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Abstract

In 1985 Borgen and Kowalski [DOI:10.1016/S0003-2670(00)84361-5] introduced a geometric construction algorithm
for the regions of feasible nonnegative factorizations of spectral data matrices for three-component systems. The
resulting Borgen plots represent the so-called Area of Feasible Solutions (AFS). The AFS can be computed either
for the spectral factor or for the factor of the concentration profiles. In the latter case, the construction algorithm is
applied to the transposed spectral data matrix. The AFS is a low-dimensional representation of all possible nonnegative
solutions, either of the possible spectra or of the possibleconcentration profiles.

This work presents an improved algorithm for the simultaneous construction of the two dual Borgen plots for the
spectra and for the concentration profiles. The new algorithm makes it possible to compute the two Borgen plots
roughly at the costs of a single classical Borgen plot. The new algorithm comes without any loss of precision or
spatial resolution. The new method is benchmarked against various program codes for the geometric-constructive and
for the numerical optimization-based AFS computation.

Key words: multivariate curve resolution, Borgen plot, nonnegative matrix factorization, area of feasible solutions,
polygon inflation,FACPACK.

1. Introduction

In model-free multivariate curve resolution (MCR)
the aim is to extrapolate from the spectral observation
of a chemical reaction system to the contributions from
the underlying pure components. If a series of spectra is
measured and if these spectra are written as the rows of
ak-by-n spectra matrixD, then the Lambert-Beer law

D = CST + E (1)

expresses an approximate bilinear relation betweenD
and the nonnegative factorsC ∈ R

k×s and S ∈ R
n×s.

The error termE is assumed to be small or to vanish.
The columns ofC are the concentration profiles of the
spure components and the columns ofS are the associ-
ated pure component spectra [15, 14]. If onlyD is given,
then the computation of chemically interpretable factors
C andS is a difficult problem as (1) withE = 0 can have
many nonnegative solutions. This fact is known under
the keywordrotational ambiguity, see e.g. [34, 2]. Ad-
ditional information on the reaction system can help to
reduce this ambiguity. Here we pursue the approach to

compute the complete range of all nonnegative factor-
izationsD = CST and to represent the possible factors
columnwise in the low-dimensional form of theArea of
Feasible Solutions(AFS). Such AFS analyses are well-
known for two-, three- and four-component systems.
These techniques can be classified as either geometric
constructive approaches [13, 16, 5, 23, 11] or as nu-
merical optimization-based approaches [1, 7, 27, 8, 31].
In recent years many new methods or modifications of
established methods have been devised; see the review
works [6, 26]. Some of these methods have reduced
the computational costs for determining the AFS con-
siderably. The computation times are about seconds for
medium-sized data sets and are up to minutes for multi-
megabyte data sets.

1.1. Motivation and aim of the paper

Against the background of an increasing importance
of model-free MCR methods, which are always faced
with the problem of the non-uniqueness of their results
due to the so-called rotational ambiguity, we present a
new, very efficient algorithm which simultaneously con-
structs the AFS sets for the concentration factor and



for the spectral factor. This new algorithm is based
on a geometric construction in terms of Borgen plots
[16, 5, 23, 22, 11, 12]. It does not include any numer-
ical approximations. Therefore the algorithm provides
precise results - however, small rounding errors are un-
avoidable if the algorithm is implemented on a com-
puter. As is typical for Borgen plots, the algorithm can
only be applied to non-perturbed and noise-free model
data. This disadvantage will be compensated in a forth-
coming second part of this paper, where the algorithm
is extended in a way that it can be applied to perturbed,
noisy experimental spectral data. This extended algo-
rithm is of a hybrid nature, as it combines the geometric
construction with the numerical approximation under-
lying the polygon inflation algorithm [27, 28]. The new
methods work accurately and are very fast.

In this first part, we analyze a certain duality of
the polygons INNPOL and FIRPOL, see Sec. 3 and
[10, 21]. This duality can be used in a way that a facet
of INNPOL for the one factor makes it possible to con-
struct a vertex of FIRPOL for the other factor. Such
a duality is already known in the community. What is
new is that the duality is exploited in order to build a
fast and precise construction of the AFS for the concen-
tration factor andsimultaneouslyfor the spectral factor.
For each constructed boundary point of the AFS of one
factor the new method forms two inner boundary points
of the AFS for the other factor. Our analysis is partially
general in a sense that it applies to any dimension. Then
INNPOL and FIRPOL are polyhedra. The forthcom-
ing second part of the paper combines the speed and
precision of the geometric construction with the robust-
ness for perturbed and noisy data of optimization-based
methods. Such a robustness is the benefit of the nu-
merical AFS computation methods as polygon inflation,
triangle enclosure or grid-search. The new algorithm si-
multaneously computes the two AFS sets almost as fast
as the classical Borgen plot algorithm computes a single
AFS for ideal model data.

1.2. Organization of the paper
The paper is organized as follows: Sec. 2 introduces

the SVD-based approach to to MCR problem and to the
AFS. Sec. 3 defines certain important sets and polyhe-
dra for the subsequent geometric constructions, contains
their analysis and presents an indirect and very fast com-
putation method, which is based on the complementar-
ity/duality theory. The central new results on the si-
multaneous geometric construction of the AFS sets for
noise-free data are presented in Sec. 4. Finally, the re-
sults are compared to the results of other methods (poly-
gon inflation and generalized Borgen plots) in Sec. 5.

1.3. Notation

The following notation is used in the paper.

D k× n spectral data matrix by Eqs. (1), (2).
C k× sconcentration matrix by Eq. (1).
S n× sspectra matrix by Eq. (1).
UΣVT singular value decomposition ofD by Eq. (2).
T s× s transformation matrix by Eqs. (2), (3).
M AFS spectral factor by Eq. (4).
MC AFS concentration factor by Eq. (5).
I INNPOL spectral factor by Eq. (8).
IC INNPOL concentration factor by Eq. (9).
F FIRPOL spectral factor by Eq. (8).
FC FIRPOL concentration factor by Eq. (9).
ai scaled left singular vectors by Eq. (6).
b j scaled right singular vectors by Eq. (7).

