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CONVERGENCE ANALYSIS OF

RESTARTED KRYLOV SUBSPACE EIGENSOLVERS

KLAUS NEYMEYR∗ AND MING ZHOU∗

Abstract. The A-gradient minimization of the Rayleigh quotient allows to construct robust and fast-
convergent eigensolvers for the generalized eigenvalue problem for (A,M) with symmetric and positive
definite matrices. The A-gradient steepest descent iteration is the simplest case of more general restarted
Krylov subspace iterations for the special case that all step-wise generated Krylov subspaces are two-
dimensional.

This paper contains a convergence analysis of restarted Krylov subspace iterations for the minimization
of the Rayleigh quotient with Krylov subspaces of arbitrary dimensions. The eigenpair approximations,
namely the Ritz vector and the Ritz value, are extracted in each step of the iteration by the Rayleigh-Ritz
procedure. The new convergence analysis provides a sharp Ritz vector estimate together with a Ritz
value estimate. These results improve the classical estimates by Kaniel and Saad (1966, 1980) and Parlett
(1980) and generalize a result from Knyazev (1987).

Key words. Krylov subspace, Rayleigh quotient, Rayleigh-Ritz procedure, multigrid, elliptic eigen-
value problem.

1. Introduction. The computation of a limited number of the smallest eigenvalues
of the generalized matrix eigenvalue problem

Ax = λMx, A,M ∈ R
n×n(1.1)

for very high-dimensional, symmetric and positive definite matrices A and M is still a
challenging problem. A typical source of (1.1) is the finite element discretization of an
operator eigenvalue problem for a self-adjoint and elliptic partial differential operator.
Then A is called the stiffness matrix and M the mass matrix. The numerical eigensolver
should exploit the underlying structure of the operator eigenproblem and also of its mesh
discretization. These structures justify the desire for near-optimal-complexity eigensolvers
which allow to compute a fixed number of the smallest eigenvalues together with the
eigenvectors with computational costs which, in the best case, linearly increase with the
matrix dimension n. These requirements rule out any classical eigensolvers which are
based on matrix transformations (like Jacobi, QR) with their above-linear growth of the
computation times and memory requirements [1, 5, 23]. Vector iterations or subspace
iterations are a better basis for the construction of efficient eigensolvers.

1.1. Gradient iterations for the Rayleigh quotient and Krylov subspace

iterations. The main idea for the numerical computation of the smallest eigenvalues is
to find some of the smallest stationary of Rayleigh quotient

(1.2) ρ(x) = (x,Ax)/(x,Mx), x ∈ R
n\{0}

by means of a gradient type minimization of the form x(ℓ+1) = x(ℓ) − ω∇ρ
(
x(ℓ)

)
. How-

ever, the gradient direction ∇ρ(·) is well known to be a poor correction direction for the
minimization of (1.2), see [11, 14], as the associated convergence factor tends to 1 for n
increasing to infinity.

If the gradient vector is taken with respect to the A-geometry [3], then the correction
direction is A−1∇ρ(·). The iterative scheme based on A-gradients reads

x(ℓ+1) = x(ℓ) − ωA−1∇ρ
(
x(ℓ)
)
.(1.3)

Therein ω is a step-size parameter. Optimally, the step size is determined in a way
that the Rayleigh quotient is minimized in the affine space x(ℓ) + span

{
A−1∇ρ

(
x(ℓ)
)}

.
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Computationally, this minimization problem is solved by the Rayleigh-Ritz procedure
applied to the two-dimensional subspace

span
{
x(ℓ), A−1∇ρ

(
x(ℓ)
)}

= span
{
x(ℓ), A−1Mx(ℓ)

}
(1.4)

since ∇ρ(x) = (2/(x,Mx))(Ax−ρ(x)Mx). Then x(ℓ+1) is the Ritz vector associated with
the smallest Ritz value.

Next, we discuss a natural extension of the basic gradient iteration (1.3). The idea is
to extend the subspace (1.4) to k-dimensional Krylov subspaces

Kk(x(ℓ)) = span{x(ℓ), A−1Mx(ℓ), . . . , (A−1M)k−1x(ℓ)}, k ≪ n.

For a fixed k, the minimization of the Rayleigh quotient in Kk(x(ℓ)) results in the restarted
Krylov subspace iteration scheme

(1.5) x(ℓ+1) ← RRmin

(
Kk(x(ℓ))

)
.

Therein RRmin(K) provides a Ritz vector which corresponds to the smallest Ritz value of
(A,M) in K.

The iteration (1.5) can be modified in various ways. For instance, the vector iter-
ates x(ℓ) can be substituted by subspaces X (ℓ) in order to compute not only a single
eigenpair, but an invariant subspace which is associated with the smallest eigenvalues.
Alternatively, the Krylov subspace Kk(x(ℓ)) can be augmented with m previous iterates
x(ℓ−1), x(ℓ−2), . . . , x(ℓ−m) in order to accelerate the convergence of the Rayleigh-Ritz pro-
cedure towards the smallest eigenvalue, see [2, 4, 22]. The usage of A−1 in the construction
of the Krylov subspace amounts to the exact solution of linear systems in A which can
result in high computational costs for a very large A. For mesh discretized operator
eigenvalue problems, the discretization matrix A can be very large. Finite elements codes
typically do not compute or store A explicitly. Instead, only a routine exists which com-
putes for given x the vector Ax. The random access memory (RAM) of the computer is
mainly used to store the grid information and local element matrices. A factorization of
A is way too expensive and has an unmanageable storage requirement due to the fill-in.
However, the linear systems can be solved approximately by using proper precondition-
ers [9, 14, 10]. Obviously, approximate linear solvers can reduce the computational costs
significantly without a disproportionate deterioration of the convergence rate.

The convergence analysis of general preconditioned gradient type eigensolvers is con-
siderably complicated by the spectral assumptions on the quality of the preconditioner.
The extreme case that the preconditioner is substituted by the inverse A−1 is easier to
analyze, see iteration (1.3) and the general scheme (1.5). In this paper, we derive sharp
convergence estimates for the restarted Krylov iteration scheme (1.5). The Ritz value
estimate improves the classical estimates for Ritz values in Krylov subspaces of arbitrary
dimensions by Kaniel, Saad and Parlett [6, 22, 21]. It also generalizes a result for the Lanc-
zos algorithm from Knyazev [8], Section 1.4 (the estimate is based on a similar estimate for
an abstract vector iteration and is indirectly mentioned without explicit proof). The Ritz
vector estimate extends our previous works [18, 17] on (preconditioned) steepest descent
eigensolvers. Therefore, our results improve the basis for an analytic understanding of
general preconditioned gradient eigensolvers.

1.2. The restarted Krylov iteration scheme (1.5) for k = 2. In order to discuss
the convergence behavior of the iteration (1.5), we start with the basic case k = 2. For this
case sharp convergence estimates have been presented in [18]. Next the main result from
[18] is restated in a form which applies to the generalized eigenvalue problem Ax = λMx.

Theorem 1.1. Let λ1 < λ2 < . . . < λm (m ≤ n) be the distinct eigenvalues (with
arbitrary multiplicity) of the matrix pair (A,M) with symmetric and positive definite ma-
trices A,M ∈ R

n×n. If the Rayleigh quotient ρ(x) of a vector x ∈ R
n\{0} belongs to
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the interval (λi, λi+1) and if x′ is a Ritz vector associated with the smallest Ritz value of
(A,M) in span{x,A−1Mx}, then it holds that

ρ(x′)− λi

λi+1 − ρ(x′)
≤

(
κ

2− κ

)2
ρ(x) − λi

λi+1 − ρ(x)
with κ =

λi(λm − λi+1)

λi+1(λm − λi)
.

Further, if x is not M -orthogonal to the eigenspace E1 of (A,M) associated with the
eigenvalue λ1, then it holds that

tan∠M (x′, E1) ≤
λ1(λm − λ2)

λ2(λm − λ1)
tan∠M (x, E1).

