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Abstract

Borgen plots are low-dimensional representations of thefsall nonnegative factorizations of spectral data matri-
ces. Classical Borgen plots are limited to nonnegative dathcan be constructed for the spectral factor or for the
concentration profiles.

In the first part of this paper a simultaneous constructiotheftwo dual Borgen plots is presented, which inten-
sively exploits the underlying duality principles. The sad part introduces algorithmic enhancements which make
the simultaneous Borgen plot construction possible fosynekperimental data matrices which can contain small neg-
ative matrix entries. The new method is tested for FT-IR spédata from the Rhodium catalyzed hydroformylation
process. The results are compared to those biFAI@GPACKimplementation of the polygon inflation method.

Key words: multivariate curve resolution, nonnegative matrix faiation, Borgen plots, band boundaries of
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1. Introduction

The topic of this paper is the simultaneous constructionaifspof dual Borgen plots. Borgen plots [1, 2, 3, 4]
represent in a low-dimensional form the possible nonnegéictors of a spectral data matrix whose rows contain a
series of spectra recorded from a chemical reaction sys$tena detailed introduction to the underlying multivariate
curve resolution (MCR) problem we refer to the first part aéthaper [5] and the literature cited therein. See also
[1, 2, 3,6, 7,8,9, 10, 11] for an introduction and definitidrtlee so-called Area of Feasible Solutions (AFS). Its
geometric construction is developed by Borgen and Kowétstieir landmark paper from 1985 [1].

The construction of Borgen plots is inseparably linked ®® ¢listence of a nonnegative matrix factorization ac-
cording to the underlying bilinear modédihe first factor is the matrix of concentration profiles of pfhge components
and the second factor contains the pure component spetteandnnegativity cannot be guaranteed for experimental
spectral data due to data preprocessing steps as backgsobtrections or baseline corrections. Another possible
source of (small) negative matrix entries is a low-rank agpnation of the spectral data matriguch a low rank
approximation is often used by MCR methods, which employsihgular value decomposition (SVD) in order to
reduce noise and the influence of nonlinearities or oth@ug®ations. For such cases with relatively small negative
matrix entries the concept of generalized Borgen plots (3B been suggested in [3, 8]. In the GBP construc-
tion nonnegative convex combinations are substitutedfigeacombinations together with lower bounds (negative
and close to zero) on the matrix entries of the pure compdiaetrs. Such fine combinations provide a sound
mathematical basis for a generalization of Borgen plotswvéi@r, their robustness is smaller than that of the purely
numerical approximation methods as the triangle encloslgierithm [7] or the polygon inflation method [10]. An-
other diference is that the generalized Borgen plots work with atesdduwer bounds for the negative entries whereas
the numerical approaches use bounds on the relative sizegatiie entries. Here we suggest a new hybrid method
for the simultaneous geometric construction of the duapBaorplots which combines the speed and elegance of the
geometric construction with the robustness and flexibditthe numerical approaches.
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1.1. Idea and benefit of the hybrid method

The pairs of polygons FIRPOL and INNPOL each for the coneiutn factor and for the spectral factor are of
key importance for the Borgen plot construction, see [1][5nthe simultaneous construction of dual Borgen plots
first forms the two inner polygons INNPOL. Then the corresting two FIRPOL polygons can easily be formed by
duality relations, see also [12]. After these construcsips the triangle rotation algorithm is applied to the FIRP
INNPOL pair of polygons for the spectral factor and, simaétausly, the Borgen plot (or AFS) for the concentration
factor is constructed by exploiting the duality relations.

The new hybrid algorithm is based on a similar approach. @ba is as follows:

- First compute certain enlarged supersets of the two polygdRPOL. These supersets are polygons which
enclose the final AFS and also represent solutions with smeglhtive entries. These polygons are determined
by a variant of the polygon inflation algorithm [11].

- In a second step, the associated dual INNPOL polygons arstrewted. The duality relates vertices of the
superset of FIRPOL to bounding straight lines of the modifietygon INNPOL.

- In a third and final step the triangle rotation in combinatiath the duality principles is applied to the modified
polygons FIRPOL and INNPOL in the way as described in the fiiast of this paper [5]. This results in the two
desired approximate AFS-sets for the concentration priafir and for the spectra factor.

The numerical results of the new hybrid method show a verylgmweement with independently computed AFS
approximations by means of the polygon inflation algorithithe hybrid method is as fast as the method which
is introduced in the first part of this paper. The method ukesduality principles not only to form INNPOL for
given FIRPOL (in [5] the reverse construction is used frolNPOL to FIRPOL) but also for the simultaneous AFS
construction. The second AFS-set is a “by-product” of thestauction of the first AFS.