2. MCR and the AFS

A well-established approach to the construction of
nonnegative factorsC ∈ Rk×s andS ∈ Rn×s for a given
rank-s matrix D ∈ R

k×n is to use a singular value de-
composition (SVD)D = UΣVT of D, see [9]. Here
we consider a truncated SVD in a way thatU and V
have onlys columns and thatΣ is an s-by-s diagonal
matrix with thes dominant singular values ofD on its
diagonal. Then the productUΣVT is the best rank-sap-
proximation ofD in the least-squares sense [9, 33]. The
truncated SVD is important in the case of perturbed data
with E , 0 in (1) so thatD ≈ UΣVT . For ease of pre-
sentation we considerE = 0 in the sequel. The key idea
for the construction ofC andS is to insert a transforma-
tion T ∈ Rs×s and its inverse in the truncated SVD in a
way that

D = UΣVT = UΣT−1
︸  ︷︷  ︸

=C≥0

TVT
︸︷︷︸

=ST≥0

. (2)

Only thoseT are considered for whichC andS are non-
negative matrices. A purely numerical approach is to
determine the matrix elements ofT by solving an opti-
mization problem, see e.g. [35, 19].

2.1. Sets of feasible spectra and concentration profiles

If (2) holds for a certainT and P is a permutation
matrix, then this equation holds also forPT instead of
T (thenT−1 is substituted byT−1PT). This operation
rearranges the columns ofC and S in the same way.
Consequently the set of all possible first columns ofS
is equal to the set of all possible columns ofS (i.e. the
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possible spectra). We denote this set byS and the cor-
responding set of possible concentration profiles byC

so that

C = {u ∈ Rk : (2) holds withC(:, 1) = u},

S = {3 ∈ Rn : (2) holds withS(:, 1) = 3}.

If an algorithm is available which allows us to deter-
mine the setS , thenC can be formed by applying this
algorithm toDT = SCT asC andS have changed their
places by transposition. We call a spectrum3 feasible if
matricesC,S ≥ 0 exist so that3 equals the first column
of S andD = CST .

2.2. The AFS
The setS is unbounded as any positive multipleω3

for 3 ∈ S andω > 0 is consistent with (2) if the asso-
ciatedu is substituted byu/ω. The unboundedness can
easily be avoided by fixing a certain scaling. Therefore
each matrix element in the first column ofT is set equal
to 1

T =





1 x1 · · · xs−1

1
... W
1





. (3)

The justification that each vector inS has a non-
vanishing contribution from the first right singular vec-
tor relies on the Perron-Frobenius theory of nonnegative
matrices [17], see [28] for the proof. This allows us to
define the AFS as the set of the (s− 1)-dimensional row
vectors

M :={x ∈ Rs−1 : existsW ∈ R(s−1)×(s−1) with

T(1, 2 : s) = xT , rank(T) = sandC,S ≥ 0}
(4)

with T and W by (3); see [7, 27, 26]. Some basic
properties of the AFS, not only thatM is bounded and
does not include the origin, are proved in [28, 11, 31].
These proofs require the (mild) assumptions thatDDT

andDT D are irreducible matrices.
The corresponding AFS for the factorC is defined as

MC = {y ∈ R
s−1 : existsT ∈ Rs×s, rank(T) = s,

(T−1)(:, 1) =

(

1
y

)

andUΣT−1 ≥ 0, TVT ≥ 0}.
(5)

2.3. AFS computations
For two-component systems (s = 2) the AFS can

explicitly be written in dependence on the matrix ele-
ments ofD, see [13, 2, 28, 26, 31]. For three- and four-
component systems various and differing AFS compu-
tation methods are available. As already mentioned in

Sec. 1, the algorithms for three-component systems are
either of geometric-constructive nature [5, 23, 11] or are
based on the solution of numerical optimization prob-
lems [2, 7, 27, 31]. For four-component systems the
pioneering work has been done in [8, 6, 26, 31].

The focus of this work is on three-component sys-
tems. A new technique is developed which determines
the (boundaries of the) setsM andMC simultaneously.
The details of this new method are explained in Sec. 4.
In the next, preparatory section we define and analyze
two important supersets ofM andMC.

3. Fast computation of FIRPOL

This section deals with the polygons FIRPOL and
INNPOL as introduced by Borgen and Kowalski [5]
and, e.g., later used in [23, 11]. Here the representa-
tion is not restricted to polygons (s = 3) but applies to
polyhedra of arbitrary dimensionss≥ 3. The construc-
tion of the polyhedra FIRPOL and INNPOL is the first
step for the geometric construction of the spectral AFS
M and its pendantMC for the concentration factor. In
the following we describe and analyze various duality
relations between the polyhedra FIRPOL and INNPOL
for eachM andMC. These results relate facets of IN-
NPOL with vertices of FIRPOL. Finally, we describe
an approach how the polyhedra FIRPOL (both for the
spectral factor and for the concentration factor) can be
computed in a fast indirect way.

The underlying duality relations are known, see
Henry [10] and Rajkó [21]. The duality has been used
in [3] for the effective construction of the polygons FIR-
POL and INNPOL for the two factors. The decisive
point of the duality analysis in this section is to show
that extremal points of INNPOL are one-to-one related
to halfplanes which include facets of the dual polygon
FIRPOL. Similarly, inner points of INNPOL are also
one-to-one related to dual halfplanes which do not con-
tribute to the boundary of FIRPOL.

The duality is also expressed in some complementar-
ity theory, see, e.g., [24, 30, 18]. However, a simultane-
ous construction algorithm for Borgen plots, in which a
single triangle rotation process is used in order to con-
struct the two AFS sets by using duality relations, has
not been described or published.

3.1. A remark on the duality principle

In general, duality in mathematics is a principle
which refers to two (mathematical) objects which stand
in a one-to-one relation. Properties of one of these ob-
jects can often be translated to related properties of the
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second object. Duality relations are well known in op-
timization theory, mathematical logic, set theory and
many other fields. In this paper, the term duality refers
to various properties of the representing sets of two fac-
torsC andST of D and their construction.

3.2. Data representation and affine hyperplanes

In order to construct the boundaries ofM andMC

some auxiliary objects are required. The starting point
is the SVD D = UΣVT which can be written in the
equivalent forms

DV = UΣ and Σ−1UTD = VT .

The first equation can be interpreted in a way that it rep-
resents the expansion coefficients of theith row of D
with respect to the basis of right singular vectors by the
ith row of UΣ. The second equation is the correspond-
ing or dual representation of the columns ofD with re-
spect to the basis of scaled (with the singular values)
left singular vectors; the columns ofVT contain the ex-
pansion coefficients. These vectors of expansion coeffi-
cients together with the normalization as used in (3)–(5)
are the (s− 1)-dimensional column vectors

ai :=
((UΣ)(i, 2 : s))T

(UΣ)(i, 1)
=

(UΣ)T(2 : s, i)
UT(1, i)σ1

(6)

for i = 1, . . . , k and the column vectors

b j :=
VT(2 : s, j)

VT(1, j)
(7)

for j = 1, . . . , n.
Borgen and Kowalski [5] in their geometric construc-

tion ofM for the cases = 3 defined the polygonsF
(called FIRPOL) andI (called INNPOL) by means of
theai andb j. For generals ≥ 3, these polyhedra have
the form

F = {x ∈ Rs−1 : V

(

1
x

)

≥ 0},

I = convhull{ai : i = 1, . . . , k},

(8)

see also [23, 11]. The definition of the analogous sets
for the concentration factorC read

FC = {y ∈ R
s−1 : UΣ

(

1
y

)

≥ 0},

IC = convhull{b j : j = 1, . . . , n}.
(9)

These latter sets are required for the construction of
MC.

