 800min. Such a non-monotone function is an ab-
stract factor without useful chemical interpretation.

The PGA focuses on the reconstruction of the spec-
tral profiles. The optimal results from [36] can be re-
produced very well. Then the concentration profiles are
calculated after the complete determination of the factor
A. This results in small negative entries in the concen-
tration profile of the olefin component.

Once again, this experimental data set documents
the usefulness of the AFS approach. Chemically inter-
pretable pure components can easily be extracted from
the AFS. The user is not limited to a certain MCR solu-
tion but can explore the set of all other feasible factor-
izations.
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Figure 4: Results of the MCR-in-ALS analysis for the rhodiumcatalyzed hydroformylation data set: See the caption of Figure 3 for an explanation
of the subplots, the color assignment the meaning of the different line styles and the data representation by the black togray stars in the AFS plots.
The colored markers in the AFS sets, which represent the different MCR results, are somewhat more scattered in the AFS sets. Partially, they
are even outside the AFS which indicates that the nonnegativity constraint is violated. The right lower two plots, whichshow all MCR results in
overlaid form, indicate a much stronger variation of the MCRresults for this experimental FTIR data set.8
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Figure 5: Plot of the Euclidean distances of the row representations
of D to the closest points in the AFS for the model data set. This
is a measure for the closeness of a measured spectrum to a possible
pure component spectrum. We call thisdata purity. The curve has
three local minima, namely in the first, 11th and last spectrum. This
corresponds to maximal concentrations of the reactant, intermediate
and reaction product.

Remark 4.2.

I Analogously to the situation as explained in Re-
mark 4.1, the Michaelis-Menten kinetic model is
not sufficient to guarantee a unique MCR factor-
ization if the ratio S0/K0 of initial concentrations
is large. If a certain optimally adapted vector k∗ of
kinetic constants is known, then the set of all these
vectors of rate constantsK can be computed. The
reaction rate constant k∗2 is unique (aside from per-
turbations) and k1 and k−1 satisfy the relation

k−1 = Km k1 − k∗2 with Km =
k∗−1 + k∗2

k∗1
.

II For our computational experiments we had to sub-
stitute theMatLab ordinary differential equation
(ode) solver “ode45” in the MCR-ALS code by the
stiff ode solver “ode15s”. This has reduced the
computation from about three hours to less than a
minute. Additionally, we had to thin out the matrix
D for the ReactLab MCR code as the dimensions
of the data sets exceed the limitations of theExcel
software, which is used for data import in React-
Lab.

4.3. Data purity and spread of MCR results

In this section we investigate the relation ofdata pu-
rity and the spread of the MCR results in the AFS rep-
resentation.(Euclidean distances in the spectral AFS

Spread in AFS segment
solid dotted dashed

All MCR methods 0.041 0.309 0.0046
Only MCR w/ kin. mod. 10−7 0.26 10−5

Table 2: Spread of MCR results by Eq. (6) in the AFS segments, see
Sec. 4.2.1.

MCR spread in AFS segments
Noise solid dotted dashed
Heteroscedastic 2% 0.257 0.475 0.007
Homoscedastic 2% 0.086 0.403 0.025
Heteroscedastic 5% 0.462 0.534 0.029
Homoscedastic 5% 0.260 0.480 0.022

Table 3: Homoscedastic and heteroscedastic noise with signal-to-
noise ratios of 2% and 5% is added to the model data set. The resulting
spread, see Eq, (6), of the MCR results in the AFS representation is
listed.

are equal to the Euclidean distances of the associated
spectra; see the remark after Eq. (6).)Underdata purity
we understand how close a measured spectrum (taken
from the chemical reaction system) is to the possible
pure component spectra. In other words a spectrum is
called pure, if only one chemical component contributes
to the absorption. Typically, spectra are nearly pure at
the beginning of a chemical reaction if only the reac-
tant is present and at the end of a complete chemical
reaction, see also [3]. For the following analysis we use
only the model data set as introduced in Sec. 4.2. Our
hypothesis is that a high data purity makes it easy for
MCR algorithms to extract the pure components. This
would result in a small variation or spread of the MCR
results in their AFS representation.

