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Abstract

Multivariate curve resolution methods suffer from the non-uniqueness of the solutions. The set of possible nonnegative
solutions can be represented by the so-called Area of Feasible Solutions (AFS). The AFS for ans-component system
is a bounded (s− 1)-dimensional set. The numerical computation and the geometric construction of the AFS is well
understood for two- and three-component systems but gets much more complicated for systems with four or even
more components.

This work introduces a new and robustray casting methodfor the computation of the AFS for generals-component
systems. The algorithm shoots rays from the origin and records the intersections of these rays with the AFS. The ray
casting method is computationally fast, stable with respect to noise and is able to detect the various possible shapes of
the AFS sets. The easily implementable algorithm is tested for various three- and four-component data sets.

Key words: nonnegative matrix factorization, area of feasible solutions, band boundaries of feasible solutions,
polygon inflation,FACPACK.

1. Introduction

In computer graphics ray tracing is the fundamental
method for producing views of three-dimensional ob-
jects on a computer screen. A forerunner of ray tracing
is the so-called ”ray casting” as presented by Appel in
1968 [3]. The basic idea of ray casting is to shoot light
rays from the eye of an observer to his neighborhood
and to detect the nearest blocking objects in the path
of these rays. These points are used to cast the visi-
ble surface of the objects. Here we extend the idea of
ray casting in a way that we record the path of the ray
through the object. By assembling all these in-object
paths we approximate the shape of the complete object.
We use this algorithm in order to approximate the shape
of certain bounded sets which represent the set of all
possible nonnegative matrix factorizations (NMF) of a
given spectral data matrix in chemometrics. Next we
introduce the chemometric problem.

The series of spectra taken from a chemical reaction
system can be stored in the rows of a matrixD. Mul-
tivariate curve resolution (MCR) methods aim at ex-
tracting from these superposed multicomponent spec-
tral data the pure component information. If the chem-
ical reaction system containss chemical components,

then we are interested in matrix factorizationsD = CA,
whereC contains in itsscolumns the concentration pro-
files (along the time axis) of the pure components and
whereA contains in itss rows the associated pure com-
ponent spectra. ThusD = CA is the matrix form of the
Lambert-Beer law. The key difficulty of this matrix fac-
torization problem is the so-called rotational ambiguity
of the solution [44, 2]. This means that many factoriza-
tions D = CA exist with nonnegative factorsC andA.
For reaction systems with two components this ambi-
guity was first analyzed by Lawton and Sylvestre [21].
Later Borgen and Kowalski [7] as well as Rajkó and
István [32] extended this analysis to three-component
systems. These authors use the Area of Feasible Solu-
tions (AFS) in order to represent the set of all nonneg-
ative/feasible solutions in a low-dimensional way. Ef-
fective numerical algorithms for the approximate com-
putation of the AFS have been devised by Golshan, Ab-
dollahi and Maeder [12] as well as Sawall, Neymeyr et
al. [37, 38]. An alternative approach is the direct com-
putation of minimal and maximal band boundaries as
suggested by Gemperline [9] and Tauler [43]. See also
[11] for a review on recent AFS methods.

A strong advantage of the AFS approach is that it
makes availableall NMFs. One might call this aglobal
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approach. Hence the AFS comprises all the solutions
which can be put out by any MCR method. It is a well-
known fact that different MCR methods may result in
very different results.Having computed the AFS for a
given spectral data matrix, various post-processing tech-
niques can help to eliminate chemically non-relevant
solutions in the AFS. This reduction can be done in a
controlled and steerable way. To this end, additional
soft constraints can be used to reduce the AFS, see
[4, 41, 31]. Alternatively, computational techniques
like the window factor analysis [26], the evolving factor
analysis [24, 22] or kinetic modeling [8, 33] can be em-
ployed. See also Malinowski [25], Hamilton and Gem-
perline [17] as well as Maeder and Neuhold [23] for a
general and deepened introduction to MCR.

The aim of this paper is to present ray casting as a
robust and fast numerical method for the computation
of the AFS. In principle, ray casting can be applied to
chemical reaction systems with any number of compo-
nents. If the spectral data matrixD belongs to a chemi-
cal reaction system which includes a number ofschem-
ical components andD is a rank-smatrix, then the AFS
is a bounded (s−1)-dimensional set. The ray casting al-
gorithm records the paths of “equiangular” rays starting
at the origin on its way through the AFS. All these paths
serve to approximate the AFS.

In particular, we demonstrate applications to three-
and four-component systems. For four-component sys-
tems the ray casting method has been implemented in a
new module of theFACPACKsoftware [39]. In a further
new software module the complementarity and coupling
theory [29, 36, 40, 34] has been implemented for four-
component systems.

Organization of the paper: Section 2 briefly intro-
duces the AFS concept and the fundamentals of its nu-
merical approximation. In Section 3 important proper-
ties of the AFS are explained and the new gap-free in-
tersection property is introduced and proved. The ray
casting method is explained and discussed in Section 4.
Section 5 presents the background of itsFACPACKim-
plementation. Finally, numerical results for three- and
four-component systems are presented in Section 6.

2. The AFS

2.1. Curve resolution methods

The basic equation for the two-way curve resolution
problem is the Lambert-Beer law. Its matrix formula-
tion in absence of noise reads

D = CA

with the spectral (mixture) data matrixD ∈ R
k×n and

with C ∈ R
k×s and A ∈ R

s×n. The numberk stands
for the number of measured spectra andn is the num-
ber of spectral channels of each spectrum. Further,s
denotes the number of independent components with
s ≤ min(k, n). Our problem is to extract from givenD
the “true” chemically meaningful pure component de-
compositionD = CA. As already mentioned in the
introduction, the rotational ambiguity makes this factor-
ization problem hard to solve. It is an ill-posed problem.

