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Abstract

Borgen plots are low-dimensional representations of the set of all nonnegative factorizations of spectral data matri-
ces. Classical Borgen plots are limited to nonnegative dataand can be constructed for the spectral factor or for the
concentration profiles.

In the first part of this paper a simultaneous construction ofthe two dual Borgen plots is presented, which inten-
sively exploits the underlying duality principles. The second part introduces algorithmic enhancements which make
the simultaneous Borgen plot construction possible for noisy experimental data matrices which can contain small neg-
ative matrix entries. The new method is tested for FT-IR spectral data from the Rhodium catalyzed hydroformylation
process. The results are compared to those by theFACPACK-implementation of the polygon inflation method.

Key words: multivariate curve resolution, nonnegative matrix factorization, Borgen plots, band boundaries of
feasible solutions, polygon inflation,FACPACK.

1. Introduction

The topic of this paper is the simultaneous construction of pairs of dual Borgen plots. Borgen plots [1, 2, 3, 4]
represent in a low-dimensional form the possible nonnegative factors of a spectral data matrix whose rows contain a
series of spectra recorded from a chemical reaction system.For a detailed introduction to the underlying multivariate
curve resolution (MCR) problem we refer to the first part of this paper [5] and the literature cited therein. See also
[1, 2, 3, 6, 7, 8, 9, 10, 11] for an introduction and definition of the so-called Area of Feasible Solutions (AFS). Its
geometric construction is developed by Borgen and Kowalskiin their landmark paper from 1985 [1].

The construction of Borgen plots is inseparably linked to the existence of a nonnegative matrix factorization ac-
cording to the underlying bilinear model.The first factor is the matrix of concentration profiles of thepure components
and the second factor contains the pure component spectra. The nonnegativity cannot be guaranteed for experimental
spectral data due to data preprocessing steps as backgroundsubtractions or baseline corrections. Another possible
source of (small) negative matrix entries is a low-rank approximation of the spectral data matrix.Such a low rank
approximation is often used by MCR methods, which employ thesingular value decomposition (SVD) in order to
reduce noise and the influence of nonlinearities or other perturbations. For such cases with relatively small negative
matrix entries the concept of generalized Borgen plots (GBP) has been suggested in [3, 8]. In the GBP construc-
tion nonnegative convex combinations are substituted by affine combinations together with lower bounds (negative
and close to zero) on the matrix entries of the pure componentfactors. Such affine combinations provide a sound
mathematical basis for a generalization of Borgen plots. However, their robustness is smaller than that of the purely
numerical approximation methods as the triangle enclosurealgorithm [7] or the polygon inflation method [10]. An-
other difference is that the generalized Borgen plots work with absolute lower bounds for the negative entries whereas
the numerical approaches use bounds on the relative size of negative entries. Here we suggest a new hybrid method
for the simultaneous geometric construction of the dual Borgen plots which combines the speed and elegance of the
geometric construction with the robustness and flexibilityof the numerical approaches.
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1.1. Idea and benefit of the hybrid method

The pairs of polygons FIRPOL and INNPOL each for the concentration factor and for the spectral factor are of
key importance for the Borgen plot construction, see [1]. In[5] the simultaneous construction of dual Borgen plots
first forms the two inner polygons INNPOL. Then the corresponding two FIRPOL polygons can easily be formed by
duality relations, see also [12]. After these constructionsteps the triangle rotation algorithm is applied to the FIRPOL-
INNPOL pair of polygons for the spectral factor and, simultaneously, the Borgen plot (or AFS) for the concentration
factor is constructed by exploiting the duality relations.

The new hybrid algorithm is based on a similar approach. The idea is as follows:
- First compute certain enlarged supersets of the two polygons FIRPOL. These supersets are polygons which

enclose the final AFS and also represent solutions with smallnegative entries. These polygons are determined
by a variant of the polygon inflation algorithm [11].

- In a second step, the associated dual INNPOL polygons are constructed. The duality relates vertices of the
superset of FIRPOL to bounding straight lines of the modifiedpolygon INNPOL.

- In a third and final step the triangle rotation in combination with the duality principles is applied to the modified
polygons FIRPOL and INNPOL in the way as described in the firstpart of this paper [5]. This results in the two
desired approximate AFS-sets for the concentration profilefactor and for the spectra factor.