The superset FIRPOL, denoted byF , of M is by
its definition the intersection of then affine half-spaces
which are given by then components of the inequality
V(1, xT)T ≥ 0. Thesen affine half-spaces are one-sided
bounded by then affine hyperplanes (which derive from
the jth component ofV(1, xT)T = 0)

E(S)
j :=

{

x ∈ Rs−1 :
V( j, 2 : s)x

V( j, 1)
= −1

}

(10)

for j = 1, . . . , n. Analogously, the affine hyperplanes

E(C)
i =

{

y ∈ Rs−1 :
UΣ(i, 2 : s)y

U(i, 1)σ1
= −1

}

, (11)

for i = 1, . . . , k belong to the affine half-spaces
UΣ(1, yT)T ≥ 0. Each of these affine half-spaces is ori-
ented in a way that it contains the origin. The intersec-
tion of these spaces is the supersetFC ofMC.

3.3. Duality of points and affine hyperplanes

Next relations fromIC toF are analyzed. Analogous
relations hold forI andFC. These relations and their
analysis are the basis of the construction algorithms for
F andFC. The starting point for the analysis is the
complementarity and coupling theory in [24]. This the-
ory is closely related to theduality principles as stated
by Henry [10] and Rajkó [21]. The duality describes
mathematical constraints for the columns ofC if certain
columns ofS are known and vice versa.The constraints
are given in the form of (affine) linear equations for the
unknown parts. Typically, the theory provides major re-
strictions, i.e. small subsets of the AFS can be identi-
fied which include the feasible solutions. For a discus-
sion and for the analysis of the constraining conditions,
see [21, 4, 30]. For example, a central result is that a
fixed point in the AFSM (i.e. a certain pure component
spectrum is known) restricts the representations of the
remaining components in the concentrational AFSMC

to an affine hyperplane. In short, a point in one AFS
set is dual (or complementary) to an affine hyperplane
in the other AFS set and vice versa.

Definition 3.1. A vector z∈ Rs−1 and an affine hyper-
plane E= {y ∈ R

s−1 : yTzE = −1} are calleddual (or
complementary) if zE = z.

An elementary consequence of Def. 3.1 is the follow-
ing corollary.

Corollary 3.2. According to Def. 3.1 the ai by (6) and
the hyperplanes E(C)

i by (11) are dual for i = 1, . . . , k.
In the same way, the bj by (7) and the hyperplanes E(S)

j
are dual for j= 1, . . . , n.
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In words Cor. 3.2 is about the duality ofai , whose
convex hull equalsI, and the hyperplanesE(C)

i which
underlie the construction ofFC. The next lemma de-
scribes a similar relation of points on the boundary
of FC to dual hyperplanes which are tangential toI,
cf. Sec. 3 in [21]. Fig. 1 illustrates the relations.

Lemma 3.3. The point y0 ∈ R
s−1 is a boundary point

of FC if and only if the dual affine hyperplane E to y0
is a tangential plane toI (which does not intersect the
interior ofI) and at least one index i0 ∈ {1, . . . , k} exists
so that ai0 by (6) is a point of tangency of E toI.

Proof. First y0 ∈ FC, that meansUΣ
(

1
y0

)

≥ 0, is equiv-
alent to

(UΣ)(:, 2 : s)y0 ≥ −U(:, 1)σ1.

Equivalently it holds for alli ∈ {1, . . . , k} that

(UΣ)(i, 2 : s)y0

U(i, 1)σ1
≥ −1 (12)

or aT
i y0 ≥ −1 with ai by (6). Equality in (12) for one

indexi0, i.e.aT
i0
y0 = −1, is equivalent toy0 being located

on the boundary ofFC.
The dual affine hyperplane toy0 reads by its definition

E = {x ∈ R
s−1 : xTy0 = −1}. Hence (12) shows that

all ai are located in the half-spaces on one side of the
affine hyperplaneE. The convex hull of theai equals
I so thatE cannot intersect the interior ofI. Finally,
ai0 ∈ E is a point of tangency sinceaT

i0
y0 = −1 as shown

above. This proves the two directions of the if-and-only-
if conditional statement.

Lemma 3.3 can be reformulated for points on the
boundary ofF which are set in relation to tangential
affine hyperplanes ofIC, see Fig. 1.

Corollary 3.4. Let x0 ∈ R
s−1 be located on the bound-

ary ofF . Then the dual affine hyperplane E to x0 is a
tangential plane toIC. At least one index j0 ∈ {1, . . . , n}
exists so that bj0 by (7) is a point of tangency of E toIC.
This point satisfies

V( j0, 2 : s)x0 = −V( j0, 1)

or equivalently bTj0 x0 = 0.

The next step is to extend Lemma 3.3 in a way that
the vertices ofFC are shown to be the dual points of the
affine hyperplanes which include facets of the polyhe-
dronI. Up to now we have proved that the tangential
hyperplanes touch the polygon at least in a vertex. It re-
mains to show that this hyperplane contains an edge (for
s = 3) or in general a facet ofI. This is the basis for
computing the vertices ofFC by using the polyhedronI
and also to compute the vertices ofF by usingIC.

.
H

0

y

Figure 3: A convex set which does not include the origin is necessarily
a subset of a half-planeH defined by an appropriatey , 0.

3.4. Duality of the facets ofI and the vertices ofFC

This section analyzes a duality of the facets ofI and
the vertices ofFC. First we show that the origin is an
interior point ofI.

Lemma 3.5. Let DDT be an irreducible matrix. Then
the origin x= 0 is an interior point ofI.

Proof. We assumex = 0 not to be an interior point of
I. Then the convexity ofI implies thatI is a subset of
the half-plane

H = {z ∈ Rs−1 : zTy ≥ 0}

for a proper nonzero vectory ∈ Rs−1, see Fig. 3. Further
(6) implies that

0 ≤ aT
i y =

1
σ1U(i, 1)

UΣ(i, 2 : s)y, i = 1, . . . , k,

which reads in vectorial form

1
σ1

diag(1/U(1, 1), . . . , 1/U(k, 1))UΣ(:, 2 : s)y ≥ 0.