Therein ∠M denotes angles with respect to the M inner product, i.e.

∠M (x, y) = arccos
(x, y)M
‖x‖M ‖y‖M

with (x, y)M = xTMy, ‖x‖M = (x, x)
1/2
M

for nonzero vectors x, y ∈ R
n, and ∠M (x,U) = ∠M (x, x̃) with the M -orthogonal projection

x̃ of x to U for a given subspace U ⊆ R
n.

The two convergence factors in Theorem 1.1 depend on eigenvalue gap ratios. Partic-
ularly, the tan∠M (x′, E1) estimate can be written by recursive application in the form of
the a priori estimate

(1.6) tan∠M (x(ℓ), E1) ≤

(
λ1(λm − λ2)

λ2(λm − λ1)

)ℓ

tan∠M (x(0), E1).

1.3. Reduction to the standard eigenvalue problem. In order to simplify the
following analysis, we transform the generalized eigenvalue problem to a standard one by
means of the substitutions

y := A1/2x, H := A−1/2MA−1/2, W1 := A1/2E1 and µ(y) :=
yTHy

yT y
.

These replacements imply that

span{y,Hy} = A1/2span{x,A−1Mx}, ∠H(y,W1) = ∠M (x, E1), and µ(y) =
1

ρ(x)
.

Further, we denote the eigenvalues of H by µi. Thus µi = 1/λi. Theorem 1.1 for the
standard eigenvalue problem for H with the eigenvalues µi reads:

Theorem 1.2. Let µ1 > µ2 > . . . > µm be the distinct eigenvalues of the symmetric
and positive definite matrix H ∈ R

n×n. Let y ∈ R
n\{0} satisfy

µ(y) =
yTHy

yT y
∈ (µi+1, µi),

and let y′ be a Ritz vector associated with the largest Ritz value of H in span{y,Hy}, then

(1.7)
µi − µ(y′)

µ(y′)− µi+1
≤

(
κ

2− κ

)2
µi − µ(y)

µ(y)− µi+1
with κ =

µi+1 − µm

µi − µm
.

If y is not H-orthogonal to the eigenspace W1 with respect to µ1, then it holds that

(1.8) tan∠H(y′,W1) ≤
µ2 − µm

µ1 − µm
tan∠H(y,W1).
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1.4. Aim and overview of the paper. The goal of this paper is to generalize the
estimates for the A-gradient iteration of Theorem 1.1 to the general case of the restarted
Krylov subspace iteration (1.5) for any k ≥ 2. Error estimates for Ritz values and Ritz
vectors in span{y,Hy} are generalized to their counterparts with respect to the Krylov
subspace span{y,Hy, . . . , Hk−1y} for k ≥ 2.

The remaining part of the paper is organized as follows: First, Section 2 contains
a review and comparison of known error estimates on Ritz values and Ritz vectors in
Krylov subspaces. The new convergence estimates on the iteration (1.5) are presented in
Section 3. Finally, Section 4 is devoted to numerical experiments with the iteration (1.5)
for various mesh discretizations of an elliptic operator eigenvalue problem. The sharpness
of the new estimates is demonstrated.

2. Error estimates on Ritz pairs in Krylov subspaces. Next, we review Ritz
value estimates and Ritz vector estimates as presented by Kaniel and Saad [6, 22] and
in their revised form by Parlett in Theorem 12.4.1 in [21]. This latter result is now
reproduced in the same notation as used in Theorem 1.2.

Theorem 2.1. Let µ1 > µ2 > . . . > µm be the distinct eigenvalues (with arbitrary
multiplicity) of the symmetric matrix H ∈ R

n×n. Let wi be the orthogonal projection of a
vector y ∈ R

n\{0} to the eigenspace Wi associated with µi, i = 1, . . . ,m. Let wi 6= 0 and
zi = wi/‖wi‖ so that zi is a normalized eigenvector associated with µi.

If the Krylov subspace K = span{y,Hy, . . . , Hk−1y} is not H-invariant, then it holds
that

(2.1) µi − θi ≤ (µi − µm)


 sin∠(y,Zi)

cos∠(y, zi)

∏i−1
j=1

θj−µm

θj−µi

Tk−i(1 + 2γi)




2

, i = 1, . . . , k,

for the Ritz values θ1 ≥ · · · ≥ θk of H in K. Therein Zi = span{z1, . . . , zi}. Additionally,
it holds that

(2.2) tan∠(zi,K) ≤
sin∠(y,Zi)

cos∠(y, zi)

∏i−1
j=1

µj−µm

µj−µi

Tk−i(1 + 2γi)
, i = 1, . . . , k.

Therein Tk−i are the Chebyshev polynomials with respect to [−1, 1] and gap ratios are
given by γi = (µi − µi+1)/(µi+1 − µm).

The analysis in [21], and thus the bounds (2.1) and (2.2), make use of the subspace
angle ∠(y,Zi). This analysis results in slightly tighter bounds compared to the analysis
in [22], which uses ∠(y, zi). It should be mentioned that the estimate (2.1) requires the
additional assumption θi > µi+1, i = 1, . . . , k, which is missing in Theorem 12.4.1 in [21]
but is included in Theorem 2 in [22]. Estimates which are similar to those in Theorem 2.1
have also been published in [16] in the context of an Invert-Lanczos process.

The estimates (2.1) and (2.2) show that one can achieve more accurate approximations
of the largest eigenvalues and the associated eigenvectors by enlarging the dimension of
the Krylov subspace. The reason for this is that Tk−i(1 + 2γi) increases considerably in
k, whereas the terms in the numerator of the upper bounds in (2.1) and (2.2) for a fixed
i do not depend on k.

The estimates of Theorem 2.1 are not direct generalizations of the estimates in The-
orem 1.2 with regard to restarted Krylov iterations. The Ritz value estimate (2.1) addi-
tionally contains angle terms compared to (1.7). For i = 1 the angle estimate (2.2) can
be rewritten as

tan∠(z1,K) ≤ T−1
k−1(1 + 2γ1) tan∠(y,W1)

by using ∠(y,Z1) = ∠(y, w1) = ∠(y,W1) as far as w1 6= 0. This form is similar to (1.8).
In general, these two estimates cannot be combined recursively to derive a priori estimates
as in (1.6).
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In contrast to this, the convergence measure (µi − · )/( · − µi+1) in (1.7) has obvious
benefits; it has been used in [8] by Knyazev for deriving convergence estimates for various
basic eigensolvers and in many further papers, e.g., [20, 19, 17, 18]. In [8], fundamental
estimates for restarted Krylov iterations have been derived by exploiting basic properties
of Chebyshev polynomials (e.g. their boundedness), which proves again the importance of
the Chebyshev polynomial analysis of iterative eigensolvers complementary to the famous
Chebyshev-based analysis of the conjugate gradient method for linear systems. A further
application is the analysis in Theorem 2.1 on approximations from Krylov subspaces with
increasing dimensions. We restate a central estimate from [8] with the notation as used
in Theorem 2.1: If µ(y) ∈ (µ2, µ1), then

(2.3)
µ1 − θ1
θ1 − µ2

≤ T−2
k−1(1 + 2γ1)

µ1 − µ(y)

µ(y)− µ2
.

We note that for the case k = 2, the estimate (2.3) coincides with the estimate (1.7) in
Theorem 1.2 for the special case i = 1. In other words, (2.3) provides a partial general-
ization of (1.7), namely for the fixed interval (µ2, µ1). The following example shows that
the bound in (2.3) is even tighter than that in the Kaniel and Paige estimate (2.1).