The benefit of the hybrid algorithm is as follows: The methogbioves the speed of the geometric AFS con-
struction [1, 2, 3] and combines it with the robustness anddiity for noisy/perturbed data which is typical for the
numerical optimization-based methods as polygon inflajidh 11], grid search [13, 14], triangle-chain boundary
enclosure [7] or ray-casting [15]. The new algorithm conestthe two dual AFS-sets with nearly the same speed as
the classical Borgen plot algorithm computes a single A€S-8he hybrid approach makes it possible to deal with
slightly negative matrix entries.

1.2. Organization of the paper

Section 2 contains a brief overview on the relevant geometijects as well as matrices and recapitulates the key
results of the first part of this paper. The new hybrid cortdiom method for noisy and perturbed data is introduced
and explained in Section 3. Numerical results are presémteelction 4 for FT-IR spectra from the Rhodium catalyzed
hydroformylation process. The results of the hybrid methiedcompared to those by tRACPACKiIimplementations
of the polygon inflation method and the generalized Borgehglgorithm [3].

1.3. Notation

The following variables are used in this paper. Variableb aitilde superscript refer to noisy data approximation.
k x n spectral data matrix by (1), (2).
kx sconcentration matrix by (1), (2).
nx sspectral matrix by (1), (2).

vl singular value decomp. @ by (2).

sx stransformation by (2), (3).

Ms  AFS for concentration factd by (5) or spectral factor by (4).
Mc, Ms noisy data approximations olc, Ms see Eqns. (12) and (11).
Ic, Is INNPOL forC, S by (9),(7).

Tc, Ts noisy data approximations dt-, I's, see Egns. (16) and (15).
Fc, Fs FIRPOL forC, S by (9), (6).
Fe, Fs noisy data approximations 6i, ¥s, see Eqns. (14) and (13).
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2. A summary of dual Borgen plots

We give a brief summary on the dual Borgen plot constructiomf[5], see also [1, 2, 3, 7, 9, 10, 15, 16, 17]. The
starting point is the Lambert-Beer model

D=CS' (1)

with thekx n data matrixD, its kx snonnegative matrix factor of pure concentration profiled twen x snonnegative
matrix of the pure component spectra. The number of the ppmgonents is.

For givenD we are interested i@ andS. By means of a singular value decomposition (S\ID¥ UzVT any of
the desired factorizations &f can be written in the form

C=UzT? ST =TV (2)

The matrix elements of the regular matfixe R¥* are the degrees of freedom. Only thdsare relevant which result
in nonnegativeC andS. There are many nonnegative (or feasible) factorizatidrgs fact is known as rotational
ambiguity of the decompositionThe area of feasible solutions (AFS), see e.g. [1, 2, 7, 10isl®set of expansion
codficients of the columns of eith€ or S with respect to the basis of either left or right singulartees of D. The
expansion coéicient of the first leftright singular vector can be set equal to 1 (see [18] for dfication by the
Perron-Frobenius theory) so thacan be written as

1 % - Xs-1
1
Tlow )
1
with an (s— 1) x (s— 1) regular matrixV. For givenD with the ranks (noise-free case) the spectral AFS reads
Ms = {x e RS : existsW € RED*D g0 that rank[) = sandC, S > 0}. (4)
Analogously the AFS for the concentration factor reads
Mc ={y e RS : exists regulall € RS with (T™)(;,1)=(1,y")", C, S > 0}. (5)

The classical geometric construction [1]&fs for (s = 3)-component systems is based on the polygons FIRPOL
Fs and INNPOLTZs. FIRPOL is defined as

?‘S:{xeRs‘l: V()l()zO}. (6)
INNPOL is the convex hull
Is =convhull({a;, i =1,...,k}). @)
with the vectors
- (UD)T(2:s) .
= 7(UZ)T(1,i) , i=1...,k (8)

which due toDV = UZX are the right singular vector representatives of the row3.aAnalogously, the setgc and
I for factorC are

Feo = {ye RS Uz(i) > o}, Ic = convhull(fby, j=1,....n}) (9)

with b; = (VT (2 :'s,}))/(VT(1, j)); see (7) in [5].