Sinceσ1 > 0 and as the first singular vectorU(:, 1)
can be assumed strictly positive (due to the Perron-
Frobenius theory on the assumption of irreducibility of
DDT), the last equation proves thatUΣ(:, 2 : s)y ≥ 0
for the giveny , 0. This contradicts Corollary 2.3
in [28] for irreducibleDDT since a nonnegative and
nonzero linear combination of the columns ofUΣ al-
ways has a nonzero contribution from the first singular
vectorU(:, 1).

The Lemma 3.3 is needed in order to prove that the
vertices ofFC and the facets of the polyhedronI are
dual. Facets are nondegenerate faces of a polyhedron,
i.e. the dimension of a facet is one less the dimension of
the polyhedron (or mathematically a facet has the codi-
mension 1). See Fig. 2 of an illustration of the content
of the following theorem.

Theorem 3.6. Let DTD and DDT be irreducible matri-
ces with D of the rank s≥ 3. A point y0 is a vertex of
FC if and only if its dual affine hyperplane E contains a
facet ofI, i.e. a face of the codimension 1.
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.. x0y0

FC
F

I
IC

E

E

Duality relations

Figure 1: Lemma 3.3 describes a duality relation of a boundary point y0 ∈ FC to a tangential plane ofI as well as of a boundary pointx0 ∈ F to a
tangential plane ofIC.

. .x0
y0

FC F

IIC

E

E

Duality relations

Figure 2: Theorem 3.6 describes a duality relation of a vertex y0 ∈ FC to a tangential plane ofI which encloses a facet ofI. Further a vertex
x0 ∈ F is dual to a tangential plane ofIC which contains a facet ofI.
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Proof. First we prove the direction that a facet ofI is
dual to a vertexy0 of FC. In order to show that a dual
vectory0 in the sense of Def. 3.1 exists, we have to prove
that the facet is enclosed by an affine hyperplane and not
only by a hyperplane. (The crucial point is that Def. 3.1
with yTzE = −1 specifies an affine hyperplane which
does not include the origin.) Due to Lemma 3.5 the ori-
gin 0 = (0, . . . , 0)T ∈ R

s−1 is an interior point ofI.
Hence the facetE of I cannot contain the origin. Thus
a dual vectory0 exists which represents the affine hy-
perplaneE in the formE = {x ∈ Rs−1 : yT

0 x = −1}. It
remains to show thaty0 is a vertex ofFC.

As E contains a facet (codimension 1) ofI, there ex-
ist s− 1 affine independent verticesai1, . . . , ais−1 by (6)
whose convex hull equals the facet. Therefore it holds
that

yT
0 ai j = −1, j = 1, . . . , s− 1, (13)

yT
0 aℓ ≥ −1, ℓ ∈ {1, . . . , k} \ {i1, . . . , is−1}. (14)

Thus (13) and (14) show thaty0 fulfills the condition
UΣ(1, y0)T ≥ 0 for a membership inFC according to
(9). Furthermore from (13) it follows thaty0 belongs to
exactlys−1 of the affine hyperplanes which encloseFC.
For the selected indexesi1, . . . , is−1 theses−1 affine hy-
perplanes are linearly independent. Hencey0 is a vertex
of FC (and not only an interior point of an edge). This
completes the proof of the first direction.

In order to prove the other direction lety0 be a vertex
of FC. Asy0 is a vertex it holds that ins−1 components
of UΣ(1, yT

0 )T ≥ 0 equality is attained. Leti1, . . . , is−1

be the indexes of these components. Reversing the argu-
ments of the first part of the proof proves that the dual
hyperplaneE encloses the facet ofI with the vertices
ai1, . . . , ais−1.

Analogously, this result is valid for facets ofIC and
the dual vertices ofF , see Fig. 2.

Corollary 3.7. On the assumptions of Thm. 3.6 the fol-
lowing equivalence holds: A point x0 is a vertex ofF if
and only if its complementary affine hyperplane E con-
tains a facet ofIC.

The duality results of Thm. 3.6 enable a fast compu-
tation ofFC if the polyhedronI is known, see the fol-
lowing Sec. 3.5. Additionally, the duality helps to de-
termine the setsF andI even in the presence of noise
or perturbations, see the second part of this paper.

Fig. 4 illustrates the duality of the facets ofI to the
vertices ofFC as well as the duality of the facets ofIC

to the vertices ofF . These figures have been generated
for a three-component model problem which is taken

from theFACPACK-homepage, see [29] for the details.
Related pairs of objects (vertices and edges of the poly-
gons) are marked by the same, continuously changing
color. Additionally, Fig. 5 illustrates these relations for
a four-component model problem. Vertices of the three-
dimensional polyhedrons are dual to the 2D-facets of
the dual polyhedra.

3.5. Fast computation ofF andFC

The setsF andI are decisive ingredients for the ge-
ometric construction ofM, see [16, 5, 23, 11, 12]. The
same geometric construction algorithm applied toFC

andIC leads to the AFSMC for the concentration fac-
tor. The setsF andFC are intersections of then, re-
spectivelyk, affine hyperplanes (10) and (11) which are
oriented each in a way that they include the origin. Our
approach for the fast computation of the four polyhedra
F , I, FC andIC can significantly decrease the compu-
tation times forM andMC.

This section introduces a direct and also an indirect
approach for the computations ofF andFC. These ap-
proaches are based on Thm. 3.6 and Cor. 3.7. A compar-
ison of these techniques for a three-component model
problem is contained in Sec. 5.2. The following two
subsections focus onF ; everything can easily be refor-
mulated forFC.

3.5.1. Direct computation ofF

A direct and intuitive approach to compute the poly-
hedronF is as follows: Initially s affine half-spaces
are selected in a way that their intersection is bounded.
Then all other affine half-spaces (which finally tightly
encloseF ) are analyzed whether or not a further reduc-
tion of the current intersection can be gained. If so, then
the new smaller intersection is the new approximation
to F . This iteration terminates inF . See also the ap-
proach in [23].