2.1. Numerical comparison of convergence factors. For a comparison of the
bounds in (2.1) and (2.3), we consider the finite difference standard 7-point-discretization
in 3D of the Laplacian on the domain [0, π]3 with 1003 interior nodes. The matrix H is
taken as the inverse of this discretization matrix. We consider the case of three-dimensional
Krylov spaces with k = 3. A number of 98 equidistant points α is taken in the interval
(µ2, µ1) ≈ (1/6, 1/3). For each α we consider 1000 random vectors y in the level set
{ỹ ∈ R

n : µ(ỹ) = α}. Then for each y the resulting largest Ritz value θ1 = θ1(y) of
H in span{y,Hy,H2y} is computed. The minimum of these θ1(y) represents the case of
slowest convergence and results in the maximal ratio

(2.4)

(
µ1 − θ1
θ1 − µ2

)(
µ1 − α

α− µ2

)−1

.

In Figure 2.1 these maxima are plotted versus α; see the curve “Numerically slowest
convergence”. The classical estimate (2.1) is represented by the maximum of

(2.5)

(
µ1 − θ̃1

θ̃1 − µ2

)(
µ1 − α

α− µ2

)−1

with θ̃1 = µ1 − (µ1 − µm)
tan2 ∠(y, z1)

T 2
2 (1 + 2γ1)

,

and the bound of the estimate (2.3) reads T−2
2 (1 + 2γ1). We notice that the estimate

by (2.3) is much stronger. A possible explanation is an overestimation due to the factor
tan∠(y, z1). This comparison encourages us to derive a generalization of the Ritz value
estimate (2.3) which holds for arbitrary intervals (µi+1, µi).

3. The new sharp estimates for the restarted Krylov iteration scheme.

The following new Theorem 3.1 is on Ritz value estimates and Ritz vector estimates
for the restarted Krylov type iteration (1.5). The theorem uses the settings and the
notation of Theorem 1.2. For its proof, we use techniques which are similar to those
used in [7, 8, 12, 18]. In order to estimate the closeness of Ritz values towards the
nearest eigenvalues, we generalize the estimate (2.3) so that it applies to any interval
(µi+1, µi) and not only to (µ2, µ1). In order to derive convergence estimates for the Ritz
vector towards an eigenvector, we extend the 2D ellipse-analysis in [18] to a k-dimensional
ellipsoid-analysis. The main result is as follows:

Theorem 3.1. Let µ1 > µ2 > · · · > µm be the distinct eigenvalues (with arbitrary
multiplicity) of the symmetric and positive definite matrix H ∈ R

n×n, and let µ(·) be the
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Fig. 2.1. Numerical comparison of the convergence factors for the 3D Laplacian. We have plotted
the numerically computed maximal values of (2.4) and the upper estimates for (2.4). Lowermost curve:
Numerically observed maximal values of (2.4) which represent the slowest convergence. An equidistant
subdivision of α ∈ (µ2, µ1) is used. For each α on this grid, 1000 random initial vectors are considered
whose Rayleigh quotients equal α and the slowest convergence is recorded. Middle curve: Convergence
estimate (2.3) by Knyazev, i.e. T−2

2 (1 + 2γ1) is plotted. Uppermost curve: The estimate (2.1) by Kaniel
and Saad is reformulated according to (2.5) and is plotted.

Rayleigh quotient with respect to H. Consider a Ritz vector y′ associated with the largest
Ritz value of H in the Krylov subspace K = span{y,Hy, . . . , Hk−1y} with y ∈ R

n\{0}
and k ≥ 2.

(i) Strictly monotone convergence: If K is not H-invariant, then

(3.1) µ(y′) > µ(y).

(ii) Ritz value estimate: If µ(y) ∈ (µi+1, µi), then

(3.2)
µi − µ(y′)

µ(y′)− µi+1
≤ T−2

k−1(1 + 2γi)
µi − µ(y)

µ(y)− µi+1

with the Chebyshev polynomial Tk−1 with respect to [−1, 1] and the gap ratio γi =
(µi − µi+1)/(µi+1 − µm).

(iii) Ritz vector estimate: If y is not H-orthogonal to the eigenspace W1 with respect
to µ1, then

(3.3) tan∠H(y′,W1) ≤

k−1∏

j=1

µ2 − µm+1−j

µ1 − µm+1−j
tan∠H(y,W1).

This bound cannot be improved in the eigenvalues. Equality can be attained in a
limit case with y belonging to the invariant subspace associated with the relevant
eigenvalues.

Remark. The estimate (3.2) includes the favorable case of very fast convergence.
In this case the Rayleigh quotient starts from a value equal to µ(y) ∈ (µi+1, µi) and
the Rayleigh quotient of the next iterate y′ has left this interval so that µ(y′) ≥ µi. In
this case the left-hand side of (3.2) is non-positive whereas the right-hand side is always
positive. Thus (3.2) holds trivially. We note that the estimate (3.2) can even be proved
without assuming the positive definiteness of H . The same holds for the estimate (3.3)
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if the H-angles are substituted by angles with respect to the Euclidean geometry for the
same vectors.

The proof of Theorem 3.1 is given in three steps in the following three subsections
3.1–3.3.

3.1. Proof of the strictly monotone convergence of the Ritz values (3.1).

Proof. Since µ(y′) is the maximal Ritz value in K = span{y,Hy, . . .}, the inequality
µ(y′) ≥ µ(y) holds. In the case of equality, y maximizes µ(·) in K. Then y is a Ritz vector
and its residual r = Hy−µ(y)y is orthogonal to K and also to itself, since r ∈ K as k ≥ 2.
Hence r = 0, which means that y is an eigenvector of H . Thus it holds that K = span{y}.
This contradicts the premise that K is not H-invariant.

3.2. Analysis of the Ritz value estimate (3.2). In this section we give a proof
of the Ritz value estimate (3.2). We treat the two cases:

If K is H-invariant, then the Ritz vector y′ is an eigenvector (see the argument given
in Section 3.1) so that µ(y′) is an eigenvalue ofH . Then µ(y′) ≥ µ(y) and µ(y) ∈ (µi+1, µi)
imply that µ(y′) ≥ µi. In this case (3.2) holds trivially.

If K is not H-invariant, then (i) shows µ(y′) > µ(y). We only have to consider the
nontrivial case µi > µ(y′) > µ(y) > µi+1. The key point of the proof is to define an
intermediate vector by means of the Chebyshev polynomial Tk−1. Here, we use some
ideas from the proof of Theorem 2.3.1 in [7] (where the p-th Ritz value from an abstract
iteration of p-dimensional subspaces S(ℓ) = Fl(H)S(0) is similarly analyzed). First, we
prove estimates for changes of the Rayleigh quotient under re-weighting of the expansion
coefficients in its argument, cf. Lemma 2.3.2 in [7] and Lemma A.1 in [13]. The proof of
the estimate (3.2) follows after Lemma 3.2.

Lemma 3.2. With the settings from Theorem 3.1 let ỹ ∈ R
n\{0} with ỹ =

∑m
j=1 w̃j

be the expansion of ỹ in its orthogonal projections w̃j to the eigenspaces of H for the m
distinct eigenvalues µj. If µ(ỹ) ∈ [µi+1, µi], then the re-weighted vector z̃ =

∑m
j=1 αjw̃j

satisfies:

(a) If |αj | ≥ 1 ∀ j ≤ i and |αj | ≤ 1 ∀ j > i, then µ(z̃) ≥ µ(ỹ).
(b) If |αj | ≤ 1 ∀ j ≤ i and |αj | ≥ 1 ∀ j > i, then µ(z̃) ≤ µ(ỹ).

Proof. For the proof we drop the tilde superscripts. Then y =
∑m

j=1 wj =
∑m

j=1 ωjzj
is the expansion of y in terms of the orthonormal eigenvectors zj with the expansion
coefficients ωj . The derivative of µ(y) =

∑m
k=1 ω

2
kµk/

∑m
k=1 ω

2
k with respect to ω2

ℓ reads

d

dω2
ℓ

µ(y) =
µℓ

∑m
k=1 ω

2
k −

∑m
k=1 ω

2
kµk

(
∑m

k=1 ω
2
k)

2
=

1∑m
k=1 ω

2
k

(µℓ − µ(y)).(3.4)

For µℓ ≥ µ(y) the derivative is nonnegative so that the Rayleigh quotient µ(y) increases
or decreases together with ω2

ℓ . If µℓ ≤ µ(y), then µ(y) and ω2
ℓ have a reverse growth

characteristic.