In [5] the dual Borgen plot construction rotates a tangeotiad s in a way that for each tangent a triangle tightly
including Zs is constructed with one of its edges being located on thestang he third vertex of the triangle (which
is not on the tangent) is used to form the inner boundary cof¥be AFS. The dual Borgen plot construction uses
only one rotation process aroudid and results in the two AFS-setds and Mc by exploiting duality principles.
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3. Dual Borgen plotsfor noisy data

The dual Borgen plot method [5] cannot directly be appliechéisyperturbed data with small negative data
entries. Sometimes for such data INNPOL intersects the deynof FIRPOL.Such an intersection necessarily
occurs if the ranks approximation oD has (small) negative matrix entries. Then at least one vettof the vectors
a; by (8) represents a vector with at least one negative compofiusa* cannot be an element of FIRPOL by (6),
since FIRPOL contains by its definition only the represéveatof nonnegative vectors. As furthgg is the convex
hull of all &, the polygon INNPOL intersects the boundary of FIRPOL. Tthengeometric construction gils and
M is impossible as no triangle (case= 3) exists which includes INNPOL and which is included in FIRRR
Anticipating the model problem and results which are galiaéet in this paper, we refer to the two upper subplots
of Fig. 3 that clearly demonstrate the intersection of INNIRDd FIRPOL.A possible and to some extent obvious
approach is to start with increasing the size of FIRPOL. Sarclenlargement can be justified: It is a known fact,
see [3], that a weakening of the nonnegativity constramta(sense that small negative data values in the solution
factors are accepted) enlarges the size of FIRPOL. Theaegexl polygons for noisy dafa are denoted by?c and
Fs. They can easily be computed by the polygon inflation algorif10, 11]. The computational costs are low. Then
in a second step the duality theory (also called a dyabityplementarity theory), see e.g. [19, 20, 21, 22, 23], can
be applied in order to compute the dual inner polygdpsand 7s. These polygons are consistent to the weakened
nonnegativity constraint. The final step of a triangle riotain Fs and around’s is the same as suggested in [5].
Next all these steps are explained in detail.

3.1. Acceptance of negative data entries

The rank of noisy spectral data matridess larger than the numberof chemical components in the reaction
system. Typically, there are singular values which are characteristically larger tharoavhereas the remaining
singular values are close to zero. A ragipproximation oD which is the starting point of the AFS computation can
have negative entries. Other sources of negative entribsané background subtractions or baseline corrections.

If D includes small negative entries, then one has to accept segdtive entries o€ andS as otherwise no
nonnegative factorization & exists. In the polygon inflation method for AFS computatifir@; 11] the lower bound
on the relative size of negative matrix entries is set to

Cij

Sej
max|C(:, j)|

i = . maxIS(- i)l > B
e, 1=1...,k max|S(:, j)I

es, C=1...n (10)

forall j = 1,..., sand with control parametets, es > 0.
Alternatively, the size of negative matrix entries can batmaled byssgbounds, see [7, 13, 14, 24, 25], or by
using absolute lower limits which accept only solutionshwit

Cij > —&c, ng > —&g

for proper control parametetg,"és > 0. Absolute bounds are used in the generalized Borgen photstiziction
[3, 8].
Here, we prefer to use the relative bounds (10). On this basisise in the following generalizations of the
AFS-sets
Ms = {x e RS existsW e REDXD go thatrank() = s, C, S fquiII(lO)} (11)

with T as in (3) andC andS as in (2) and
Mc = {y e RS : existsT € R¥S with rank(T) = s, (T"Y)(;,1) = (1, y")", C, S fulfill (10) } (12)

3.2. Generalization of-'s and ¢ for noisy data

FIRPOL, according to (6), is the set of allfor which the linear combinatiol(1, x")" is componentwise non-
negative. With respect to the relative lower bound (10)jfer1 the generalized set FIRPOL is defined as

min w > _‘95} .

Fs = {x eRsL: (13)
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Figure 1: Model data with and without noise of a three-congmrsystem in order to illustrate the polygofs, s, ¢ andZs and their pendants
for noisy data. Left: The model data set from [5] o= 1000,n = 500. Right: The data after application of normal distrilbugseudo random

noise with mean zero and a standard deviation of 0.01.
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Figure 2: Left plot: Polygongs (dashed) ands (red). Right plot:#¢ (dashed) and ¢ (red). The polygons are plotted for the model data shown
in the left subplot of Fig. 1. In the polygons INNPOL the dagpresentatives; andb; are plotted in gray color. The AFS-setds and Mc are

nonempty.