The chemometric literature contains many techniques
and algorithms to compute more or less suitable factor-
izations. Sometimes only parts of the factors are com-
puted. All this reduces the rotational ambiguity. Among
many others, some of these MCR approaches are hard-
modeling techniques [16, 8], window factor analysis
[24, 22, 26] in combination with uniqueness theorems
[27], complementarity and coupling theorems [34] and
soft modeling [44, 30, 13].

Instead of focusing on a single factorization, one can
take up the challenge to compute the set ofall NMFs
of D. We call such factorizations withC ≥ 0, A ≥ 0
and D = CA feasible solutions. In the following, we
describe techniques to get the set of all feasible spec-
tral factorsA ≥ 0. A set of matrices is difficult to han-
dle. However, the AFS provides an approach for a low-
dimensional representation of these matrices. The key
idea is to consider only the expansion coefficients of the
possible spectra with respect to a basis of right singu-
lar vectors of the matrixD. The AFS is introduced in
Section 2.3; see also [7, 32, 12, 37, 38, 19, 35].

2.2. SVD-based factorization

The most usual way to solve the factorization prob-
lem D = CA is to start with a singular value decom-
position (SVD) ofD ∈ R

k×n. The SVD has the form
D = UΣVT . For ans-component system and ifD has
the ranks, thens singular values are larger than zero.
These nonzero singular values are the diagonal elements
of the diagonal matrixΣ ∈ Rs×s. The columns of the or-
thogonal matricesU ∈ R

k×s andV ∈ R
n×s are the left

and right singular vectors. The concentration profiles of
the pure components are presented by a linear expansion
in terms of the left singular vectors. The pure compo-
nent spectra are presented by expansions in terms of the
right singular vectors. These representations ofC and
A can be expressed by an invertible matrixT ∈ R

s×s

(whose matrix elements are the expansion coefficients
for A) so that

D = UΣVT = UΣT−1
︸  ︷︷  ︸

C

TVT
︸︷︷︸

A

, (1)
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see [21]. The expansion coefficient of the first right
singular vector and the left singular vector are always
nonzero as otherwiseA or C would have negative en-
tries; see Theorem 2.2 in [38] for the mathematical jus-
tification by the Perron-Frobenius theory on properties
of eigenvalues and eigenvectors of nonnegative matri-
ces. This together with a scaling argument justifies that
the first column ofT can be filled with ones, i.e.

T(i, 1) = 1, i = 1, . . . , s.

2.3. The AFS

A permutation can be applied to the rows ofT in
(1). The inverse permutation must be applied simultane-
ously to the columns ofT−1. Thus the set of all possible
nonnegative spectra is completely represented by the set
of all possiblefirst rowsof T. This is the basic idea be-
hind the AFS construction. Therefore the AFS consists
of all row vectorsx ∈ R1×(s−1) so that

T =



1 x1 · · · xs−1

1
... S
1


(2)

in (1) leads to feasible factorsC = UΣT−1 ≥ 0 andA =
TVT ≥ 0. ThereinS is a proper (s− 1)× (s− 1) matrix
which is to be determined, e.g., by an optimization. We
denote the AFS byM. ThusM has the form

M = {x ∈R1×(s−1) : T in (2) is a regular matrix, (3)

C = UΣT−1 ≥ 0 andA = TVT ≥ 0}. (4)

The analysis and geometric construction of the AFS
was first studied for two-component systems in [21].
In [7, 32, 19] the AFS is geometrically constructed
for s = 3 components. Numerical methods for the
AFS-approximation for three-component systems are
the brute-force grid search approach [2], the triangle-
boundary-enclosure algorithm [12] and the polygon-
inflation method [37, 38]. The paper [10] contains a
recent application of polygon-inflation. Fors = 4, up
to now only the sliced triangle-boundary-enclosure al-
gorithm has been introduced, see [14]. The algorithmic
idea of polygon-inflation [37] can also be extended to a
polyhedron inflation for four-component systems.

For the numerical approximation of the AFS the cru-
cial step is to decide whether a certain pointx is feasible
or not. This step is also the computationally most time-
consuming part of the algorithm due to its repeated ap-
plication. For the feasibility decision we use the target

function f : R(s−1) × R(s−1)×(s−1) → R defined as

f (x,S) =
s∑

i=1

k∑

j=1

min(0,C ji )2

+

s∑

i=1

n∑

j=1

min(0,Ai j )2 + ‖Is − TT+‖2F .

(5)

With this f the AFS has the form

M = {x ∈ R1×(s−1) : min
S∈R(s−1)×(s−1)

f (x,S) = 0}.

For data including noise, nonlinearities or perturbations
the functionf needs to be modified, see for examplef
from [37].

In the following we also need an important superset
of M which contains allx so that the linear combina-
tions (1, x) · VT are componentwise nonnegative

M+ = {x ∈ R1×(s−1) : (1, x) · VT ≥ 0}. (6)

The setM+ is called FIRPOL by Borgen and Kowalski
[7]. Geometrically FIRPOL is a polygon which speci-
fies the outer boundary of the set of the feasible vectors
x.

3. The gap-free intersection property of the AFS

This section explains the three important proper-
ties which constitute the basis for the new ray casting
method. These properties are:

1. Boundedness: The AFS is a bounded set.
2. Exclusion of the origin: The origin of the AFS

for an s-component system, namely the point 0∈
R

s−1, is never an element of the AFSM. How-
ever, 0 is always contained inM+ (FIRPOL), see
Eq. (6).

3. Gap-free ray intersection: The intersection of the
AFS with a ray starting at the origin is empty or a
line segment. The line segment may be degener-
ated to a single point. In other words, this intersec-
tion isgap-free.

The first two properties are not new and are recapitu-
lated in Section 3.1. The new ray intersection property
is proved in Section 3.2 by Theorem 3.3.