We start with the data purity analysis in the spectral
AFS as shown in the right subplot of the top row in Fig.
3. The series of gray stars represent the rows of the
spectral data matrix. The spectral data start at the right
AFS segment with the solid boundary line which repre-
sents the possible spectra of the reactantX. The series of
data representing stars tends to the small left AFS seg-
ments which represent the more or less unique spectrum
of the productZ. The Euclidean distances to the nearest
AFS points are plotted in Fig. 5 against the row index
of D. The curve has three local minima, namely in the
first spectrum (approximately the spectrum of the reac-
tantX), the 11th row ofD, which is close to the possible
spectra of the intermediateY, and last spectrum. As the
reaction is nearly complete the last spectrum is a good
approximation of the productZ. Minima of the distance
curve represent spectra which are close to pure spectra.
The distances of the first and last row ofD to the closest
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AFS points are each less than 0.004. The distance of the
11th row ofD AFS segment representing possible spec-
tra of Y is about 0.23, that is a relatively low purity of
the measured spectra with respect to the chemical com-
ponentY.

Next, the data purity is related with the spread of the
MCR results in their AFS representations. In order to
form a measure for this spread we compute the sum of
absolute differences

n∑

i=1

‖r − r i‖2 (6)

with r i being the AFS representation of an MCR result
and r being the geometric center (arithmetic mean) of
all r i . The indexi runs over all MCR methods.We
remark that Euclidean distances in the spectral AFS are
equal to distances of the associated spectra due to the or-
thogonal invariance of the Euclidean norm [19]. In the
case of the concentrational AFS the additional matrix
of singular values destroys this invariance. Other norms
can also be used [21], but then no invariance properties
hold. The numerical distance values are listed in Table
2. The first row is the spread of the results for all MCR
methods. This spread is considerably larger compared
to the spread if only kinetically regularized MCR meth-
ods are considered. This experiment shows that the high
spectral data purity of the chemical componentsX andZ
leads to low variations of the MCR results. We remark
that the observed relations seem to hold under special
conditions, e.g., for consecutive reaction systems.

Next we study the effect of noise on the data pu-
rity and the spread of MCR results in the AFS.Het-
eroscedastic (Nhe) and homoscedastic (Nho ) uniformly
distributednoise with signal-to-noise ratios (SNR) of
0.02 and 0.05 is added to the model data set, see
Sec. 4.1. In MatLab we have generated in the het-
eroscedastic and homoscedastic noise with the SNRr
as follows:

N he= r ∗ abs (D) . ∗ 2 .∗ ( rand ( s i z e (D) ) −0.5)
N ho= r ∗max (max (D) ) ∗2 .∗ ( rand ( s i z e (D) ) −0.5)

The spread data in Table 3 confirms that a high data
purity is still responsible for reliable and consistent
MCR results. As expected, this effect vanishes more
and more with a rising noise level.

5. Conclusion

MCR methods are important tools for the pure com-
ponent recovery in analytical chemistry, but they suf-
fer from the rotational ambiguity. Hence different MCR
methods produce (often slightly) different results. These

results can systematically be represented in the AFS.
The spread of these different results decreases under ad-
ditional constraints, e.g., the consistency of the factor-
ization with a kinetic model of the reaction system. The
AFS representation of MCR results is a clear, compre-
hensible approach for increasing the awareness on the
potential non-uniqueness of MCR results. A combina-
tion of MCR computations with an AFS representation
of the possible pure component factorization can help to
find the “true” components or at least chemically inter-
pretable pure components.

We have also observed for the model data set that a
high data purity, i.e. the existence of spectra in the se-
ries of measurements which are close to possible pure
component spectra, can reduce the spread of the MCR
results. This might be a starting point of a deepened
analysis.
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[27] S. Beyramysoltan, R. Rajkó, and H. Abdollahi. Investigation of
the equality constraint effect on the reduction of the rotational
ambiguity in three-component system using a novel grid search
method.Anal. Chim. Acta, 791(0):25–35, 2013.

[28] S. Beyramysoltan, H. Abdollahi, and R. Rajkó. Newer develop-
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