The proof is completed by applying these arguments inductively first for all indexes
j with |αj | ≥ 1 and then for the indexes with |αj | ≤ 1. The starting point is µ(y) ∈
[µi+1, µi], then the absolute value of the expansion coefficient is increased (in the second
cycle decreased) for an eigenvalue µℓ, ℓ = i, i − 1, . . . , 1 for the case (a) and ℓ = i +
1, i + 2, . . . ,m for the case (b). The Rayleigh quotient of the vector ŷ resulting from
the substitution wℓ → αℓwℓ is contained in the interval [min(µℓ, µi+1),max(µℓ, µi)] as
µ(y) ∈ [µi+1, µi] and lim|αℓ|→∞ µ(ŷ) = µℓ. Then this argument can be applied for the
next index whereby µ(ŷ) replaces µ(y) in (3.4).

Lemma 3.2 is the central ingredient for the proof of the Ritz value estimate (3.2) for
the nontrivial case µi > µ(y′) > µ(y) > µi+1.
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Proof. [of the Ritz value estimate (3.2)] We define the auxiliary polynomial

(3.5) p(α) = Tk−1

(
1 + 2

α− µi+1

µi+1 − µm

)
.

Thus p−2(µi) = T−2
k−1(1+2γi) is the convergence factor in (3.2). For k ≥ 2, the properties

of the Chebyshev polynomial Tk−1

Tk−1(1) = 1,
d

dt
Tk−1(t) > 0 for t ≥ 1, and |Tk−1(t)| ≤ 1 ⇔ |t| ≤ 1

imply that

(3.6) min
j=1,...,i

|p(µj)| = p(µi) > 1, and max
j=i+1,...,m

|p(µj)| = 1.

According to (3.6) and Lemma 3.2, we use the representation y =
∑m

j=1 wj of y with its
orthogonal projections wj to the eigenspaces of H , and define the three auxiliary vectors

(3.7) y1 :=
i∑

j=1

wj , y2 :=
m∑

j=i+1

wj , and z := p(µi)y1 + y2.

Next we prove the chain of inequalities µ(y′) ≥ µ(z) ≥ µ(y):

First, we show µ(z) ≥ µ(y) by applying Lemma 3.2 (a) to ỹ = y and z̃ = z: Then
(3.6) guarantees that |αj | ≥ 1 ∀ j ≤ i and |αj | ≤ 1 ∀ j > i are satisfied for an index i
with µ(y) ∈ (µi+1, µi). This yields µ(z) ≥ µ(y).

Second, we show µ(y′) ≥ µ(z): We use the auxiliary vector p(H)y with the polynomial
p(·) given in (3.5). Since p has a degree of k−1, the vector p(H)y belongs to the Krylov
subspace K = span{y,Hy, . . . , Hk−1y}. By definition y′ maximizes the Rayleigh quotient
µ(·) in K. Hence µ(y′) ≥ µ

(
p(H)y

)
. Moreover, Lemma 3.2 applied to ỹ = y and z̃ = p(H)y

guarantees with (3.6) that

µ(p(H)y) = µ(

m∑

j=1

p(µj)wj) ≥ µ(y).

Therefore, µ
(
p(H)y

)
∈ [µ(y), µ(y′)] ⊆ (µi+1, µi), which allows us to apply Lemma 3.2 for

the case (b) to ỹ = p(H)y and z̃ = z. By using (3.6) again, one gets µ(z) ≤ µ
(
p(H)y

)
≤

µ(y′).

Additionally, the vectors y1 and y2 defined in (3.7) satisfy µ(y1) ≥ µi and µ(y2) ≤
µi+1. The combination of all these inequalities reads

µ(y1) ≥ µi > µ(y′) ≥ µ(z) ≥ µ(y) > µi+1 ≥ µ(y2).

Then monotonicity arguments are used to prove that

(
µi − µ(y′)

µ(y′)− µi+1

)(
µi − µ(y)

µ(y)− µi+1

)−1

≤

(
µi − µ(z)

µ(z)− µi+1

)(
µi − µ(y)

µ(y)− µi+1

)−1

=

(
µi − µ(z)

µi − µ(y)

)(
µ(y)− µi+1

µ(z)− µi+1

)

≤

(
µ(y1)− µ(z)

µ(y1)− µ(y)

)(
µ(y)− µ(y2)

µ(z)− µ(y2)

)
=

(
µ(y1)− µ(z)

µ(z)− µ(y2)

)(
µ(y1)− µ(y)

µ(y)− µ(y2)

)−1

.
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In the final step we show that the last term equals p−2(µi) = T−2
k−1(1 + 2γi). To prove

this, we use the representation (3.7) of z which implies that yT1 y2 = yT1 Hy2 = 0. Thus we
get

µ(z) =
µ(y1)‖y1‖

2
2p

2(µi) + µ(y2)‖y2‖
2
2

‖y1‖22p
2(µi) + ‖y2‖22

⇒
µ(y1)− µ(z)

µ(z)− µ(y2)
= p−2(µi)

‖y2‖
2
2

‖y1‖22
.

Similarly, the decomposition y = y1 + y2 implies that
(
µ(y1) − µ(y)

)/(
µ(y) − µ(y2)

)
=

‖y2‖
2
2/‖y1‖

2
2. A combination of these two results completes the proof.

3.3. Analysis of the Ritz vector estimate (3.3). This section contains the proof
of the Ritz vector estimate (3.3). We start with an eigenvector expansion of y. By
assumption, y is not H-orthogonal to W1 so that the H-projection w1 of y to W1 is
nonzero. Thus (µ1, w1) is an eigenpair of H . Moreover, y can be represented in the form

y = w1 +
∑ℓ

i=1 wσ(i) with ℓ further nonzero projections on the eigenspaces with indices
σ(i) ∈ {2, . . . ,m}. We consider the following two cases:

If K = span{y,Hy, . . . , Hk−1y} is H-invariant, then a j ≤ k exists so that Hjy lin-

early depends on the linearly independent vectors (y,Hy, . . . , Hj−1y). Then for the eigen-

vector expansion y = w1 +
∑ℓ

i=1 wσ(i) it holds that ℓ ≤ j − 1, since otherwise w.l.o.g. for
ℓ = j the equality

[
y,Hy, . . . , Hj−1y,Hjy

]
=
[
w1, wσ(1), . . . , wσ(j)

]




1 µ1 · · · µj
1

1 µσ(1) · · · µj
σ(1)

...
...

...
...

1 µσ(j) · · · µj
σ(j)




with the regular (j + 1)× (j + 1) Vandermonde matrix would prove that y,Hy, . . . , Hjy
are linearly independent vectors. This contradicts the assumption.

The H-invariant subspace W = span{w1, wσ(1), . . . , wσ(ℓ)} contains the vector y. It
holds that K ⊆ W . Further, ℓ ≤ j − 1 implies that dimW = ℓ + 1 ≤ j = dimK so
that K =W together with ℓ = j − 1. Therefore, the eigenvectors w1, wσ(1), . . . , wσ(ℓ) are
also the Ritz vectors associated with the distinct Ritz values µ1, µσ(1), . . . , µσ(ℓ) of H in
K. Consequently, the desired Ritz vector y′ is collinear to w1 and is associated with the
largest Ritz value µ1. This leads to ∠H(y′,W1) = ∠H(w1,W1) = 0. Thus, (3.3) holds
trivially.

If K is not H-invariant, we consider the auxiliary subspace

(3.8) U = span{w1,K} = span{w1, y,Hy, . . . , Hk−1y}.