Analogously the generalization &% with respect to (10) foj = 1 reads
. T\T
UG, )=y

7::(: ={y€RS_1:

3.3. Computation of~s and?c
The two polygon§’:s and¥¢ can easily and precisely be computed by means of the polydlation algorithm
(PIA). The idea of PIA is to approximate the boundary of a boundebysatsequence of adaptively refined polygons.
The vertices of the polygons are located on the surface of¢heThe boundary of the set is assumed to be locally
representable by continuous functions. In [11] the PIA gathm has been designed for AFS computations. Here PIA
is used for the approximation of the polygofis and¥c. This makes the computation very easy. In contrast to [11]
no complicated and computationally expensive target fanahust be evaluated. Instead, according to (6) and (9) a
point x (resp. y) belongs to the surface of the FIRPOL polygon¥/{f, x)" > 0 (resp.UZ(1,y)" > 0) andV(1,nx)"

(resp.UZ(1, ny)) contains at least one negative componentforl. More generally, for the noisy-data case the zero
transition for changing turns into a—&s or —ec transition. Again, an adaptive polygon refinement stratsggbles a

(14)

highly accurate boundary approximation. All this makesdbmputational costs low.
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Figure 3: The polygons FIRPOL and INNPOL are drawn for thedat with noise as shown in the right subplot of Fig. 1. Theumper subplots
demonstrate that INNPOL (red) is not a subset of FIRPOE (dasheg) for these data. Hence the AFS is empty, i.e. no gatine factorization
i,i=1..., k, are plotted

of D exists. The two lower plots show the generalized polyggrmdf each for the factor€ andS. The AFS-sets\ls and Mc are nonempty.
n, resp.y102Uiz + Y202Uizg = —o1Uijg, i = 1

.....

n are plotted in the INNPOL polygons as by gray crosses

.....

The boundary lines to strict nonnegativity withVj> + xoVjz = -Vjl, j = 1
in faint gray color. The data representing poiatsi = 1,..., kresp.bj, j=1

3.4. Generalization of INNPOL for noisy data
The duality theory in [5, 12, 19, 20] describes how a pointlentioundary of the polygdfc relates to anféine
hyperplane which touches the dual inner polyden Further, Theorem 3.6 of [5] proves that a vertefefrelates to
a (true) facet of's. Our aim is to use these duality relations in order to comsfrom the boundary of the generalized

set FIRPOL¥¢ the dual seffs. HenceTs is constructed by exploiting the duality relations. A direonstruction
by taking the convex hull of the vectoss, i = 1 k, only results inf's and is not consistent with the weakened

nonnegativity constraint.
The construction of’s is based on its duality tgFc. The duality relation of a poinzt to its dual hyperplane
y'z = -1} is introduced in Def. 3.1 in [5]. In Lemma 3.3 and Theorem 3.$5) the focus is
. However,

E={yeRs': y'z=-1}isint
on duality of boundary points of¢ to tangential hyperplanes dfs in order to construcfc from 7
the duality of polygons is an involutory mapping which relin the same way the boundary®{ to tangential

hyperplanes ofc. Thus the polygofs can be defined as
Ts= {x € RS : the dual hyperplanE of x has an empty intersection with the mtenorﬁf} (15)

Equivalently, the empty intersection Bfwith the interior offc can be expressed in a way tlahas either an empty

intersection withF¢ or at most touches its boundary. An alternative way to white polygon is

ENFc=0forE being the dual fine hyperplane ox})

Ts = closure(x e R®!:
6



where closure denotes the topological closure of a sethieeset augmented by all its limit points. Analogously, the
set
Ic= {y e RS : the dual hyperplank of y has an empty intersection with the interiorﬁ} (16)

is the pendant of the polygaft: for the case of noisy data.

3.5. Computation ofs from ?C

Numerically, we computés by constructing the dual points of the edges of the convebafidfic. These relations
are illustrated in Figs. 1 and 2 in [5]. Alternatively, onenazompute for the vertices of the convex hull & the
associated dual half-spaces which are oriented in a wayet@t includes the origin; see Lemma 3.5 in [5]. The
intersection of all these half-spaces yielis(and is close to the initial polygahs).

The figures 1, 2 and 3 illustrate the polygahs and 7 and their noisy data pendants for the three-component
model problem described in [5]. The dimensions lare 1000 andn = 500. First Fig. 1 shows (a subset of) the
series of spectra without and with noise. We have added raistabuted pseudo random noise with mean zero and
a standard deviation of 0.01. It holds for the relative comgdwise minimunmaximum that minD)/ max@©) =
—3.3- 1072 and for the rank-3 approximation that

ID-UZ(;,1:3)V(,1:3) |k
IDIlF

For the noise-free case Figure 2 illustrates the polyg@ymsnds as well asFc andZ ¢ together with their generating
boundary lines (arounfic) and generating points (the gray stargi). Finally, Fig. 3 shows the situation for noisy
data. First the polygons are drawn without any considemdtiothe perturbed data. Then no triangle exists in FIRPOL
which includes INNPOL. Consequently the AFS-séts and Mc are empty. Further the generallzed noise-adapted
pongonSTs andZs resp. Fc andZ¢ are plotted. For these polygons the AFS- skts and Mc are nonempty. We
have to show that these sets are good approximatioséodnd Mc for the case of noigperturbed data, see Sec. 4.5.