3.1. Boundedness of the AFS and position of the origin

The boundedness of the AFS is a necessary prereq-
uisite for all numerical algorithms to compute the AFS.
Theorem 2.3 in [38] shows that the AFS is bounded if
and only if the matrixDTD is irreducible. This is a mild
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condition which can be assumed to hold whenever the
spectral data, loosely speaking, does not allow to split
the data matrices into independent reaction subsystems.

The second property claims that the origin is an ele-
ment ofM+ (FIRPOL), but is never an element ofM
(AFS). Since the first right singular vector31 can be as-
sumed as a componentwise nonnegative vector by the
Perron-Frobenius theory, see Lemma 3.1, it holds that

(1, 0, . . . , 0︸  ︷︷  ︸
s−1-times

)VT = 31 ≥ 0.

Thusx = 0 is an element ofM+ according to Equation
(6). Further, Theorem 2.5 in [38] proves that the origin
is not an element ofM.

3.2. The gap-free intersection property

This section presents and proves the ray intersection
property of the AFS, which is the basis for the ray cast-
ing method. The idea can easily be explained: If a ray
is shot from the origin and if the ray hits the surface of
the AFS at a certain pointx of the AFSM, then the in-
tersection of this ray with the AFS consists of all points
γx with 1 ≤ γ ≤ γ∗ so thatγ∗x belongs to the surface
of the set FIRPOLM+, see Figure 1. In other words a
nonempty intersection of such a ray with the AFS is a
line segment (which may degenerate to a single point).
This intersection property is proved by Theorem 3.3.
First, two preparatory lemmata are needed.

Lemma 3.1. Let D ∈ R
k×n be a nonzero nonnegative

matrix. Let UΣVT be a singular value decomposition
of D. If the first singular vector V(:, 1) is a component-
wise nonnegative vector, then the first left singular vec-
tor U(:, 1) is also a componentwise nonnegative vector.
(The Perron-Frobenius theory [28] guarantees that non-
negativity of V(:, 1) can always be attained by a proper
choice of this singular vector.)

Proof. The equationDV = UΣ implies that

DV(:, 1) = U(:, 1)σ1

with σ1 > 0 sinceD , 0. ThusV(:, 1) ≥ 0 andD ≥ 0
show thatDV(:, 1) ≥ 0. HenceU(:, 1) ≥ 0.

Lemma 3.2. Let C ∈ Rk×s and A∈ Rs×n be nonnegative
matrices. Further let

X =

(
β bT

0 I

)
∈ Rs×s (7)

with β ≥ 1 and b ∈ R
s−1 with b ≤ 0 componentwise.

Further, I denotes the(s− 1)× (s− 1) identity matrix.
Then

C̃ = CX−1 (8)

is a nonnegative matrix. Moreover X(1, :)A ≥ 0 implies
that

Ã = XA (9)

is also a nonnegative matrix.

Proof. Direct computation shows that

X−1 =

(
1/β −bT/β

0 I

)
.

The assumptions onβ andb imply that X−1 is a non-
negative matrix. Thus̃C = CX−1 is also nonnegative.
By assumptioñA(1, :) = X(1, :)A is nonnegative. For
the remaining rows of̃A the equations (7) and (9) imply
that

Ã( j, :) = A( j, :) ≥ 0 for j = 2, . . . , s.

This proves̃A ≥ 0.

Lemmata 3.1 and 3.2 together with Corollary 2.3
from [38] help to prove that nonempty intersections of
the AFS with rays starting at the origin are line seg-
ments. A line segment may even be degenerated to a
single point.

Theorem 3.3 (On the intersections of rays with the
AFS). Let D ∈ R

k×n be a nonnegative matrix with no
zero-column, no zero-row andrank(D) = s so that DTD
and DDT are irreducible matrices. Let UΣVT be a trun-
cated SVD of D with V(:, 1) > 0.

If x ∈ M, then a numberγ∗ ≥ 1 exists so thatγ∗x is
located on the boundary ofM+ (FIRPOL) and the line
segment

{γx : γ ∈ [1, γ∗] }

is a subset of the AFSM.

Proof. The feasible pointx ∈ M belongs to a matrixT
of the form (with the all-ones vectore = (1, . . . , 1)T ∈
R

s−1)

T =

(
1 xT

e S

)
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so thatC = UΣT−1 andA = TVT are nonnegative matri-
ces. Our aim is to show that̃C = UΣT̃−1 andÃ = T̃VT

are also nonnegative with

T̃ =

(
1 γxT

e S

)

for anyγ ∈ [1, γ∗]. Thus withX = T̃T−1 we have

C̃ = (UΣT−1)︸    ︷︷    ︸
C

(TT̃−1)︸  ︷︷  ︸
X−1

and Ã = (T̃T−1)︸  ︷︷  ︸
X

(TVT)︸︷︷︸
A

which is a representation of̃C and Ã according to (8)
and (9). In the following we show thatX satisfies the
assumptions of Lemma 3.2. Then Lemma 3.2 proves
the desired nonnegativity of̃C andÃ. The inverse of the
2× 2 block matrixT reads

T−1 =

(
1+ xTZ−1e −xTZ−1

−Z−1e Z−1

)
(10)

with the Schur complementZ = S − exT , see [15].
(One can easily check thatTT−1 = I holds.) Lemma
2.3 in [38] says that a componentwise nonnegative vec-
torUΣw necessarily requires that the first componentw1

is nonzero. Under our assumptions onD and the SVD,
Lemma 3.1 says thatU(:, 1) ≥ 0. Hencew1 > 0 must
hold as otherwise forw1 < 0 the vectorUΣw necessarily
contains negative components. This argumentation ap-
plied to each column ofC = UΣT−1 implies that the first
row of T−1 by (10) is strictly positive. In other words we
have that

xTZ−1 < 0 (11)

holds. The sum of the components ofxTZ−1 equals
xTZ−1e. We conclude from (11) that

xTZ−1e< 0. (12)

The two inequalities (11) and (12) are used in the final
part of the proof.