First we analyze properties of the Krylov subspace K in U with regard to the Ritz values
of H in U . In [12] this technique has been used for the case k = 2. For the general case
k ≥ 2, we first have to verify some properties of the subspace U and of the associated Ritz
values. We work out the key arguments in two lemmata:

1. Lemma 3.3 shows that the Krylov subspace K can be represented by a second
k-dimensional Krylov subspace in R

k+1. This allows a so-called mini-dimensional
analysis. Furthermore, strict interlacing properties of the Ritz values of H in K
related to the Ritz values of H in U ensure that all these Ritz values are simple.
Then this property is used in order to determine a polynomial which results in
an intermediate estimate.

2. In Lemma 3.4 we prove an estimate similar to (3.3) with respect to the Ritz values
of H in U . In its proof, the angles ∠H(y′,W1) and ∠H(y,W1) are represented
by certain coefficient ratios with respect to a Ritz vector basis of U . Finally, we
prove the main estimate (3.3) by using Lemma 3.4 and monotonicity arguments
on page 14.



10 K. Neymeyr and M. Zhou

Lemma 3.3. With the settings from Theorem 3.1 let U be an orthonormal matrix
whose column space equals U by (3.8). Further, let Ĥ = UTHU and ŷ = UT y. If K is
not H-invariant, then the following statements hold:

(a) U has the dimension k + 1.
(b) Left multiplication of K with UT results in the Krylov subspace

K̂ = span{ŷ, Ĥŷ, . . . , Ĥk−1ŷ}.

The pair (θ, v) is a Ritz pair of H in K, if and only if (θ, v̂) with v̂ = UT v is a

Ritz pair of Ĥ in K̂.
(c) Let α1 ≥ · · · ≥ αk+1 be the k + 1 Ritz values of H in the (k + 1)-dimensional

space U , which are the eigenvalues of Ĥ. Let θ1 ≥ · · · ≥ θk be the Ritz values of
H in K. Then the following interlacing properties hold

µ1 = α1 > θ1 > α2 > · · · > αk > θk > αk+1.

Further, the eigenspace of Ĥ associated with α1 is the column space of UTw1.
Proof.
(a) Since K is notH-invariant, the vectors y,Hy, . . . , Hk−1y are linearly independent.

Hence dimU ∈ {k, k + 1}. It remains to show that the assumption dimU = k
results in a contradiction. If dimU = k, then w1 can be represented by a linear
combination

∑k−1
i=0 βiH

iy, and the eigenvalue equation Hw1 = µ1w1 turns into

k−1∑

i=0

βiH
i+1y =

k−1∑

i=0

µ1βiH
iy

so that βk−1H
ky belongs to K. As K is notH-invariant, i.e.Hky 6∈ K, we conclude

that βk−1 = 0. These arguments can be applied recursively for the smaller spaces
and the remaining βi. This proves that βi = 0 ∀ i ∈ {0, . . . , k− 1}. Thus w1 = 0,
which contradicts our assumption in Theorem 3.1 that y is not H-orthogonal to
W1. Consequently, only dimU = k + 1 can hold.

(b) The matrix UUT is an orthogonal projection operator to U . Thus K ⊂ U proves
that UUT v = v for all v ∈ K. Direct computation shows that

UTK = UT span{y,Hy, . . . , Hk−1y}

= span{UTy, UTHUUTy, . . . , (UTHU)k−1UT y}

= span{ŷ, Ĥŷ, . . . , Ĥk−1ŷ} = K̂.

For any θ ∈ R it holds that

(Hv − θv)TK = (HUUT v − θUUT v)TUUTK = (Ĥv̂ − θv̂)T K̂.

Thus, (θ, v) satisfies Hv − θv ⊥ K if and only if (θ, v̂) satisfies Ĥv̂ − θv̂ ⊥ K̂.
(c) By (a), the matrix H has exactly k + 1 Ritz values in U . The equality α1 = µ1

holds because the global maximum of µ(·) is also attained in U , namely w1 ∈ U
results in α1 = µ(w1) = µ1.
The Courant-Fischer principles for the subspace K of U together with dimU =
k + 1 = 1 + dimK guarantee that

α1 ≥ θ1 ≥ α2 ≥ · · · ≥ αk ≥ θk ≥ αk+1.

For each of the “≥” relations in this chain of inequalities, an equality can be ruled
out by the following arguments.
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(i) It holds that α1 6= θ1: Otherwise, it would hold that α1 = θ1 = µ1 with the
largest eigenvalue µ1 of H . Then K would contain an eigenvector associated
with µ1. The same arguments as applied to w1 in part (a) of this proof can
be used for this eigenvector. The resulting contradiction proves that α1 6= θ1.

(ii) The Krylov subspace K̂ contains no eigenvectors of Ĥ: First we prove that

K̂ cannot be an Ĥ-invariant space. Then the arguments of part (a) of this
proof can be adapted and re-used in order to show that the assumption of
an eigenvector of Ĥ in the space K̂ results in a contradiction.
So we assume K̂ to be Ĥ-invariant and derive a contradiction: Due to (b)

the Ritz values θ1 ≥ · · · ≥ θk of H in K are also Ritz values of Ĥ in K̂. The
Ĥ-invariance of K̂ implies that all these θi turn into eigenvalues of Ĥ . This
is true since for a Ritz pair (µ̂(v̂), v̂) of Ĥ in K̂ the orthogonality

z := Ĥv̂ − µ̂(v̂)v̂ ⊥ K̂

implies that z = 0 as z ∈ K̂ by the Ĥ-invariance.
All these Ritz values or eigenvalues must be different from α1 due to (i).

Thus K̂ is orthogonal to the eigenvectors associated with α1. Furthermore,
UTw1 is an eigenvector associated with α1 since

Ĥ(UTw1) = UTHUUTw1 = UTHw1 = UT (α1w1) = α1(U
Tw1).

In particular K̂ is orthogonal to the eigenvector UTw1, i.e. for UT y ∈ K̂ it
holds that UT y ⊥ UTw1. Hence

yT (Hw1) = (UUT y)T (µ1w1) = µ1(U
T y)T (UTw1) = 0.

This contradicts our assumption that y is not H-orthogonal to W1.
(iii) An orthogonality argument: We show that the 1D-subspace spanned by r =(∏k

i=1(Ĥ − θiI)
)
ŷ is the orthogonal complement of the k-dimensional space

K̂ in the R
k+1. First, the vector r is nonzero, since otherwise the eigenvalue

equation Ĥv̂ = θj v̂ with v̂ =
(∏k

i=j+1(Ĥ − θiI)
)
ŷ 6= 0 would hold. This

would contradict (ii) since v̂ ∈ K̂.

Furthermore, for each Ritz pair (θj , v̂j), j = 1, . . . , k of Ĥ in K̂, it holds that

v̂Tj r = v̂Tj

(
k∏

i=1

(Ĥ − θiI)

)
ŷ =

(
(Ĥ − θjI)v̂j︸ ︷︷ ︸

∈K̂⊥

)T



k∏

i=1,i6=j

(Ĥ − θiI)


 ŷ

︸ ︷︷ ︸
∈K̂

= 0.

All these Ritz vectors v̂j span K̂. Hence r is orthogonal to K̂. A dimension

argument shows that K̂⊥ is one-dimensional so that K̂⊥ = span{r}.

If a certain θj would be equal to an eigenvalue of Ĥ , then the associated eigen-
vector û would satisfy

ûT r = ûT

(
k∏

i=1

(Ĥ − θiI)

)
ŷ =

(
(Ĥ − θjI)û︸ ︷︷ ︸

=0

)T



k∏

i=1,i6=j

(Ĥ − θiI)


 ŷ = 0.