= 1.6644- 1072 (17)

Remark 3.1. 1. The computational costs for a numerical approximatiofFefand Fc by the polygon inflation
algorithm are small, see Sec. 3.3.

2. For the computation ofc a precise boundary approximation is recommended in ordguarantee a stable
subsequent application of the duality principles for thenpaitation ofZs. The control parametesy, on the
boundary precision is explained in Sec. 3.9.1 of [10]. A meable parameter choice i, < 1076

3. The control parameterc limits the relative magnitude of negative entries of C adawy to(10); the parameter
es works similarly for the factor S. Increasing the valuesgfresults in an expansion ofs and thus in a

shrinkage of the dual polygafic. (The shrinkage of ¢ is a consequence of Lemma 3.3 in [5] as the inner
points of I¢ are dual to hyperplanes which do not contribute to the bouyad Fs and vice versa.) The
geometric construction process shows thag is expanded at the outer bounda~ry and thdt is expanded at
its inner boundary. Similarly, increasing the valuesefresults in an expansion dfc and in a shrinkage of the
dual pongon[s Thus the seMMs grows at its inner boundary anMc grows at the outer boundary. These
relations are illustrated for example by Figure 6 in [3], kige 17 in [9] and Figure 15 in [8].

For noisy datasc and es should not be chosen too small as otherwise no feasiblerfaatmns exist that
meet the conditions. Then the AFS is empty. It is an integsfilestion which parameter selections can yield
isolated feasible solutions; see [26] for the so-calledadbased uniqueness in the noisy data case.

We cannot recommend a fixed rule how to determine the valugsasfdec. The FACPACK software always
tries to use small parameter values. The polygon inflatigoathm first tries to compute a strict-nonnegative
matrix factorization (NMF) of D in a way that the smallestries of its factors are equal to or greater than 0.
However, if no initial strict NMF can be found in this optiration process, then small positive valuezgefind

&c must be accepted. In other words, small matrix element& ¢togero are accepted. If in such a case these
parameters are equal to the smallest possible values sathBtMF exists, then at least one subset of the AFS
is often very small. Then it cannot be guaranteed that the iAEIBdes the chemically correct solution. In this
work we usess = ¢ = 5- 1072 for the model problem from [5] which corresponds to the vadfithe rank-3
approximation error(17).
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Figure 4: The experimental hydroformylation data set togetvith the pure component factors. Left: Every 25th spectof the 850 spectra is
plotted. Center: The true concentration profiles computedibetic modeling. Right: The true pure component spec@alor coding: Olefin
(blue), acyl complex (green), hydrido complex (red).

3.6. Geometric AFS construction

Finally, the boundary curves of the AFS-se¥$s and Mc are determined. This is done by the simultaneous
geometric construction algorithm, see the first part of gaper [5]. The only dference is that the algorithm is
applied tofs, %c andfs instead offs, ¥c andZs. The algorithm yields the inner parts of the boundary cunfes
the two AFS-sets. The outer parts of the boundary curvesiaea §py parts of the boundaries %t andFc. The
construction of the polygonﬁc and Ms is based on the inequalities (10). The same constraintssackin order to
compute the FIRPOL polygons by the polygon inflation aldomit Thus the inner and outer parts of the boundary are
fitting to one another for the case of noisy data.

3.7. Non-convexity 6?3

The acceptance of small negative entrieCadind S may have the consequence that the polygﬁgsand?c
lose their convexity. Non-convexity is an unwanted siffect. On the one hand the non-convexity}?'zj‘ results in
problems in the duality-based constructiorfef On the other hand the triangle rotation process for the lsimeous
AFS construction, which determines the points of inteisecof tangents off s with boundary of the surrounding
polygon Fs, can find more than two points of intersection in the case obm-convex seffs. Then additional
steps are required in the program implementation in ordeekect the correct points of intersection. In our program
implementation we avoid such problems with “slightly” noaavex sets in a way that we always work with the convex
hulls of 7 resp.%c.

4, Numerical results

The new algorithm is tested for an FT-IR experimental datérsen the hydroformylation process. For this noise-
including data set we first draw the polygoAs #c and Is. The series of spectra has undergone a background
subtraction and a baseline correction. After this, the #smgous geometric construction yields the AFS-gefis
and Mc. These AFS-sets are compared to the corresponding appataim by theFACPACKsoftware. Further
the results are compared to the generalized Borgen plote.rddults are analyzed and the computation times are
discussed. All computations were run on a PC with an InldGHz quad-core processor and 16GB RAM. The main
algorithm is implemented in fast C-routines. The prograexiscuted on a single core of the processor.