3.5.2. Indirect computation ofF

The polyhedronF can also be computed in an in-
direct way as already suggested by Beyramysoltan et
al. [3], see Sec. 3. The formal mathematical justifica-
tion (which requires the irreducibility of the matrices
DTD andDDT ) is given in Thm. 3.6 and Cor. 3.7. Fol-
lowing [3], firstIC is computed by simply forming the
convex hull of the vectorsb j, see Eq. (9). MatLab pro-
vides for this the routineconvhull. In a second step for
each facet ofIC its dual vertex ofF is computed.
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Figure 4: The duality of the facets ofI and the vertices ofFC and also the duality of the facets ofIC and the vertices ofF is illustrated for the
three-component model problem from [29]. Left: The setsIC, FC as well as the three isolated subsets of the AFSMC (in gray) are shown. Right:
The setsI, F as well as the three isolated subsets of the AFSM (in gray) are shown. The series of dotted lines encloses and defines the convex
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4. Simultaneous computation ofM and MC for
three-component systems

In 1985 Borgen and Kowalski [5] introduced the ge-
ometric construction of the AFS for three-component
systems (s= 3) on the basis of results gained in [13, 16].
The method was revitalized by Rajkó [23] in 2005 and
has been extended in [11, 12]. The idea of the geo-
metric construction is to form the inner boundary ofM
by means of all triangles which enclose INNPOL and
which are enclosed by FIRPOL (F ). In combination
with the polygonF , which is a superset of the AFS
M, this yields the boundary of the AFS. This boundary
comprises of separate closed curves if the AFS consists
of isolated subsets. We call these subsets thesegments
of the AFS.

In contrast to the numerical AFS approximation by
means of solving optimization problems, the benefit of
a geometric construction of the AFS is that the inner
boundary points of the AFS can be constructed exactly.
However, the boundary of the AFS is in general not a
polygon, but consists of a sequence of smooth curves
which are joined to a continuous boundary curve. The
construction of the smooth boundary curves requires a
discretization of the problem and results in approxima-
tion errors and also in the unavoidable small rounding
errors by the computer arithmetic. The computational
costs for the geometric construction are relatively low.
Furthermore, degenerated segments of the AFS, namely
points or line segments, can also be computed precisely
(aside from the small numerical rounding errors).Bor-
gen plots are ideal tools for the investigation of theoret-
ical questions on noise-free and non-perturbed model
data. For experimental noisy data some modifications
of the Borgen plot construction are required. In [11, 12]
an extended construction algorithm has been presented
which can deal with small perturbations.Nevertheless,
the purely numerical methods in [2, 7, 27] are still more
robust for AFS computations for experimental spectral
data.

This section presents a new method for the simulta-
neous geometric construction of the spectral AFS and
also the AFS for the concentration factor. The new con-
struction algorithm can form the two AFS sets at costs
which are slightly higher than the costs for construct-
ing only one AFS set by the classical algorithm. This is
a considerable improvement on the classical approach
with double costs if the two AFS setsM andMC are
constructed in separate steps.

In this section we first defineinner boundary points
and prove a certain property of these points. The clas-
sical Borgen plot construction is briefly reviewed and

.

P

.

.
. .

.

S3

S4

.
.

F

I g1

g2

S1

S2

h

0

αP

Figure 6: Construction of inner boundary points by triangles tightly
includingI with the verticesS1 andS2 on the boundary ofF and a
third vertex inF .

the new simultaneous construction is explained. The
suggested method is tested for a model problem whose
AFS consists of an isolated point, a line segment and a
bounded planar segment.

4.1. Inner boundary points

The following definition of an inner boundary point
refers to the ray casting concept for AFS computations
as suggested in [31]. The definition is not limited to the
cases= 3.

Definition 4.1. A point x∈ M is called aninner bound-
ary pointif γx < M for all γ ∈ (0, 1). In words x is the
only member ofM on the line segment from the origin
0 to x. A point x∈ M is called anouter boundary point
if γx <M for all γ > 1.

A direct consequence of these definitions is summa-
rized in the next remark.

Remark 4.2. A point x ∈ M can belong to the inner
and to the outer boundary according to Def. 4.1. Special
examples are punctiform or line-shaped AFS segments.

The key idea of the geometric construction of the
AFS for three-component systems [16, 5, 23, 11] is that
the inner boundary points are constructed by certain tri-
angles. Each of these triangles is a triangle which tightly
includesI, is contained inF and has two of its vertices
on the boundary ofF . Then the third vertex is an in-
ner boundary point. This property is proved in the next
lemma.

Lemma 4.3. For s= 3 let h be a tangent ofI. The two
points of intersection of h with the boundary ofF are S1

and S2, see Fig. 6. Let g1 be a further tangent ofIwhich
runs through S1 and g2 be another tangent ofI which
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runs through S2 so that h, g1 and g2 tightly encloseI.
The point of intersection of g1 and g2 is denoted by P.

If P ∈ F , then P is an inner boundary point ofM.

Proof. We consider the case thatP ∈ F . Then the tri-
angle construction guarantees thatP ∈ M, see [5]. We
assumeP not to be an inner boundary point ofM and
derive a contradiction. IfP is not an inner boundary
point, then anα with 0 < α < 1 exists so thatαP is
closer to the origin and is still an element ofM, see
Fig. 6. AsαP is a feasible point, two other pointsS′

andS′′ exist inF so that the triangle∆′ with the ver-
ticesαP, S′ andS′′ includesI and is contained inF .
The geometry in the AFS plane, see Fig. 6, shows (by
considering tangents ofIwhich run throughαP) thatP,
S′ andS′′ are on the same side ofh. Moreover,S′ and
S′′ are not located onh asI is a convex set with a pos-
itive volume (since the origin is an interior point ofI).
Thus the line segmentS′-to-S′′ which is an edge of∆′

must intersectI. This is a contradiction to∆′ including
I.

4.2. Classical Borgen plots

The tangent-rotation method for the geometric con-
struction of the AFS for three-component systems is ex-
plained, e.g., in [5, 23, 11, 12]. The basic idea is to ro-
tate a tangenth around the polygonI. For each tangent
an inner boundary pointP is constructed in the way as
explained in Lemma 4.3. In a computer implementation
the rotation of the tangent is discretized by considering
only a fixed number of equiangular tangents. In order
to find all critical boundary points, one also considers
all tangents which coincide with a facet ofI and also
the families of possible tangent lines at vertices ofI.
In order to detect line-shaped (1D) AFS segments addi-
tional tangents are to be analyzed. This process results
in a finite set of points which discretizes the boundary
curve of the inner boundary. The outer boundary ofM
coincides with a subset of the boundary ofF . The spa-
tial resolution of the inner boundary increases with a
decreasing finite rotation angle of the tangent. In the
generalized Borgen plot module ofFACPACK[29] we
typically use 3600 equiangular tangents in order to at-
tain a sufficiently resolved boundary ofM.

4.3. Simultaneous Borgen plots

The standard approach to compute the Borgen plot
for the concentration factor is to apply the algorithm to
the transposed data matrixDT . This doubles the costs
for the construction ofM andMC compared to a con-
struction of onlyM. The simultaneous construction of
the dual Borgen plots determines the inner boundary of

MC as a by-product of the construction of the spectral
AFSM. In contrast to the classical Borgen plots each
tangenth is not only used to construct a single trian-
gle, but three of them. In terms of the notation used in
Lemma 4.3 these two additional triangles result in the
two pointsQ andR which are possible candidates for
inner boundary points ofMC.