Thus (iii) implies that û ∈ K̂. This contradicts (ii). Hence, none of the Ritz

values θj equals an eigenvalue of Ĥ . This proves the strict interlacing property.
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Counting the pairwise different eigenvalues of Ĥ shows that all eigenvalues are
simple so that the associated eigenspaces are one-dimensional. The eigenspace
which corresponds to α1 is span{UTw1}.

Lemma 3.3 allows to derive an intermediate error estimate on the Ritz vectors which
uses the Ritz values αi of H in U .

Lemma 3.4. With the settings and notation from Theorem 3.1 and from Lemma 3.3
it holds that

(3.9) tan∠H(y′,W1) ≤

k+1∏

j=3

α2 − αj

α1 − αj
tan∠H(y,W1).

Proof. First, we represent the H-angles by the corresponding angles in U . Since w1

is the H-projection of y to W1, it holds that ∠H(y,W1) = ∠H(y, w1). Further, since y′

belongs to the Krylov subspace generated by y and H , the H-projection of y′ to W1 is
collinear with w1 so that ∠H(y′,W1) = |∠H(y′, w1)|. In order to derive a representation of
these angles with respect to U , we use an orthonormal basis of U consisting of eigenvectors
û1, . . . , ûk+1 of Ĥ associated with the eigenvalues α1 ≥ · · · ≥ αk+1. According to Lemma
3.3 (c), these eigenvalues are simple, and û1 = β UTw1 with β ∈ R\{0}. Then it holds for
ŷ = UT y ∈ R

k+1 that

(ŷ, û1)Ĥ = (UT y)T (UTHU)(β UTw1) = β(UUT y)TH(UUTw1) = βyTHw1 = β(y, w1)H ,

since y ∈ U and w1 ∈ U . Similarly, it holds that ‖ŷ‖Ĥ = ‖y‖H , ‖û1‖Ĥ = |β| ‖w1‖H .
Thus,

cos2 ∠Ĥ(ŷ, û1) =
(ŷ, û1)

2
Ĥ

‖ŷ‖2
Ĥ
‖û1‖2

Ĥ

=
β2(y, w1)

2
H

‖y‖2Hβ2‖w1‖2H
= cos2 ∠H(y, w1)

so that tan2 ∠Ĥ(ŷ, û1) = tan2 ∠H(y, w1). Analogously, tan
2
∠Ĥ(ŷ ′, û1) = tan2 ∠H(y′, w1)

can be shown for ŷ ′ = UT y′. Each angle in (3.9) is an angle between a vector and a
subspace. Hence all these angles are bounded by π/2. The tangent values are nonnegative
so that (3.9) is equivalent to

(3.10) tan2 ∠Ĥ(ŷ ′, û1) ≤




k+1∏

j=3

α2 − αj

α1 − αj




2

tan2 ∠Ĥ(ŷ, û1).

In order to reformulate these tangent values in terms of the coefficients with respect
to the basis vectors ûj , we use Lemma 3.3 again. We begin with the representation

ŷ =
∑k+1

j=1 ûj(û
T
j ŷ) with the orthonormal eigenvectors ûj introduced in the first part of

the proof. If at least one of the coefficients (ûT
j ŷ) is equal to zero, then the Krylov subspace

K̂ would be a subspace of an Ĥ-invariant subspace whose dimension is at most k. The
property (b) in Lemma 3.3 shows that K̂ = UTK has the same dimension as K, namely

the dimension k, since K is not H-invariant. Hence, K̂ would be an Ĥ-invariant subspace,
and the Ritz values of Ĥ in K̂, which are also Ritz values of H in K according to (b),

would be eigenvalues of Ĥ. This contradicts the strict interlacing in (c) and shows that
all the coefficients (ûT

j ŷ) are nonzero. Then ŷ can be normalized with respect to û1. The

normalized vector has the representation ỹ = û1 +
∑k+1

j=2 βj ûj with βj 6= 0 and satisfies

tan2 ∠Ĥ(ŷ, û1) = tan2 ∠Ĥ(ỹ, û1) =

∑k+1
j=2 ‖βjûj‖

2
Ĥ

‖û1‖2Ĥ
= α−1

1

k+1∑

j=2

αjβ
2
j(3.11)
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since the eigenvectors are pairwise Ĥ-orthogonal. Additionally, we use the affine subspace

Û = û1 + span{û2, . . . , ûk+1}

and the Rayleigh quotient µ̂(·) with respect to Ĥ . Each û ∈ Û can be represented by a
coefficient vector in R

k with respect to the basis vectors û2, . . . , ûk+1. Then the level set

{û ∈ Û : µ̂(û) = θ1} can be represented by an ellipsoid. (Therein, θ1 is the largest Ritz
value of H in K, see Lemma 3.3.) Namely, the defining equation for the ellipsoid with

û = û1 +
∑k+1

j=2 β̂j ûj reads as follows

(3.12) θ1 = µ̂(û) =
α1 +

∑k+1
j=2 αj β̂

2
j

1 +
∑k+1

j=2 β̂
2
j

or equivalently

k+1∑

j=2

β̂2
j

α1 − θ1
θ1 − αj

= 1.

Therein all the quotients (α1−θ1)/(θ1−αj) are positive due to (c) in Lemma 3.3. Further,

the intersection Û ∩K̂ can be represented by an affine hyperplane in R
k, which is a tangen-

tial hyperplane of the ellipsoid defined in (3.12) according to the convexity of the ellipsoid

and the fact that θ1 is the maximum of µ̂(·) in K̂. The point of tangency corresponds to a
certain Ritz vector ỹ ′ associated with θ1. By (c) in Lemma 3.3, θ1 is a simple Ritz value
so that all the associated Ritz vectors are collinear. Moreover, (b) in Lemma 3.3 shows
that ŷ ′ = UT y′ is a further Ritz vector associated with θ1. Since the normalized vector
ỹ ′ is collinear to ŷ ′ it holds with the representation ỹ ′ = û1 +

∑k+1
j=2 β

′
j ûj that

tan2 ∠Ĥ(ŷ ′, û1) = tan2 ∠Ĥ(ỹ ′, û1) =

∑k+1
j=2 ‖β

′
jûj‖

2
Ĥ

‖û1‖2Ĥ
= α−1

1

k+1∑

j=2

αjβ
′
j
2
.(3.13)

With (3.11) and (3.13) the assertion (3.10) can be written as

(3.14)

k+1∑

j=2

αjβ
′2
j ≤




k+1∏

j=3

α2 − αj

α1 − αj




2
k+1∑

j=2

αjβ
2
j .

û1 + span{û2}

û1 + span{û3}

û1 + span{û4}

ỹ ′
û

Fig. 3.1. Geometry in the affine subspace Û for the case k = 3.
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Next, the proof is completed by deriving (3.14). In Figure 3.1 the geometry of the
ellipsoid and its tangent plane is illustrated for the case k = 3. (This figure is the coun-

terpart of Figure 3.2 in [18] where the case k = 2 is analyzed.) Since the Û-representation
bỹ ′ = (β′

2, . . . , β
′
k+1)

T of ỹ ′ is a point of tangency on the ellipsoid defined in (3.12), the
Euclidean norm ‖bỹ ′‖2 is not larger than the length of the semi-major axis of the ellip-

soid, i.e., ‖bỹ ′‖2 ≤ a =
√
(α1 − θ1)/(θ1 − α2). Additionally, the Û -representation bû of

the intersection û = K̂ ∩ (û1 + span{û2}) defines a point on the line containing the major

axis, and the point is outside the ellipsoid because of the tangential property of K̂, see
Figure 3.1. Thus, ‖bỹ ′‖2 ≤ a ≤ ‖bû‖2. Further, û can be represented by p(Ĥ)ŷ with a

polynomial p whose degree is not larger than k − 1 because of û ∈ K̂. We write ŷ in the
form ỹ(ûT

1 ŷ) with the normalized vector ỹ = û1+
∑k+1

j=2 βj ûj. Then the vector û = p(Ĥ)ŷ
has the representation

û = p(Ĥ)


û1 +

k+1∑

j=2

βj ûj


 (ûT

1 ŷ) =


p(α1)û1 +

k+1∑

j=2

βjp(αj)ûj


 (ûT

1 ŷ).