4.1. Rhodium catalyzed hydroformylation

From the series of 850 FT-IR spectra only a spectral windath 845 spectral channels is considered. ThBus
R850<645 The associated time and wavenumber intervals arg.7, 8836]min andyv € [19623, 21176]cnT?. Three
major absorbing components contribute to the spectra, lyaaneolefin component, an acyl complex and a hydrido
complex. The reaction product, an aldehyde, shows no atisoip the spectral window. For the experimental details
see [27]. The series of spectra and the true pure componectra@mnd concentration profiles, which are computed
by using additionally a kinetic model, are presented in Big.
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Figure 5: Comparison of the polygofs andZ and their pendants for partially negative d#taand I each forC andS. Left: The polygons]—tc
(black broken line) andc (red line). The gray lines define the boundaryfef and the dark gray crosses are the data representing végtors
j=1..., n. Right: The polygongg-:s (black broken line) ands (red line) are drawn. The gray lines define the boundargpand intersect in
the left lower region the polygosts. The dark gray crosses represent the data veafpis= 1,..., k. The left plot illustrates major flierences
betweenZc andZc. The triangle rotation algorithm applied #& andZ¢ would result in an empty AF34c. A similar situation is illustrated in
the right plot, Wher?s intersectsfs. In particular two half-spaces (by the gray lines) in théatiglot do not include the origin due to the fact that
min(D) = -4.8- 10"

Due to a background subtraction and also due to a subsegu@ib&sed low-rank approximation the matrix
D includes small negative entries. The smallest matrix ety is min(D) = —4.8 - 107, The relative size of the
smallest matrix entry equals mibf/max({D) = —6.5-10-3; the minimum and the maximum are taken componentwise.
Further, the relative error of the rank-3 approximatioiiafeads

ID-CSTlle _
IDlle

Ziza

n
i=
n
i=

2

7 _5995.10°° (18)
L =5,

10

with C and S containing columnwise expansions with respect to the first 3 left- and right singular vectors.
The “true” pure components are computed by adding a kinetah&klis-Menten hard model, cf. [28, 29, 30]he
ssg-deviations of the Michaelis-Menten soluti@{&’® from the pure component factor are computed as

_ 1% 1) — o(UE(L ya), y2)IB
[SERE0T

with norm-minimizing scaling constants The numerical values are.@2- 104, 5.2- 107>, 1.5- 107%) for the three
components.

4.2. FIRPOL, INNPOL and parameter setting

First the polygon§—“~s and ¢ are computed by polygon inflation with the control paramseter s = ec =
6.0- 1072 as lower bounds for the relative sizes of negative entri€s amdS, see Eqns. (13) and (14). See [10, 11]
for the details on these control parameters. Then the githiory in [5] is the basis to compute frofit. the inner
polygonrs for the case of noisy data, see Sec. 3.5.

Figure 5 shows the FIRPOL and INNPOL polygons for the hydnofgation data set together with their pendants
for slightly negative data. Additionally, the spectralaagpresenting vectoes, i = 1,...,k, and theb;, j = 1,...,n
are plotted. The gray straight lines represent tti@a half-spaces whose intersections define the FIRPOL pof/go
Fs and¥c. The left subplot in Figure 5 highlights that the data repngatives and thus their convex hull INNPOL
intersect FIRPOL. The consequence is an empty AFS. Howiiaesmaller and modified sét (inred) is completely
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control par. | number of vertices | computation times [s]
&p ) Ts 7:(: fs Fs & Fc Ig
10° [ 104 ] 326 | 512 | 119| 0.192 0.164
10| 10°| 814 | 786 | 90 0.381 0.654
107 | 10%| 1456 | 1118 104 0.796 1.704
108 | 107 | 2232|1458 | 105 | 1.112 3.691
10° | 108 | 3094 | 1848 | 281 | 1.837 7.514

Table 1: Computation times fofs and#¢ and for the duality based constructionk¥ from 7 for different precisionsy, and diferent stopping
criterias of polygon inflation. The parametep controls the accuracy of the boundary approximation. Topgshg criterias controls the number
of edges, see [10, 11, 31]. We use 10gp.

number of tangents contr. param., number of vertices computatlon times [s] fods and Mc