The numerical results of the new hybrid method show a very good agreement with independently computed AFS
approximations by means of the polygon inflation algorithm.The hybrid method is as fast as the method which
is introduced in the first part of this paper. The method uses the duality principles not only to form INNPOL for
given FIRPOL (in [5] the reverse construction is used from INNPOL to FIRPOL) but also for the simultaneous AFS
construction. The second AFS-set is a “by-product” of the construction of the first AFS.

The benefit of the hybrid algorithm is as follows: The method improves the speed of the geometric AFS con-
struction [1, 2, 3] and combines it with the robustness and flexibility for noisy/perturbed data which is typical for the
numerical optimization-based methods as polygon inflation[10, 11], grid search [13, 14], triangle-chain boundary
enclosure [7] or ray-casting [15]. The new algorithm computes the two dual AFS-sets with nearly the same speed as
the classical Borgen plot algorithm computes a single AFS-set. The hybrid approach makes it possible to deal with
slightly negative matrix entries.

1.2. Organization of the paper

Section 2 contains a brief overview on the relevant geometric objects as well as matrices and recapitulates the key
results of the first part of this paper. The new hybrid construction method for noisy and perturbed data is introduced
and explained in Section 3. Numerical results are presentedin Section 4 for FT-IR spectra from the Rhodium catalyzed
hydroformylation process. The results of the hybrid methodare compared to those by theFACPACK-implementations
of the polygon inflation method and the generalized Borgen plot algorithm [3].

1.3. Notation

The following variables are used in this paper. Variables with a tilde superscript refer to noisy data approximation.
D k× n spectral data matrix by (1), (2).
C k× s concentration matrix by (1), (2).
S n× sspectral matrix by (1), (2).
UΣVT singular value decomp. ofD by (2).
T s× s transformation by (2), (3).
MC,MS AFS for concentration factorC by (5) or spectral factor by (4).
M̃C, M̃S noisy data approximations ofMC, MS see Eqns. (12) and (11).
IC, IS INNPOL for C, S by (9),(7).
ĨC, ĨS noisy data approximations ofIC, IS, see Eqns. (16) and (15).
FC, FS FIRPOL forC, S by (9), (6).
F̃C, F̃S noisy data approximations ofFC, FS, see Eqns. (14) and (13).
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2. A summary of dual Borgen plots

We give a brief summary on the dual Borgen plot construction from [5], see also [1, 2, 3, 7, 9, 10, 15, 16, 17]. The
starting point is the Lambert-Beer model

D = CST (1)

with thek×n data matrixD, itsk× snonnegative matrix factor of pure concentration profiles and then× snonnegative
matrix of the pure component spectra. The number of the pure components iss.

For givenD we are interested inC andS. By means of a singular value decomposition (SVD)D = UΣVT any of
the desired factorizations ofD can be written in the form

C = UΣT−1, ST = TVT . (2)

The matrix elements of the regular matrixT ∈ Rs×s are the degrees of freedom. Only thoseT are relevant which result
in nonnegativeC andS. There are many nonnegative (or feasible) factorizations.This fact is known as rotational
ambiguity of the decomposition.The area of feasible solutions (AFS), see e.g. [1, 2, 7, 10, 16] is a set of expansion
coefficients of the columns of eitherC or S with respect to the basis of either left or right singular vectors ofD. The
expansion coefficient of the first left/right singular vector can be set equal to 1 (see [18] for a justification by the
Perron-Frobenius theory) so thatT can be written as

T =



1 x1 · · · xs−1

1
... W
1


(3)

with an (s− 1)× (s− 1) regular matrixW. For givenD with the ranks (noise-free case) the spectral AFS reads

MS = {x ∈ R
s−1 : existsW ∈ R(s−1)×(s−1) so that rank(T) = sandC, S ≥ 0}. (4)

Analogously the AFS for the concentration factor reads

MC = {y ∈ R
s−1 : exists regularT ∈ Rs×s with (T−1)(:, 1) = (1, yT)T , C, S ≥ 0}. (5)

The classical geometric construction [1] ofMS for (s= 3)-component systems is based on the polygons FIRPOL
FS and INNPOLIS. FIRPOL is defined as

FS =

{
x ∈ Rs−1 : V

(
1
x

)
≥ 0

}
. (6)

INNPOL is the convex hull

IS = convhull({ai , i = 1, . . . , k}) . (7)

with the vectors

ai =
(UΣ)T(2 : s, i)