Because of û ∈ û1 + span{û2}, û
T
1 ŷ 6= 0 and βj 6= 0, we have

p(α1) = (ûT
1 ŷ)

−1, p(αj) = 0 for j = 3, . . . , k + 1.

Due to (c) in Lemma 3.3, the eigenvalues αj are pairwise different so that the polynomial p

has k−1 isolated zeros. Hence p is a multiple of the polynomial
∏k+1

j=3 (α−αj). Combining

this with p(α1) = (ûT
1 ŷ)

−1 implies that p has the form

p(α) = (ûT
1 ŷ)

−1
k+1∏

j=3

α− αj

α1 − αj

so that

û = û1 + β2p(α2)û2(û
T
1 ŷ) = û1 + β2

k+1∏

j=3

α2 − αj

α1 − αj
û2.

Thus, the coefficient vector bû is given by (β2κ, 0, . . . , 0)
T with κ =

∏k+1
j=3 (α2−αj)/(α1−

αj), and ‖bỹ ′‖22 ≤ ‖bû‖
2
2 = β2

2κ
2. This leads to (3.14), namely

(3.15)

k+1∑

j=2

αjβ
′2
j ≤

k+1∑

j=2

α2β
′2
j = α2‖bỹ ′‖22 ≤ α2β

2
2κ

2 ≤ κ2
k+1∑

j=2

αjβ
2
j .

The two inequalities are equalities in the limit case β2
2 →∞, which implies to β′

2
2
→∞.

Next, we use Lemma 3.4 together with monotonicity arguments in order to complete
the proof of the Ritz vector estimate (3.3) for the nontrivial case that K is not H-invariant.

Proof. [of the Ritz vector estimate (3.3)] For the Ritz values α1, . . . , αk+1 defined in
Lemma 3.3 (c), the Courant-Fischer principles guarantee the following inequalities to hold

µ1 = α1 > µ2 ≥ α2, and αj ≥ µm−(k+1)+j for j = 3, . . . , k + 1.

The monotonicity of (α2 − αj)/(α1 − αj) with respect to α2 or αj proves that

α2 − αj

α1 − αj
≤

µ2 − µm−(k+1)+j

µ1 − µm−(k+1)+j
for j = 3, . . . , k + 1.
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This proves by means of the intermediate estimate (3.9) in Lemma 3.4 the desired inequal-
ity (3.3). The estimate (3.3) is sharp, since the same analysis applied to an H-invariant
subspace associated with the eigenvalues µ1, µ2, µm−k+2, . . . , µm results in an equality
in the limit case that y tends to an eigenvector associated with µ2.

3.4. Restatement of Theorem 3.1 for the generalized eigenvalue problem

Ax = λMx. The restarted Krylov subspace iteration eigensolver (1.5) can be applied to
the generalized matrix eigenvalue problem Ax = λMx. We use the same substitutions
which join Theorem 1.1 with Theorem 1.2 in order to restate the central theorem 3.1 for
the generalized eigenvalue problem.

Theorem 3.5. Let λ1 < λ2 < . . . < λm be the distinct eigenvalues of the gen-
eralized eigenvalue problem Ax = λMx with symmetric and positive definite matrices
A,M ∈ R

n×n. Further, let ρ(·) be the Rayleigh quotient (1.2). Consider a Ritz vec-
tor x′ associated with the smallest Ritz value of (A,M) in the Krylov subspace K =
span{x,A−1Mx, . . . , (A−1M)k−1x} with x ∈ R

n\{0} and k ≥ 2.
(i) If K is not (A−1M)-invariant, then ρ(x′) < ρ(x).
(ii) If ρ(x) ∈ (λi, λi+1), then

ρ(x′)− λi

λi+1 − ρ(x′)
≤ T−2

k−1(1 + 2γi)
ρ(x) − λi

λi+1 − ρ(x)

with the Chebyshev polynomial Tk−1 and the gap ratio γi = (λ−1
i − λ−1

i+1)/(λ
−1
i+1 − λ−1

m ).
(iii) If x is not M -orthogonal to the eigenspace E1 with respect to λ1, then

tan∠M (x′, E1) ≤

k−1∏

j=1

λ−1
2 − λ−1

m+1−j

λ−1
1 − λ−1

m+1−j

tan∠M (x, E1).

The bound cannot be improved in the eigenvalues. Equality can be attained in a limit case
that y belongs to the invariant subspace associated with the relevant eigenvalues.

4. Numerical experiments. Next we study the numerical convergence behavior
of the restarted Krylov subspace eigensolver. We compare the numerical results with the
various estimates as derived in this paper. For these experiments we consider the operator
eigenvalue problem for the Laplacian

−∆u = λu(4.1)

on a 2D domain with the boundary Γ1 ∪ Γ2 ∪ Γ3 with

Γ1 =
{(

cos(t)
(
1 + sin(t)

)
, sin(t)

(
1 + cos(t)

))T
; t = [0, 2π)

}
,

Γ2 =
{(

α(1− t) + 0.25 t
)
(1, 1)T ; t = (0, 1)

}
,

Γ3 =
{(

0.25(1− t) + α t
)
(1, 1)T ; t = [0, 1)

}

and α = cos(54π)
(
1+sin(54π)

)
, see Figure 4.1. Homogeneous Dirichlet boundary conditions

are imposed on Γ1 ∪ Γ3 and homogeneous Neumann boundary conditions on Γ2.
The eigenfunction corresponding to the smallest eigenvalue has an unbounded deriva-

tive at the boundary point (0.25, 0.25)T , see Figure 4.1. We use the Adaptive-Multigrid-
Preconditioned (AMP)Eigensolver software in order to generate an adaptive finite element
grid. The homepage of this software is

http://www.math.uni-rostock.de/ampe .
The adaptive scheme is based on linear finite elements. It uses quadratic elements only
for the residual based error estimator. The components of the residual vector of a current
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eigenpair approximation are taken as local error estimates for the grid refinement. We con-
sider the iteration of the blockwise restarted Krylov subspace iteration (1.5) with k = 3.
The triangle mesh with 1736 nodes is shown in Figure 4.2 together with two sectional
enlargements of triangle meshes with 31795 and 217221 nodes around the critical point
(0.25, 0.25)T . In Figure 4.3, the left subfigure shows the computational costs (on a per-
sonal computer using only a single core of an Intel Xeon 3.2GHz CPU and 31.4GiB RAM)
versus the degrees of freedom. The solid curve denotes the total cumulative computation
times on the full level hierarchy and the oscillatory lower curve denotes the computation
times on the current level. The centered subfigure shows the convergence history on the
approximation error for the smallest eigenvalues with the uppermost curve for i = 1, the
middle curve for i = 2 and the lowermost curve for i = 3. The final values of λi refer
to an approximation from a grid with a number of 14927142 nodes. The right subfigure
shows error indicators of the residual-based error estimator associated with the smallest
eigenvalue λ1. The uppermost solid curve shows the values of the residual-based error
estimator using quadratic elements. The components of this vector are used as error indi-
cators for the adaptive grid refinement. The middle (broken) curve represents a modified
residual based error estimator, see Section 4 in [15]. This estimator is used for the stop-
ping criterion of the restarted Krylov subspace iteration. The lowermost oscillatory curve
shows the actual values of the residual with respect to linear finite elements. The resulting
numerical approximations θ1 of the smallest eigenvalue are listed in Table 1.

level 1 16 34 45 56 67
nodes 54 1736 31795 217294 1446646 10126530
d.o.f. 20 1610 31105 215432 1441718 10113303
θ1 13.66037 9.836651 9.774950 9.772454 9.772125 9.772076

Table 1

Ritz approximations θ1 of the smallest eigenvalue λ1 ≈ 9.772073 computed by the iteration (1.5)
with k = 3 by means of the AMPEigensolver software. For the finest grid with the level index 67 more
then 10 million degrees of freedom (d.o.f.) have been used.