Minit my &p 0 Ms /Wc ?s, 77(;, Is geom. constr| Total comp. time
1500 3206 |10°| 10° | 3445 6091 1.035 0.143 1172
2500 5495 | 107 | 10% | 5982 | 10267 2.500 0.378 2.878
5000 7995 | 107 | 10% | 7964 | 14229 2.500 0.570 3.070
10000| 14530 | 108 | 107 | 14007| 25184 4.803 1.348 6.151
15000 19530 | 108 | 107 | 17968| 33105 4.803 2.003 6.806

Table 2: The computation times of the dual Borgen plot methredisted for diferent numbers of tangents andfelient precision parametesg.
The computation times for computing the polygdﬁﬁ Fc andTs as well as the times for the construction of the two dual AE8-are tabulated
separately. The parameter setting;; = 2500 anck, = 1077 is suficient for a high-resolution computation.

contained infc. The right subplot of Figure 5 shows two gray straight lindsali bound two half-spaces which do
not include the origin. By the mathematical theory this itygossible ifDT D is an reducible matrix or iD includes
negative entries. Here it holds componentwise that Biin{ —4.8- 107*. In particular the first right singular vector
contains positive and also two small negative entries (edeforD > 0 the Perron-Frobenius theory guarantees that
the first singular vector can be selected nonnegative. Bynthdified definition offs this unwanted fect disappears.
With the parameters, = 10" ands = 1075, see theeFACPACKmanual, the polygoﬁ's has 1456 vertices aré:
has 1118 vertices. The duality theory allows us to constfgdrom glven7—‘c Then]s has only 104 vertices. The
much smaller number of vertices ﬁg is due to the fact that the convex hullﬁ; is used for the dual construction,
see Sec. 3.7. This has characteristically reduced the nuafbesrtices. Finally, the inner polygofic has 236
vertices. Figure 5 shows the polygons for a fixed set of coptmoameters. Table 1 lists the computation times for
other parameter selections. The computation is still vasf fore, and§ close to zero, which results in a larger
number of vertices of the polygons.

4.3. Geometric construction of the dual AFS-sets

The final step is the simultaneous geometric constructigdh@fnner boundaries of the AFS-se¥$s and Mc.
The construction algorithm is explained in the first parthitpaper [5]. The only dierence is thafs, ¥c and
Is are substituted bng, TC and 7. s. We use the control parametesis = 107 andd = 10 The resulting
AFS-sets are shown in Fig. 6. These AFS-sets are plottedhegeith the approximations by the polygon inflation
based AFS computation IBACPACKand also with the results by the generalized Borgen plowrifgn. The first
two approximations coincide, but there are smaffedences to the generalized Borgen plots, see Fig. 6. The “tru
solution” (by kinetic hard-modeling) are marked by boldareld crosses. The dual Borgen plot uses a rotation angle
increment of 360/5000= 0.072 and some additional tangents, especially those which exiges offs. The total
number of used tangents is 7995. The geometric construayicdinality takes (670s and the overall dual Borgen plot
construction takes.370s.
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Inner boundary ofVc by duality Inner and outer boundaries Ms

Figure 6: The AFS-setd1c and Ms for the experimental spectral data set. The three isolatbdets for each of the two AFS-sets by the dual
Borgen plot method are drawn in green, red and bitlee colored x-markers represent the Michaelis-Menten hardeling results as plotted in
Fig. 4. The residuals for all solutions in the AFS has the fixalde 5995- 10-3 by Eq. (18). Their boundaries coincide with the dash-dotted lines
which are the boundaries of the AFS approximations by thggaol inflation based AFS computation with tRRCPACKsoftware. Dotted black
lines: The right figure also shows the AFS approximation leyganeralized Borgen plot algorithm. Minofférences can be seen at the boundary
of the blue set. Additionally the sefs and¥¢ are marked by broken black lines. The inner boundaries oAfffg-sets are plotted in black.

contr. param.| number of verticeg computation times [SFACPACKPIA
&b o MS MC Ms ‘ Mc ‘ MS andﬂc
103 | 103 | 261 295 8.725 | 13.019 21.744
104 | 10° | 271 299 12.389| 17.033 29.422
104 | 10* | 679 663 27.055| 30.605 57.660
105 | 10* | 669 663 37.768| 39.743 77.511

Table 3: The computation times are tabulated ofFREPACKbased AFS computation by the polygon inflation algoritffAGQPACKPIA). The
times are considerably larger than those of the dual Borg@ncpnstruction, see Table 2. The boundaries of the AFStsethe two methods
coincide apart from small deviations of the size of the acdmterametegy,.