4.3.1. Construction of the inner boundary ofMC

We continue with the notation from the proof of
Lemma 4.3, see Fig. 6. Let∆ be the triangle with the
verticesP, S1 andS2. Furthermore, letS3 be the sec-
ond point intersection ofg1 with the boundary ofF in
a way thatS3 , S1. Based on this construction the dual
point of the line throughS2 andS3 is an inner bound-
ary point ofMC provided that this point is located in
FC. This is proved next in Thm. 4.4. Furthermore it is
possible to compute a second auxiliary triangle with the
verticesS1, S2 andS4 whereS4 is the second point of
intersection ofg2 and the boundary ofF with S4 , S2.
Then the dual point of the line throughS1 andS4 is an
inner boundary point ofMC provided that the point is
located inFC.

Theorem 4.4. Let the three points Q1, Q2 and Q3 be
located on the boundary ofF and span the triangle∆,
see Fig. 7. The triangle∆ is assumed to includeI. Let
the two edges through Q1 be tangential toI. Further, let
∆1 be the triangle which is spanned by the dual points
of the edges of∆ in the sense of Lem. 3.3. (Equivalently
the three edges of∆1 are dual to either Q1, Q2 or Q3.)

Then the triangle∆1 fulfills the conditions of Lemma
4.3 and the point P which is dual to the line through Q2

and Q3 is an inner boundary point ofMC provided that
P is contained inFC.

Proof. Cor. 3.4 guarantees that the three straight lines
which are dual toQ1, Q2 andQ3 are tangential toIC.
These lines form a triangle∆1 (as∆ defines a feasible
nonnegative factorizationD = CST with ∆1 being re-
lated toC). See Fig. 7 for the geometry. Two of the
edges of∆ are tangential toI. Hence Lemma 3.3 proves
that two vertices of∆1 are located on the boundary of
FC. Thus Lemma 4.3 applies to the triangle∆1 with
the verticesS1, S2 andP and proves thatP is an inner
boundary point ofMC provided thatP ∈ FC. This point
P is the dual point of the straight line throughQ2 and
Q3, see the green line and point in Fig. 7.

Theorem 4.4 is the basis for the simultaneous Borgen
plot algorithm which is explained next.
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Figure 8: Demonstration of the extension of the classical Borgen plots in order to compute simultaneously an inner boundary point ofM and two
inner boundary points ofMC for the three-component model problem. Left: Geometric construction of an inner boundary point. For the tangenth
(broken black line) the points of intersectionS1 andS2 (×) with the boundary ofF as well as the tangentsg1 andg2 (black solid lines) toI are
constructed. The point of intersection ofg1 andg2 is the inner boundary pointP (###). The pointsS3 andS4 are the points of intersection ofg1
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Also the dual point ofg4 (red line) belongs toFC and so it is an inner boundary point ofMC (### in the right plot). The resulting AFS setsM and
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4.3.2. The algorithm

The construction of the inner boundary points of the
AFSMC is embedded into the classical Borgen plot
construction of the inner boundary points of the AFS
M. The only step which is basically different from the
classical Borgen construction is that the computed inner
boundary points ofMC require a specific ordering. To
this end we use polar coordinates.

The construction of the two inner boundary points
of MC is based on Theorem 4.4. Only those points
which belong to the supersetFC successfully pass the
construction. The starting point is a tangenth of I.

1. The two points of intersectionS1 andS2 of the tan-
genth ofIwith the boundary ofF are constructed.

2. A first tangentg1 of I throughS1 with g1 , h and
a second tangentg2 of I throughS2 with g2 , h
are constructed.

3. The intersection ofg1 andg2 is P. According to
Lemma 4.3P is an inner boundary point as far as
P ∈ F .

4. Additionally, the point of intersectionS3 of g1 with
the boundary ofF is determined (in a way that
S3 , S1) and also the point of intersectionS4 of
g2 with the boundary ofF is computed (so that
S4 , S2).

5. Theng3 is the straight line throughS2 andS3. Fur-
ther,g4 is the straight line throughS1 andS4. Ac-
cording to Theorem 4.4 the dual point ofg3 is an
inner boundary point ofMC if it is contained in
FC. Also the dual point ofg4 is an inner boundary
point ofMC if it is in FC.

Remark 4.5. The point which is dual to g3 is contained
in the supersetFC (and so it is an inner boundary point
ofMC) if and only if P is contained inF (so that P is
an inner boundary point ofM). An analogous statement
holds for the point which is dual to g4.

The complete algorithm is based on the rotation of
the tangenth aroundI. Practically, only a fixed num-
ber of m equiangular tangent lines are considered to-
gether with certain additional points which serve to de-
tect punctiform or line-shaped AFS segments. At the
end all constructed boundary points of the AFSMC are
ordered with respect to their polar coordinates. This ap-
proach is justified by the gap-free intersection property
of the AFS sets [31]; this property says that the intersec-
tion of an AFS with an infinite ray starting at the origin
is either empty or a line-segment (which may be degen-
erated to a single point).

4.3.3. Visualization of the geometric construction
Fig. 8 illustrates the simultaneous Borgen plots for a

three-component model problem. For a fixed tangent
h of I shows the construction of one inner boundary
point ofM and two inner boundary points ofMC. First
the triangle of the classical Borgen plot yields an inner
boundary pointP. Then two additional triangles with
the verticesS1, S2 andS3 respectivelyS1, S2 andS4

are formed. Finally, the dual points ofg3 respectively
g4 are plotted in the AFSMC for factorC. These two
points are inner boundary points ofMC (if located in
FC.

Further, Fig. 9 shows the results of the simultaneous
Borgen plot algorithm. The sequences of points on the
inner boundaries ofM andMC are presented for a (rel-
atively small) number ofm = 500 tangents toI. How-
ever,m = 500 leads to a sufficient spatial resolution for
a graphical demonstration of the principles of simulta-
neous Borgen plots. The spatial resolution of the bound-
ary ofMC is twice as high as forM since two boundary
points ofMC correspond to one boundary point ofM.

4.4. Detection of line segments and isolated points
An AFS can have various shapes. The AFS can either

be a topologically connected set with a hole around the
origin or can consist of several isolated subsets (the seg-
ments). For three-component systems (s = 3) the num-
ber of segments can be 1 or a multiple of 3. IfM con-
sists of three or more segments, then one segment can
equal an isolated point or it can be a one-dimensional
line segment. Such degenerated segments can be ob-
served for properly designed model data. The (simulta-
neous) Borgen plot algorithm can detect such degener-
ated AFS segments.