The Sherman-Morrison formula [15] allows to write
the inverse Schur complement explicitly

Z−1 = S−1 +
S−1exTS−1

1− xTS−1e
.

Direct computation shows that

X =

(
1− (γ − 1)xTZ−1e (γ − 1)xTZ−1

0 I

)
.

As γ ≥ 1, we see that the vectorb in (7) equals

b = (γ − 1)xTZ−1

and thatb ≤ 0 componentwise due to (11). Thus the
first assumption of Lemma 3.2 is fulfilled. Further,β =
1 − (γ − 1)xTZ−1e ≥ 1 sincexTZ−1e < 0 by Eq. (12)
andγ ≥ 1. Thus the second assumption of Lemma 3.2
is fulfilled. So Lemma 3.2 guarantees thatC̃ = CX−1 is
a componentwise nonnegative matrix.

Finally, we have to show that̃A = XA is a com-
ponentwise nonnegative matrix. Lemma 3.2 says that
X(1, :)A ≥ 0 is sufficient for the nonnegativity of̃A. It
holds that

X(1, :)A = aT
1 − (γ − 1)

[
xTZ−1eaT

1 − xTZ−1A([2 : s], :)
]

︸                                     ︷︷                                     ︸
=:r

whereaT
1 denotes the first row ofA. Forγ = 1 the spec-

trum aT
1 is feasible by assumption, i.e.aT

1 ≥ 0. Further,
for γ = γ∗

X(1, :)A = aT
1 − (γ∗ − 1)r

is also feasible by assumption so thataT
1 − (γ∗−1)r ≥ 0.

Finally, γ∗ > 1 can be assumed. Multiplication of the
last inequality by the nonnegative constant (γ−1)/(γ∗−
1) with γ ≥ 1 results in

(γ − 1)/(γ∗ − 1)aT
1 − (γ − 1)r ≥ 0.

As ω := 1 − ((γ − 1)/(γ∗ − 1)) ≥ 0 for 1 ≤ γ ≤ γ∗ we
can addωaT

1 ≥ 0 to the last inequality which results in

aT
1 − (γ − 1)r ≥ 0

which shows thatX(1, :)A ≥ 0. Lemma 3.2 proves̃A ≥
0.

Theorem 3.3 implies Corollary 3.4.

Corollary 3.4. On the assumptions of Theorem 3.3 let
x be a point on the boundary ofM+ (FIRPOL). If x is
not feasible, then the ray which starts at the origin and
which runs through x contains no feasible point.

Proof. Assume the existence of a pointy = ωx ∈ M
with 0 < ω < 1. Then Theorem 3.3 says that the line
segment fromy to x is contained in the AFS. This con-
tradicts the assumption thatx is not in the AFS.

4. The ray casting method

This section provides a detailed explanation of the
new ray casting algorithm for approximating the AFS.
The single steps of the algorithm are fundamentally
based on the three properties of the AFS, namely the
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Figure 1: Construction of the 2D AFS for a three-component system bym = 100 rays. Left: Equiangular ray casting with ray directions3i ∈ R2

(step 1). Computation of outer bounds radiiRi (step 2). Center: Computation of the inner radiir i (step 3). The points of the setRout are marked by
blue circles and the points of the setRin are marked by red circles. Right: Connection of the inner andouter points (step 4). The boundary sections
on the boundary of FIRPOL are colored in blue. Boundary sections on the inner boundary are colored in red. Also, the connecting lines between
inner and outer boundaries are colored in red. For demonstration purposes the angle-resolution is very low. Typically much more thanm = 100
rays are used.

boundedness, the exclusion of the originand thegap-
free ray intersection, see Section 3. The ray casting al-
gorithm works with equiangular rays (e.g. in polar co-
ordinates) which start at the origin. The origin is never
a feasible point. If a certain pointx is feasible, then the
complete line segment of this ray fromx to the bound-
ary ofM+ (FIRPOL) belongs to the AFS. Conversely,
if the intersection of the ray with the boundary ofM+

is not a feasible point, then the intersection of this ray
with the AFS is empty. Computationally, we first check
the feasibility of this point of intersection. In a second
step, we look for the point on this ray which is feasible
and closest to the origin. In a final step, all these ex-
tremal points are connected in order to approximate the
boundary of the AFS.

4.1. Notation and algorithm

We consider a number ofm vectors3i , i = 1, . . . ,m,
starting at the origin of the AFS. An exemplary, equian-
gular 2D setting of these vectors is shown in Figure 1
(left subplot) and a 3D setting is shown in Figure 2 (left
subplot). For ease of presentation we do not distinguish
the vectors3i from the rays{c3i : c ≥ 0}. If the ray
3i hits the AFS, then two radii are determined. These
are the minimal radiusr i , i.e. the distance of the closest
AFS-point on3i to the origin, and the maximal radius
Ri , which is the maximal distance of an AFS-point on
this ray to the origin. Mathematically, these radii for a
given ray3i are

r i = min
{
γ > 0 with min

S
f (γ3i ,S) = 0

}
, (13)

Ri = max
{
γ > 0 with min

S
f (γ3i ,S) = 0

}
(14)

with f (x,S) by (5). HenceRi is the distance of the point
of intersection of the ray3i with the boundary ofM+

(FIRPOL). Theorem 3.3 proves that the line segment

{γ3i : r i ≤ γ ≤ Ri} (15)

equals the intersection of the ray3i with the AFS. We
denote byRin the set of all points with minimal radii on
the rays3i , i = 1, . . . ,m, and byRout the corresponding
set of points with maximal radii.

The steps of the ray casting algorithm are as follows:

1. Assign a number ofmequiangular rays3i in the (s−
1)-dimensional space, e.g., by using (generalized)
polar coordinates.