Γ1

Γ2
Γ3

Fig. 4.1. The 2D domain for the operator eigenvalue problem (4.1) and the contour lines of three
eigenfunctions corresponding to the three smallest eigenvalues.

Experiment I: We consider the generalized eigenvalue problem for the discretization
matrix and the mass matrix with respect to the refinement level 56 with about 1.4 million
degrees of freedom. We compare the slowest convergence of the Krylov subspace itera-
tion with the estimated convergence rate from Theorem 3.5 for k ∈ {2, 3}. The largest
ratios ∆i,i+1(ρ(x

′))/∆i,i+1(ρ(x)) with ∆i,i+1(θ) =
(
θ − λi

)
/
(
λi+1 − θ

)
over 1000 random

test vectors with a fixed value of the Rayleigh quotient are documented. The results
are shown in Figure 4.4. The bold lines in the three intervals (λi, λi+1) are the upper
bounds by Theorem 3.5. The three curves are the largest numerically observed ratios
∆i,i+1(ρ(x

′))/∆i,i+1(ρ(x)) for each 1000 test vectors with fixed Rayleigh quotients equal
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Fig. 4.2. Triangle meshes with 1736, 31795 and 217221 nodes and associated numbers of 1610,
31105 and 215359 inner nodes. The associated depths of the triangulations are 16, 34 and 45. Sectional
enlargements are drawn for the latter two finer meshes with a center in the critical point (0.25, 0.25)T .
The side lengths of these enlargements are either 2 · 10−3 or 2 · 10−5.
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Fig. 4.3. Computational information of the AMPEigensolver with the residual-based error estimator
associated with the smallest eigenvalue λ1.

to 98 equidistant values in these intervals. For k = 2 the Ritz value estimate in Theo-
rem 3.5 is equal to the sharp Ritz value estimate in Theorem 1.1 for the steepest descent
method. These bounds are by theory attained for θi → λi, i = 1, 2, 3. The numerical data
clearly confirm this property because each of the three curves tend to the limit values at
the left end-points of the three intervals.
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Case k = 3

Fig. 4.4. Poorest convergence of the Ritz values θi for i = 1, 2, 3 for the two Krylov subspace
iterations with k = 2 (left subplot) and k = 3 (right subplot). Abscissa: The four smallest eigenvalues
are marked.

Experiment II: The convergence of the Ritz values is tested for the case i = 1 ac-
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cording to estimate (ii) of Theorem 3.1, respectively for its pendant in Theorem 3.5. The
convergence of the eigenvalue approximations ρ(x(ℓ)) towards λ1 is measured in terms of

∆1,2

(
ρ(x(ℓ))

)
:=
(
ρ(x(ℓ))− λ1

)
/
(
λ2 − ρ(x(ℓ))

)

and compared with the one-step bound T−2
k−1(1 + 2γ1)∆1,2

(
ρ(x(ℓ−1))

)
and the multi-step

bound T−2ℓ
k−1(1+2γ1)∆1,2

(
ρ(x(0))

)
. Figure 4.5 displays the convergence of the Krylov sub-

space iteration for k ∈ {2, 3, 6}. All curves are plotted for the case of poorest convergence,
which has been observed for 1000 random initial vectors x(0) which all have the Rayleigh
quotient ρ(x(0)) = 12. The comparison coincides with the fact that the convergence rate
T−2
k−1(1 + 2γ1) decreases rapidly for λ1 ≈ 9.77 ≪ 15.44 ≈ λ2 (therefore γ1 ≫ 0) and

increasing k. The obvious rule is as follows: The larger the subspace index k the smaller
the number of iterations until a final accuracy is reached.
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Fig. 4.5. Convergence of the eigenvalue approximations in terms of the ratios ∆1,2
(
ρ(x(ℓ))

)
=

(ρ(x(ℓ)) − λ1)/(λ2 − ρ(x(ℓ))) for k ∈ {2, 3, 6}. Bold lines: One-step estimates. Dashed line: Multi-step
estimates. Thin solid lines: Experimental, numerically observed data for the poorest convergence for each
1000 random initial vectors with a fixed Rayleigh quotient equal to 12.

Experiment III: The convergence of the Ritz vectors is tested for the case i = 1
according to estimate (iii) of Theorem 3.1, respectively for its pendant in Theorem 3.5.
The convergence of the Ritz vectors x(ℓ) towards the eigenspace E1 is measured in terms
of tan∠M (x(ℓ), E1) and compared with the one-step bound κ tan∠M (x(ℓ−1), E1) and the

multi-step bound κℓ tan∠M (x(0), E1) with κ =
∏k−1

j=1 (λ
−1
2 − λ−1

m+1−j)/(λ
−1
1 − λ−1

m+1−j).
Figure 4.6 displays the convergence of the Krylov subspace iterations for k ∈ {2, 3, 6}. All
curves are plotted for the case of poorest convergence which has been observed for 1000
random initial vectors x(0) with the same initial angle tan∠M (x(0), E1) = 32. The results
coincide with the fact that the convergence rate including the decisive factor (λ1/λ2)

k−1

decreases rapidly for λ1 ≈ 9.77≪ 15.44 ≈ λ2 and increasing k. The multi-step estimates
seem to be coarse. However, this does not contradict our convergence analysis as we have
derived a sharp single-step estimate. The point is that the multi-step estimates simply use
the one-step estimate multiple times. This does not allow to reflect an acceleration effect
of multiple steps. Furthermore, the sharpness of the single-step estimate is attained in the
(one-sided) limit case of decreasing ρ(x(ℓ)) towards λ2. If ρ(x

(ℓ)) < λ2, then a different and
smaller convergence bound exists, cf. Section 3.1 in [18] for details of a similar argument
on the steepest descent iteration.

5. Conclusion. A-gradient steepest descent iterations and their generalizations in
the form of restarted Krylov subspace iterations are efficient schemes in order to com-
pute (a modest number of) the smallest eigenvalue(s) together with the invariant spectral
subspace of the discretization of self-adjoint and elliptic partial differential operators.
However, each step of these iterations requires the solution of a linear system of equa-
tions in A. The solution of such a linear system, which corresponds to the solution of a
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Fig. 4.6. Convergence of the eigenvector approximations in terms of tan∠M (x(ℓ), E1) for k ∈
{2, 3, 6}. Bold lines: One-step estimates. Dashed lines: Multi-step estimates. Thin solid lines: Experi-
mental, numerically observed data for the poorest convergence for each 1000 random initial vectors with
a fixed initial subspace angle tan∠M (x(0), E1) = 32.

boundary value problem for the given partial differential operator, can be implemented
numerically by a (multigrid) preconditioned iterative scheme. This scheme can either be a
pure multigrid solver or a multigrid preconditioned iterative solver which is possibly based
on a conjugate gradient iteration. Instead of a precise solution of the linear system, an
approximate solver can be constructed from the precise solver by using a loosened stop-
ping condition. The approximate solver can ideally be used as a preconditioner in order
to substitute the exact solver in the A-gradient scheme. The resulting iterative scheme is
a preconditioned gradient iteration for the solution of eigenvalue problems.

As already mentioned in Section 1.1, the convergence analysis of preconditioned gra-
dient type eigensolvers suffers from the complication by the spectral assumptions of the
quality of the preconditioner. However, the present analysis provides convergence esti-
mates for the limit case that an exact-inverse “preconditioning” has been used. Therefore,
our analysis of restarted Krylov subspace eigensolvers with arbitrary subspace dimensions
constitutes the basis for an understanding of a large class of preconditioned eigensolver
iterations for the important limit case of accurate preconditioning.
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