Next we demonstrate for

D =





1 1 1
0 1 1
0 0 1




(15)

that the simultaneous Borgen plot algorithm can find
punctiform and line-shaped AFS segments as parts of
MC, see the upper row of plots in Fig. 10. There is
no necessity to demonstrate that these degenerated seg-
ments can correctly be detected in the spectral AFSM
as the simultaneous Borgen plot algorithm for the first
AFS coincides with the classical Borgen plot construc-
tion from [5, 23, 11]; classical Borgen plots are well-
known to construct degenerated AFS segments cor-
rectly.

The lower two subplots of Fig. 10 explain the trian-
gle and point selection. The red and the green trian-
gle (broken lines) are related to the line-shaped segment
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Figure 9: Simultaneous construction ofM andMC by the algorithm from Sec. 4.3.2. A number ofm = 500 equiangular tangentsh has been used
for the computation of the inner boundary points ofM. The steps 4 and 5 of the algorithm supply the by-product of the inner boundary points of
MC. Left: The combination of the (outer) boundary ofF (closed black curve) and the results for the inner boundary points (###) ofM leads to the
three isolated subsets ofM (in gray). Right: The inner boundary (×) ofMC is a by-product of the geometric construction forM. Together with
boundaryFC (closed black curve) this makes it possible to compute the three isolated subsets of the AFSMC for the concentration factor (gray
areas).

and also two critical points of the 2D-area segment of
the AFSM. These two triangles are important for the
classical Borgen plots. All vertices of these two trian-
gles are located on the boundary ofF and all their edges
are tangents ofI. Hence each edge of the two triangles
yields a dual inner boundary point ofMC, see Thm. 4.4.
These dual points are plotted in the lower right subplot.
All points are significant (but two of them coincide) for
the construction of the segments ofMC. The last point
(in cyan), which is significant for the construction of
the inner boundary ofMC, is the dual point of the cyan
triangle (broken line) in the lower left plot. This tri-
angle is part of the combined geometric construction.
All other points on the inner boundary ofMC, which
arise from the other tangents, do not influence the final
result. Hence the simultaneous geometric construction
leads toMC as a by-product of the computation ofM
even for this problem with degenerated punctiform and
line-shaped AFS segments.

5. Numerical results and computation times

This section demonstrates the effectiveness of si-
multaneous Borgen plots for a three-component model
problem, see Sec. 5.1. We consider various discretiza-
tions of the model problem with increasing matrix di-
mensions. The underlying pure component spectra, the
concentration profiles and the kinetic equations are al-
ways the same. The focus of the comparative analy-
sis is on the computation times. These times are com-

pared with some well-established methods. Simultane-
ous Borgen plots have at least the same precision (spa-
tial resolution) as the classical geometric constructive
Borgen plots.

We start with the construction and computation ofF
andI and their counterpartsIC andFC. We compare
the proposed indirect computation ofF , see Sec. 3, with
the direct approach and also with the numerical approxi-
mation by means of the polygon inflation method. Then
the simultaneous Borgen plot construction is compared
with two separate runs of the classical Borgen plot con-
struction. Finally, simultaneous Borgen plots are com-
pared with theFACPACKimplementations of thepoly-
gon inflation method[27, 28] and with thegeneralized
Borgen plots[11, 12].

We run all computations on a single core of a
3.40GHz Intel CPU of a standard personal computer
with 16GB RAM. The major part of the program is writ-
ten in C; however some MatLab routines, e.g. the rou-
tineconvhull, have been used.

5.1. The three-component model problem

We consider the first-order consecutive reaction
scheme

X
k1
−→ Y

k2
−→ Z

with k1 = 0.5 andk2 = 0.1 and the initial concen-
trations cX(0) = 1 and cY(0) = cZ(0) = 0. The
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Figure 10: Construction of punctiform and line-shaped AFS segments by means of simultaneous Borgen plots. Upper row: The AFS setsM and
MC for the model problem from Sec. 4.4 withD by (15) consist each of a punctiform, a line-shaped and a 2D-area segment. Lower row: Triangles
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concentration profiles are computed on the time inter-
val t ∈ [0, 30]. We consider in this intervalk ∈
{100, 250, 500, 1000, 2500} equidistant grid points.

The continuous spectra are assumed to be

sX(λ) = exp(−
(λ − 10)2

1000
) +

1
4

exp(−
(λ − 75)2

10
),

sY(λ) = exp(−
(λ − 20)2

1000
) +

1
4

exp(−
(λ − 45)2

10
),

sZ(λ) =
19
20

exp(−
(λ − 30)2

1000
) +

1
4

exp(−
(λ − 5)2

10
)

for λ ∈ [0, 100]. We consider equidistant subdivisions
of this interval with n ∈ {100, 200, 300, 500, 1000}
grid points. Thus the matrix elements of the spectral
mixture data matrixD read

Di j = cX(ti)sX(λ j) + cY(ti)sY(λ j) + cZ(ti)sZ(λ j)

for i = 1, . . . , k and j = 1, . . . , n. Fig. 11 shows the true

factors, the mixed spectra, i.e. the rows ofD, and the
AFS setsM andMC.

5.2. Polygon construction

The outer polygonF and the inner polygonI are
required for the geometric construction of the AFSM.
TheFC andIC are needed forMC. The inner polygons
I resp.IC are the convex hulls of the vectorsai resp.bi ,
see (6)–(9). In our program code we use the MatLab
routineconvhull. Sec. 3.5 explains how these polygons
lead to a fast algorithm to form the outer polygonsF
andFC.

Table 1 lists the computation times for the new tech-
niques to construct these four polygons and compares
these with the timing data of theGeneralized Borgen
plotsmodule and the polygon inflation method in its im-
plementation in theComplementarity& AFSmodule of
the FACPACKsoftware. These computations we car-
ried out for the model problem for five combinations
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Figure 11: The model data as used in Sec. 5 withk = 500 spectra with eachn = 300 spectral channels. ThusD ∈ R
500×300. Upper row: The

concentration profiles of the three components (left), the associated pure component spectra (center) and the mixed spectra forming the rows ofD
(right, only every 10th spectrum is plotted). Lower row: TheAFS setMC (left) and the AFS setM (right). Both AFS sets consist of three isolated
segments, which are plotted in the color blue, green and red.The true solutions are marked by crosses. The boundaries of the two FIRPOL-setsFC
andF are marked by black solid lines and the INNPOL-setsIC andI by gray solid lines.

of the dimension variablesk andn. The results clearly
demonstrate the benefit of the new indirect approach to
compute the dual pairs of polygons.