2. For each ray compute the maximal radiusRi so that
Ri3i is located on the surface ofM+ (FIRPOL).

3. For each ray test whetherRi3i ∈ M or not. If Ri3i ∈

M, then compute the minimal radiusr i = min{γ >
0 : γ3i ∈ M}.

4. Connect the matching interior pointsr i3i and asso-
ciated exterior pointsRi3i in order to approximate
the boundary of (a segment) of the AFS.

4.2. Computation of the extremal points
For noise-free data the computation of the maximal

radiusRi can either be done by direct evaluation of the
nonnegativity constraints or alternatively by means of
numerical bisection. The computational costs are low
as only the FIRPOL constraint (1, x)VT ≥ 0 is to be
checked along the ray. The computation of the radius
r i is done by using the bisection method along each ray.
We use the bisection method with an additional control
parameterεb in a way that

min
S

f (r i3i ,S) = 0 and min
S

f ((r i − εb)3i ,S) > 0 (16)
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Figure 2: Computation of a three-dimensional AFS for a four-component system (s = 4) with m = 512 rays. Left: 512 rays3i ∈ R
3 (step 1) are

shown with end-points on the boundary of FIRPOL. The length of the ray3i is Ri (step 2). Center: Computation of the inner radiir i (step 3). Only
feasible directions are plotted. Right: Matching points onthe surfaces of the segments of the AFS are connected by grid lines (step 4). As in Figure
1 the points and lines on the outer boundary are drawn in blue and those on the inner boundary are drawn in red.

with f by (5). In each step a nonlinear optimization
problem on finding a properS must be solved. Thus the
computational costs are relatively high.

4.3. Precision, resolution and corner cut-off
The numerical accuracy of the radiir i andRi can be

controlled by the parameterεb in (16). The density of
the extremal pointsRin andRout on the surface of the
AFS is determined by the number of raysm. A large
numberm of rays results in a fine lateral resolution of
the boundary of the AFS.

A critical aspect of the ray casting method is that a
low angle-resolution, i.e.m is small, may result in a
corner cut-off. Especially if a first ray has a relatively
large intersection with the AFS and a second adjacent
ray contains no feasible point, then some part of the
boundary of the AFS approximation is determined by
the first ray. The cone between these two rays may in-
clude a part of the AFS which is then cut off. An in-
creased resolution by a larger numberm of rays can
reduce such a cut-off of boundary-near regions of the
AFS. Figure 3 demonstrates a minor corner cut-off for a
two-dimensional AFS.

4.4. Two- and three-component systems
The computation of the AFS for two- and three-

component systems (s= 2 or s= 3) is well-understood,
see for example [21, 7, 32, 1, 2, 12, 37, 38].

For two-component systems (s= 2) the AFS consists
of two separated intervals, i.e.

M = [−R1, −r1] ∪ [r2, R2]

with the sets of positive minimal and maximal radiiRin

andRout, see Section 4.1,

Rin = {r1, r2}, R
out = {R1, R2}.

Computationally, these radii, which represent the
boundaries ofM, can be determined by starting the al-
gorithm with (the only possible)m = 2 rays given by
31 = −1 and32 = 1.

For three-component systems (s = 2) the AFS is a
subset of the planeR2. A number ofmequiangular rays
is constructed in polar coordinates

3i =

(
cosφi

sinφi

)
with φi = 2π

i − 1
m
, i = 1, . . . ,m.

(17)

Figure 1 shows the application to the model problem
of a three-component consecutive reaction with shifted
Gauss profile spectra taken from Section 2.1 of [39]. A
number ofm= 100 rays are used for the approximation
of the boundary of the AFS which consists of three iso-
lated subsets, which we call the segments of the AFS.

4.5. Four components

For four-component systems (s = 4) the AFS is a
three-dimensional set. Spherical coordinates can be
used to construct evenly distributed (and with respect
to φi,1 andφ j,2 equiangular) rays

3i+ j =



sin(φi,1) cos(φ j,2)
sin(φi,1) sin(φ j,2)

cos(φi,1)

 , φi,1 = π
i − 1
ℓ1
, φ j,2 = 2π

j − 1
ℓ2
,

(18)

for i = 1, . . . , ℓ1 and j = 1, . . . , ℓ2. This allows to form
m = ℓ1ℓ2 rays. Figure 2 shows the application to a
model problem (D ∈ R

10×11 with C formed by Gaus-
sians andA formed by partially overlapping and shifted
Gaussians) withℓ1 = 13 andℓ2 = 32. However, the res-
olution with m = 512 rays is relatively low and is only
used for demonstration purposes.
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Figure 3: AFS approximations for the model problem from Sec.6.1. Left: The colored boundary curves of the AFS have been computed by ray
casting withm = 300 rays with a boundary precision ofεb = 10−3. The (for the most part underlying) black solid lines resultfrom the polygon
inflation method by theFACPACKsoftware [38]. Center and right: Enlargements of the left-upper area of the blue AFS segment and the right lower
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4.6. Higher number of components

For s-component systems withs ≥ 5 the rays3i ∈
R

s−1 can be constructed by using (s− 1)-dimensional
spherical coordinates [6]

3i,1 = cos(φi,1),

3i,2 = sin(φi,1) cos(φi,2),

3i,3 = sin(φi,1) sin(φi,2) cos(φi,3),

...

3i,s−2 = sin(φi,1) · . . . · sin(φi,s−3) cos(φi,s−2),

3i,s−1 = sin(φi,1) · . . . · sin(φi,s−3) sin(φi,s−2).

(19)

The discretization for the last angleφi,s−2 is

φi,s−2 = 2π
i − 1
ℓs−2
, i = 1, . . . , ℓs−2,

and for the remaining angles we use

φ j = π
i − 1
ℓ j
, i = 1, . . . , ℓ j , j = 1, . . . , s− 3.