4.4. Variation of the number of tangents

The dual Borgen plot construction is run withffiégrent numbers of tangents. For the computations we usaliniti
numbersmp,;; of 1500, 2500, 5000, 10000 and 15000 tangents; consecatigehts enclose a fixed rotation angle.
These tangents are augmented to a total numieof tangents. These additional tangents primarily refediges of
I's by the duality relations. The computation times for the goly constructions and for the following duality-based
simultaneous AFS construction are listed in Table 2. Thepdation times remain to be in the range of few seconds
even for the highest resolution. These results are to be amdpvith alternative methods for AFS computations.

4.5. Comparison of the results

The AFS-sets\ls and Mc for perturbeghoisy data are compared EACPACKbased AFS computation by the
polygon inflation algorithmRACPACKPIA) and also to the generalized Borgen plots (GBP). Fasgteomparisons
we consider dferent choices of the control parameters.

4.5.1. Comparison to polygon inflation method
Table 3 contains the computing times for the AFS computatlpnFACPACKPIA for different settings of the
boundary precisiomsy, and the stopping criterid. Even for the default control parameter settings= 6 = 1072
FACPACKPIA requires about 27s for the computation ofMs and Mc. In contrast to this, the dual Borgen plot
method even with a smaller control parameter and with a nuiwfde000 initial tangents takes only abowg Hence
11



control parameters | number of vertices Comp. times [s] GBP
rot. angle| d-stopping] Ms | Mc Ms | Mc

101 1073 2120 - 3.027 -

101 104 2102 - 2.958 -
5.1072 1073 3490 - 5.226 -
5.1072 104 3505 - 5.317 -

Table 4: Computation times of the generalized Borgen pl@&R¥Emethod. The numbers of computed tangents are compdcethle dual Borgen
plot method, see Table 2, but much smaller than tho§AGPACKPIA, see Table 3. The AFES1c cannot be computed with GBP as the magnitude
of negative components is too large.

the dual Borgen plot construction is about 7 times fastar tha (already fasffACPACKPIA method. The precision
of the results is notféected. The AFS approximations by these methods coincidie dsdm diferences of the
magnitude of the boundary precisiepn

The high dficiency of the dual Borgen plot method can be explained bydbethat it immediately accesses the
structure-forming objects, namely the polygons FIRPOL BMWPOL. In contrast to this, the optimization based
FACPACKPIA algorithm explores for each subset of the AFS its boupds using an adaptive approximation algo-
rithm. This also explains whifACPACKPIA detects a characteristically smaller number of vedjsee Tables 2, 3
and 4. However, the smaller number of vertices does fiettthe precision of the boundary approximation which is
controlled by the parametey as the non-detected vertices belong to pairs of edges whaahearly collinear.

4.5.2. Comparison to generalized Borgen plots

Table 4 contains the computation times and number of verfimethe approximate construction afls by the
generalized Borgen plot (GBP) method. For the default cbprameter settingst. angle= 0.1 andd-stopping=
1073 the computation ofMs is completed within 8. The resulting AFS-sets by GBP are slightlyffdient to the
AFS-sets by the dual Borgen plot method due to tifiedént approach to use absolute lower bounds on the acceptabl
negative matrix entries compared to the relative bounds (EQrther GBP cannot compute the AR3c since the
magnitude of negative entries in this experimental datésdeb large.

5. Conclusion

MCR methods should be suitable for applications to expentaiespectral data including noise, perturbations,
baseline drifts and other types of errors and nonlineatriti®ata preprocessing steps as baseline corrections, back-
ground subtractions or noise-reducing low-rank approiona can introduce small negative entries to the spectral
data set. The classical Borgen plots by Borgen and Kowadskiot handle such data with small negative entries.

The present paper devises a way on how to work with small ivegdata entries in the dual Borgen plot con-
structions. The idea is to map the weakened nonnegativitgtcaints to two modified, namely increased, polygons
FIRPOL, which represent in the classical Borgen plot camtsiton exactly the nonnegativity constraints. For given
FIRPOL, duality principles help to construct a correspogdnodified polygon INNPOL. This reorganized construc-
tion of the polygons INNPOL and FIRPOL, which are nesting s#tthe AFS, is followed by the dual Borgen plot
construction as introduced in the first part of this paper [Hje resulting overall process combines the elegance of
the geometric Borgen plot construction with the numericdlustness of the optimization-based AFS computation
methods as triangle enclosure [7], polygon inflation [1Q,dtid ray casting [15].

The approach to map the weakened nonnegativity constriatrhodified definition of the polygon FIRPOL
makes it possible to implement not only lower bounds on thegtive size of negative matrix entries (as used here),
but also to use absolute lower bounds as done in the geregt@iargen plot (GBP) method. In general, constraint
implementation via a re-definition of the polygons FIRPOId #NNPOL in the Borgen plot constructions appears to
be a challenging research topic.
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