5.3. Simultaneous computation of the AFS sets

For the simultaneous construction ofM andMC we
use ak × n discretization of the model problem with
k = 1000 andn = 500. For these problem dimensions
the polygon FIRPOLF has 85 vertices and INNPOL
I has 1000 vertices and edges, which results in 1000
vertices of the dual polygonFC.

We usemequi equiangular tangents ofI. Most of these
tangents run only through vertices ofI and not through
edges ofI. We additionally consider all tangents of
edges ofI. Finally, we add those tangents ofI which
run through the vertices ofF , see also Sec. 4.2.

Table 2 lists the numbers of equiangular tangents and
the total numbers of tangentsmall together with the com-
putation times. The simultaneous construction saves
about 30% of the computation time compared to the
separate and independent constructions ofM andMC.

Remark 5.1. As explained in Sec. 4.3 the boundary of
MC has a doubled spatial resolution. For this reason,
we have doubled the number of tangents for the sep-
arate and independent computation ofMC for all the
computations which underlie the timing data listed in
Table 2.

5.4. Comparison to other algorithms

Finally, we compare the implementation of simulta-
neous Borgen plots to the efficient FACPACK imple-
mentations [29, 25] of the polygon inflation method
[27, 28] and to the generalized Borgen plots method
[11, 12]. Again, the model problem is used with vary-
ing dimensionsk andn. Polygon inflation is used with
the control parametersεb = δ = 10−3. For the gener-
alized Borgen plots the control parameter isαrot = 0.1.
The simultaneous Borgen plot algorithm is started with
mequi = 5000 equiangular tangents. This corresponds to
an incremental rotation angleαrot = 360/5000= 0.072
in degrees.
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The computation times are listed in Table 3. Again,
the simultaneous Borgen plot algorithm is clearly the
fastest. Compared to the polygon inflation method it
saves sometimes more than 90% of the computation
time. A similar outcome can be stated for the gener-
alized Borgen plots. The substantial acceleration of the
new method is based not only on the effectiveness of
the new algorithm but also on its efficient computer im-
plementation (which is trimmed to maximal speed but
is still not optimized to display punctiform and line-
shaped AFS segments). These findings should not di-
minish the value of the polygon inflation method and
the generalized Borgen plots algorithm in theirFAC-
PACK implementations. The latter very stable imple-
mentations are by orders of magnitudes faster than, e.g.,
the elementary grid search approach for approximating
the AFS.

6. Conclusion and outlook

The geometric construction of Borgen plots is some-
times considered to be the most reliable, first-principle
approach to analyze the rotational ambiguity of model-
free MCR factorizations. The new fast and simultane-
ous construction of the AFS for the two factorsC and
S on the basis of the duality/complementarity theory
can support any MCR studies. A drawback of Borgen
plots and of simultaneous Borgen plots is that they can
only be applied to noise-free and non-perturbed spectral
data. This restricts these approaches to model data. An-
other drawback of the geometric constructions is that
no approach has yet been devised for a combination
with soft constraints as unimodality or monotonicity;
see [3, 32, 20] for such combinations in the context of
numerical optimization-based MCR methods. Equality
constraints, see [4, 3, 30], can principally be integrated
to the Borgen plot techniques.

In the forthcoming second part to this paper we intend
to present a hybrid technique which combines simulta-
neous Borgen plots with the polygon inflation method.
The resulting method is universal and as robust with
respect to noise and perturbations as are the polygon
inflation, the triangle enclosure technique [7] and the
grid-search method [34, 2]. The hybrid and simultane-
ous construction method is still faster than the classical
Borgen plots. This hybrid method combines the advan-
tages of the numerical, optimization-based techniques
with the geometric AFS constructions.
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dimensions computation times [10−3s]
direct computation (GBP) approx. (PIA) indirect computation (new)

k n F & I FC & IC F FC I & IC F & FC

100 100 194 481 6.89 42.08 0.17 0.11
250 200 500 2 794 9.82 69.43 0.22 0.21
500 300 1 014 11 284 12.37 99.42 0.32 0.43
1000 500 2 655 45 252 16.38 81.51 0.50 0.85
2500 1000 10 176 - 28.11 212.86 1.09 2.80

Table 1: Computation times forF , FC, I andIC for various dimensions ofD. These sets are the basis for the geometric constructions ofM

andMC. First approach: Direct and separate computation of each ofthese four sets by means of theGeneralized Borgen plots(GBP) module of
FACPACK. Second approach: Approximation ofF andFC by the polygon inflation method (PIA) with the control parametersεb = δ = 10−4 by
using the software implementation in theComplementarity& AFSmodule ofFACPACK. Third approach: Direct computations ofI andIC and
indirect computation ofF andFC by using the duality theory of Sec. 3.5 based on Thm. 3.6 and Cor. 3.7. The indirect computation ofF andFC

is clearly the fastest approach.

computation times [s]
# tangents separate comp. simult. comp.

mequi mall M MC M & MC M & MC

100 1105 0.492 0.039 0.531 0.497
1000 1966 0.541 0.069 0.610 0.554
2500 3400 0.624 0.127 0.751 0.653
5000 5791 0.771 0.240 1.011 0.835
10000 10572 1.088 0.522 1.610 1.257
15000 15353 1.437 0.886 2.323 1.765

Table 2: The computation times for the two AFS setsM andMC by the classical geometric construction (Borgen plots) andthe simultaneous
Borgen plots. The dimensions of the model data matrixD arek = 1000 andn = 500. The number of equiangular tangentsmequi varies between
100 and 15000. Additional tangents are added at critical boundary points, see Sec. 4.2. The computation times are listedfor the separate and
independent computation ofM andMC and also for the simultaneous algorithm. According to Remark 5.1 the setMC has about a doubled spatial
resolution.

dimensions computation times [s]
PIA GBP SBP

k n M MC M & MC M MC M & MC M & MC

100 100 1.56 2.05 3.61 0.91 1.14 2.05 0.090
250 200 3.15 4.35 7.50 1.39 3.59 4.98 0.149
500 300 5.52 7.67 13.19 2.29 12.29 14.58 0.289
1000 500 10.93 13.17 24.10 4.82 46.67 51.49 0.835
2500 1000 23.36 26.08 49.44 16.46 – – 6.254

Table 3: Comparison of simultaneous Borgen plots (SBP) to the polygon inflation algorithm (PIA) and the generalized Borgen plots method
(GBP). TheFACPACKimplementations of PIA and GBP were used. The computation ofMC by GBP was canceled manually after 3 minutes of
computation without a result.
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