This general definition already includes the cases of
polar coordinates (s = 3) and 3D spherical coordinates
(s= 4). The total number of rays ism= ℓ1ℓ2 . . . ℓs−2.

4.7. Stability for the various shapes of an AFS

In general, the AFS can be a topologically connected
set with holes, or the AFS can consist of several iso-
lated subsets, the segments of an AFS. Especially for
two-component systems the AFS consists of two sepa-
rated intervals, one only in the negative numbers and the
other only in the positive numbers. Fors = 3 the AFS
is well known to be either a single-segment AFS with
a hole around the origin [37, 38] or it consists of three

isolated segments. Additionally, nonnegative matrices
can be constructed whose AFS consists of 6 segments, 9
segments or even higher multiples of 3 segments. How-
ever, an AFS for a real chemical reaction system with
more than 3 segments is not known up to now. Fors= 4
there is no general presumption on the possible number
of segments. Figure 7 shows an AFS with four clearly
separated segments. Further Figure 9 presents a single-
segment AFS with a complicated ”Swiss-cheese like”
hole structure. Further experiments have shown that the
AFS for the cases = 4 may also have a closed surface
with no holes going through to the origin. However, the
origin is never contained in the AFS - any AFS has a
hole around the origin.

The ray casting algorithm is general and flexible
enough to compute approximations of all AFS types.
The gap-free intersection property of the AFS by Theo-
rem 3.3 guarantees that the ray casting algorithm can
work successfully for any numbers of components.
This is a main advantage compared to the triangle-
boundary-enclosure algorithm [12, 14] or the basic
polygon inflation method [37]. However, the inverse
polygon inflation algorithm [38] and the geometric con-
structive Borgen plot approach [7, 32, 19] also work for
any AFS of a three-component system.

4.8. Factor-locking
Sometimes certain pure component spectra or con-

centration profiles are known, e.g., a spectrum of the
main reactant or main product. This additional informa-
tion reduces the rotational ambiguity [34, 29]. If par-
ticular columns ofC or rows of A are available, then
the equationD = CA provides some information on the
other factor (A or C). See, for example, [5, 40, 29] for a
systematic analysis of these mutual restrictions for sys-
tems withs = 3 or s = 4 chemical components. Given
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Figure 4: Detection of degenerated AFS segments: The initial ray w (computed by an NMF) has a feasible point on the surface ofM+ (FIRPOL).
The gray rectangle is a part of the surface ofM+. The pyramid spanned by the closest neighboring rays3i , i = 1, . . . ,4, serves to check the degree
of degeneracy of the AFS segment whether it is a line segment or plane segment.

components are represented in the AFS by fixed points.
This type of additional information is called an equality
constraint [5]; in theFACPACKsoftware [38] equality
constraints can be set by factor-locking. Such a con-
straint also reduces the size of the AFS segments for the
remaining unknown factors.

Remark 4.1. Let one or more points in the AFS be
given, i.e. certain pure component spectra or concen-
tration profiles are fixed. Then the gap-free intersection
property (see Theorem 3.3) still holds for the reduced
AFS-segments of the remaining components.

The proof of Remark 4.1 is very similar to the proof
of Theorem 3.3. Once again, one can prove that the sub-
matrixS of T which represents a certain vectorx of the
AFS can also be used to represent the stretched point
γx. Locked points of the AFS are represented by cer-
tain components ofS which remain unchanged. Hence,
γx is feasible also in the presence of these locked points.
Essentially, Remark 4.1 says that the ray casting algo-
rithm can be applied without changes to the case of ac-
tive equality constraints. The resulting AFS is a sub-
set of the original AFS (only under nonnegativity con-
straints).

5. Software implementation in FACPACK

The FACPACK-toolbox is a collection of several
SMCR methods with the focus on global AFS meth-
ods [39]. The software contains implementations of the
polygon inflation method and its variants [37, 38], of
the geometric-constructive Borgen-plots [7, 32, 19], of
the complementarity theorem [40] and its restrictions on
the AFS [40] and so on.FACPACKis equipped with a
graphical user interface in MatLab. The computational
cores of the program are written in C. The toolbox can
be downloaded from

http://www.math.uni-rostock.de/facpack/

The latest revision of the software includes a module
for computing the three-dimensional AFS for (s = 4)-
component systems by means of ray casting. Addition-
ally, a further new module implements the complemen-
tarity theory [34] for four-component systems by means
of ray casting.

5.1. Refinement process

The minimal and maximal radiir i and Ri , see
Eqns. (13) and (14), are computed for each ray by solv-
ing nonlinear optimization problems. The numerical
results of these optimizations, especially for the inner
points, depend on good initial guesses. In order to iden-
tify and to rule out wrongly classified points, a refine-
ment post-process is started at the end of the AFS com-
putation. The reliability of each minimal radiusr i is
checked by restarting the optimization process with var-
ious initial values. These initial values are taken from
the already computed inner radii of the closest neigh-
boring rays.

5.2. Approximation of degenerated AFS segments

A special challenge for any numerical approximation
of the AFS are cases in which thes-dimensional AFS
contains lower dimensional segments.

An important example is a three-dimensional AFS
for a four-component system which contains planar, lin-
ear or punctiform segments. The new 3D-AFS module
of FACPACKcan compute all these types of AFS seg-
ments. Therefore the algorithm does not only compute
the minimal and maximal radii for them rays, but also
uses the initial NMF of the spectral data matrixD. For a
four-component system, the initial NMF provides four
feasible points and these define the directions of four
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initial rays. If along one such ray the minimal radius
and the maximal radius coincide, then this indicates a
degenerated AFS segment. In such a case the algorithm
checks the four closest neighboring rays; see Figure 4
for an illustration of the pyramid spanned by the neigh-
boring rays together with the enclosed initial ray from
the NMF. If the minimal radius and the maximal radius
coincide for the initial NMF ray and if for all four neigh-
boring rays the intersections with the AFS are either
empty or consist of only a single point, then the AFS
segment is degenerated. The algorithm has to distin-
guish planar segments from linear segments and from
punctiform segments:

Planar segments:
If a certain AFS segment is not a volume segment, then
the algorithm tests this segment for planarity. Any pla-
nar segment must be a subset of a plane which has been
used for the construction of the surface of the poly-
hedronM+ (FIRPOL). If an initial ray contains only
one feasible point (necessarily this point is located on
the surface ofM+), then an adapted polygon inflation
method [37] is used in order to compute the boundary
of the associated planar AFS segment, which is again
located on the surface ofM+.

Linear segments:
If a segment is neither a volume segment nor a pla-
nar segment, then the algorithm tests this segment for
linearity. In order to detect a line segment, we follow
the optimization strategy on the search direction as de-
scribed in Sec. 4.6 of [38]. In contrast to [38] we need
two different angle variables in the optimization for the
computation of a linear segment in 3D. Starting from a
feasible pointx ∈ R3 (which might be gained by an ini-
tial NMF) the two anglesφ1 andφ2 are determined in a
way so that the point

x+ r



sinφ1 cosφ2

sinφ1 sinφ2

cosφ1

 (20)

is feasible for a sufficiently small nonzero radiusr. Next
the minimal and maximal boundsr l ≤ 0 andrr ≥ 0 on
this line segment are computed so that the points on the
line segment withr l ≤ r ≤ rr in (20) are feasible. The
result is a feasible line segment.

Punctiform segments:
If the segment is not a volume segment, a planar seg-
ment or a linear segment, then it must be an isolated
point. A unique pure component has been found.

Figure 5 shows the AFS for the upper triangular ma-

trix

D =



1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1


.

Its AFS consists of a unique point, a linear segment,
a planar segment and a volume segment. This simple
rank-4 matrix comprises all difficulties of an AFS com-
putation for segments with different dimensionalities in
an elegant and easy way.1 This artificial example can
principally be extended to a data matrix which corre-
sponds to a chemically interpretable data set.

The unique point is computationally accessible from
any initial NMF of D. The computation of the linear
segment by means of a two-angle approach is described
above. A first approximation of the planar segments di-
rectly results from the ray casting algorithm. This ap-
proximation can be refined by applying the idea of the
polygon inflation method within this plane. Then only
two of the three coordinatesx1, x2 andx3 are free vari-
ables. This procedure is similar to the slicing method
from [14]; however the computed plane is usually not
orthogonal to one of the coordinate axes.

5.3. Ray casting combined with soft constraints
As demonstrated in [5, 4, 41, 31] and in further publi-

cations, the AFS can significantly be reduced by apply-
ing soft constraints. A straightforward implementation
of soft constraints like unimodality, closure or mono-
tonicity may be inconsistent with the gap-free intersec-
tion property which is of central relevance for the ray
casting algorithm. Equality constraints can easily be im-
plemented, see Section 4.8 and Remark 4.1.

The key problem with the unimodality and mono-
tonicity constraints is that it is not evident that Theorem
3.3 still holds for the constraint-restricted setM. At
least, the property thatγ∗x is located on the boundary of
M+, see Thm. 3.3, has to be adapted in an appropriate
way if additional constraints are used. A thorough anal-
ysis of these questions should be a topic of future work
- the current work is devoted to the basic nonnegativity
constraint.

6. Numerical results

Next the ray casting algorithm is applied to model
problems withs = 3 ands = 4 components. The re-
sults fors = 3 are compared with the results gained by

1We are very grateful to Annekathrin Jürß, University of Rostock,
for providing the idea behind this model problem.
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the polygon inflation method [37, 38] in itsFACPACK
implementation [39].

6.1. Three components

We re-use the model problem of a consecutive irre-
versible reaction with three components from Sec. 4 of
[37]; the unimodal model spectra are strongly overlap-
ping. We use the associated data matrixD ∈ Rk×n with
k = 1000 andn = 1500. The AFS consists of three
clearly separated segments. The ray casting algorithm is
applied withm = 300 rays. The bisection method uses
the boundary precisionεb = 10−3, see Eqn. (16). The
results are shown in Figure 3 together with the results
of the polygon inflation method (by black lines which
are for the most part covered by the colored lines).
The computation time of the ray casting algorithm is
66.9 seconds. The ray casting algorithm is written in C
and the program code uses one core of a 2.4GHz Intel
CPU on a standard PC with 16 GB RAM. For this two-
dimensional AFS the adaptive polygon inflation method
needs only 12 seconds; see also Table 2 in [37].

Next the precision of the results by ray casting is
compared to the precision of the polygon inflation
method. In order to measure the distance of the two AFS
approximations we use the Hausdorff distanceδ(A, B),
which is the mutual deviation of two setsA andB

δ(A, B) = max
{
max
a∈A

d(a, B), max
b∈B

d(A, b)
}
. (21)

Thereind(a, B) = minb∈B ‖a − b‖2 is the minimal dis-
tance of a pointa to a setB. We have computed the three

Hausdorff distances separately for each of the three seg-
ments of the AFS. The results are

(δ1, δ2, δ3) = (9.17 · 10−3, 5.00 · 10−3, 1.48 · 10−2).

For δ1 (blue segment in Figure 3) andδ2 (green seg-
ment) the distances are consistent with the boundary
precisionεb = 10−3. For δ3 (red segment in Figure
3) the larger distance can be explained by the efficient
spatial adaptivity of the polygon inflation method. In
contrast to this, ray casting works with a fixed angular
resolution, which can result in a certain corner cut-off,
cf. Section 4.3.

6.2. Four components with four isolated segments

Next a model problem withs= 4 components,k = 70
spectra andn = 50 channels is discussed. The factorsC
andA are shown in the left and centered plot of Figure
6. Ray casting usesm = 5000 rays. The computation
takes 447.4 seconds. The AFS consists of four isolated
segments. Two segments are small and their distance
to the origin is larger compared to the two remaining
segments. Hence fewer rays hit these smaller segments.
For a proper approximation of these two segments we
have increased the ray density by the factor 4. The re-
sulting AFS is plotted in Figure 7.The associated series
of spectra, the so-called feasible bands, are plotted in
Figure 8.

6.3. Four components with a single-segment AFS

By adding constant offsets to the four spectra from
Section 6.2, the overlap of these spectra is increased.
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Figure 6: The pure components of the two model problems discussed in Section 6.2 and 6.3. Left: The same concentrational factorC is used for the
two model problems. Center: Spectral factorA for the model problem from Section 6.2. The resulting AFS is shown in Figure 7. Right: Spectral
factor which underlies Section 6.3 with added offsets which increase the overlap between the spectra. The resulting single-segment AFS is shown
in Figure 9.

The factorC remains unchanged; see left subplot in Fig-
ure 6. The resulting AFS ofD = CA is plotted in Figure
9. The AFS is a topologically connected set with three
holes. Compared to the first 3D AFS much more rays
hit the AFS. Hence the computation time increases to
1889 seconds.

7. Application to FT-IR experimental data

Next the ray-casting method is applied to experimen-
tal and noisy in-situ FT-IR data of a three-component
system. The results are compared with those gained by
the polygon inflation method.

7.1. Hydroformylation data

The in-situ FT-IR data have been taken from
the hydroformylation of 3,3-dimethyl-1-butene with a
phosphite-modified rhodium catalyst, see [20]. Here we
consider only the spectral window [1963, 2116]cm−1

since this interval contains the characteristic signals
from three components, namely the olefin, if the acyl
complex and the hydrido complex, see [20]. The
wavenumber grid hasn = 639 channels. Withk = 850
spectra the matrixD has the dimensions 850× 639.

7.2. AFS computations

For this three-component system we compute the
AFS for the spectral factorA by means of the
ray casting algorithm. The results are compared
to those of the polygon inflation algorithm. The
ray casting method is run six times withm ∈

{100, 200, 300, 400,500,1000,5000}. The boundary
precision is ε = 10−3 for all computations and
four sweeps of refinement have been applied. The
FACPACK-implementation of the polygon inflation
method is used with the default control parametersεb =

δ = 10−3, see [37, 38] for details on the control parame-
ters.

For these computations ray casting and polygon in-
flation use the same control parameterε = 0.005 as a
lower bound for the acceptable relative nonnegativeness
of the factors in the sense

min
j=1,...,k

C( j, i)

max
j=1,...,k

C( j, i)
≥ −ε,

min
j=1,...,n

A(i, j)

max
j=1,...,n

A(i, j)
≥ −ε, (22)

for i = 1, . . . , s.

Figure 10 shows the results of ray casting withm =
1000 rays together with the results of polygon inflation.
The AFS consists of three isolated segments. The re-
sults are almost the same. The Hausdorff distance mea-
sure by Eq. (21), which describes the distance between
two sets, is applied to the corresponding pairs of AFS
segments. The computation times for ray casting for
different numbers of rays are listed in Table 1. The
polygon inflation method needs only 6.45s. All compu-
tations have been run on a standard PC with a 2.4GHz
Intel CPU (only one core is used) and 16 GB RAM.

The computation times increase linearly in the num-
ber of rays. The Hausdorff distances are consistent
with the control parameters on the boundary precision
εb = 10−3.

These results support that the new ray casting algo-
rithm is a proper tool for AFS computations. How-
ever, for two- and three-component systems there are
faster methods (e.g. polygon inflation and Borgen plots
[7, 32, 19]). The true benefit of ray casting is its easy
applicability to systems with four or even more compo-
nents.
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Figure 7: The three-dimensional AFS for the four-componentmodel problem from Section 6.2. The pure component factorsC andA are shown in
the left and centered plot of Figure 6. The AFS consists of four isolated segments. Only for the two rightmost segments theray density has been
increased by the factor 4 as these segments are more distant from the origin. By means of these additional rays, a comparable quality of surface
approximation can be gained for each of the four segments.

8. Conclusion

Up to now various methods have been developed
for the geometric construction or numerical approxima-
tion of the AFS for two-, three- and four-component
systems. Sometimes the geometric construction of
the AFS for two- and three-component systems in the
form of Borgen plots is considered as the most elegant
and approximation-free approach. However, Borgen
plots can only be constructed for noise-free and non-
perturbed data. Nevertheless, the recent concept of Gen-
eralized Borgen plots provides a remedy [19].

For experimentally determined spectral data there is
no way around numerical approximation methods. Typ-
ically, these numerical methods are tailored to prob-
lems for a fixed number of components. For exam-
ple, the triangle-boundary-enclosure method [12] and
polygon inflation [37] work for three-component sys-
tems and the slicing approach [12], which extends the
triangle-boundary-enclosure method to four-component
systems, works for four-component systems. Some-
times the brute-force and computationally most expen-

sive grid search method is considered as a method of
first choice since the method is free of any requirements.
In some sense the ray casting method can be considered
as a smart variant of the grid search method in a sense
that grid points are substituted by rays. A decisive ben-
efit of ray casting is that for AFS ind dimensions (for
a system withs = d + 1 chemical components) a num-
ber of md grid points must be analyzed but onlymd−1

must be checked. This saves one dimension and makes
ray-casting much faster than the classical grid search.

Our ray casting algorithm is stable for perturbed data.
The algorithm can be applied to compute any type of an
AFS, e.g. those with isolated segments, those with par-
tially connected segments or those with holes through
its outer surface. However, the price for this general-
ity and robustness is a smaller precision-to-effort ratio
compared to polygon inflation.
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