(UΣ)T(1, i)
, i = 1, . . . , k, (8)

which due toDV = UΣ are the right singular vector representatives of the rows ofD. Analogously, the setsFC and
IC for factorC are

FC =

{
y ∈ Rs−1 : UΣ

(
1
y

)
≥ 0

}
, IC = convhull

(
{b j , j = 1, . . . , n}

)
(9)

with b j = (VT (2 : s, j))/(VT(1, j)); see (7) in [5].
In [5] the dual Borgen plot construction rotates a tangent aroundIS in a way that for each tangent a triangle tightly

includingIS is constructed with one of its edges being located on the tangent. The third vertex of the triangle (which
is not on the tangent) is used to form the inner boundary curveof the AFS. The dual Borgen plot construction uses
only one rotation process aroundIS and results in the two AFS-setsMS andMC by exploiting duality principles.
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3. Dual Borgen plots for noisy data

The dual Borgen plot method [5] cannot directly be applied tonoisy/perturbed data with small negative data
entries. Sometimes for such data INNPOL intersects the boundary of FIRPOL.Such an intersection necessarily
occurs if the rank-sapproximation ofD has (small) negative matrix entries. Then at least one vector a∗ of the vectors
ai by (8) represents a vector with at least one negative component. Thusa∗ cannot be an element of FIRPOL by (6),
since FIRPOL contains by its definition only the representatives of nonnegative vectors. As furtherIS is the convex
hull of all ai , the polygon INNPOL intersects the boundary of FIRPOL. Thenthe geometric construction ofMS and
MC is impossible as no triangle (cases = 3) exists which includes INNPOL and which is included in FIRPOL.
Anticipating the model problem and results which are gainedlater in this paper, we refer to the two upper subplots
of Fig. 3 that clearly demonstrate the intersection of INNPOL and FIRPOL.A possible and to some extent obvious
approach is to start with increasing the size of FIRPOL. Suchan enlargement can be justified: It is a known fact,
see [3], that a weakening of the nonnegativity constraint (in a sense that small negative data values in the solution
factors are accepted) enlarges the size of FIRPOL. These enlarged polygons for noisy dataD are denoted bỹFC and
F̃S. They can easily be computed by the polygon inflation algorithm [10, 11]. The computational costs are low. Then
in a second step the duality theory (also called a duality/complementarity theory), see e.g. [19, 20, 21, 22, 23], can
be applied in order to compute the dual inner polygonsĨC andĨS. These polygons are consistent to the weakened
nonnegativity constraint. The final step of a triangle rotation in F̃S and around̃IS is the same as suggested in [5].
Next all these steps are explained in detail.

3.1. Acceptance of negative data entries

The rank of noisy spectral data matricesD is larger than the numbers of chemical components in the reaction
system. Typically, there ares singular values which are characteristically larger than zero whereas the remaining
singular values are close to zero. A rank-sapproximation ofD which is the starting point of the AFS computation can
have negative entries. Other sources of negative entries ofD are background subtractions or baseline corrections.

If D includes small negative entries, then one has to accept small negative entries ofC andS as otherwise no
nonnegative factorization ofD exists. In the polygon inflation method for AFS computations[10, 11] the lower bound
on the relative size of negative matrix entries is set to

Ci j

max|C(:, j)|
≥ −εC, i = 1, . . . , k, and

Sℓ j
max|S(:, j)|

≥ −εS, ℓ = 1, . . . , n, (10)

for all j = 1, . . . , sand with control parametersεC, εS ≥ 0.
Alternatively, the size of negative matrix entries can be controlled byssq-bounds, see [7, 13, 14, 24, 25], or by

using absolute lower limits which accept only solutions with

Ci j ≥ −ε̃C, Sℓ j ≥ −ε̃S

for proper control parameters ˜εC, ε̃S ≥ 0. Absolute bounds are used in the generalized Borgen plots construction
[3, 8].

Here, we prefer to use the relative bounds (10). On this basiswe use in the following generalizations of the
AFS-sets

MS =
{
x ∈ Rs−1 : existsW ∈ R(s−1)×(s−1) so that rank(T) = s, C, S fulfill(10)

}
(11)

with T as in (3) andC andS as in (2) and

MC =
{
y ∈ Rs−1 : existsT ∈ Rs×s with rank(T) = s, (T−1)(:, 1) = (1, yT)T , C, S fulfill (10)

}
. (12)

3.2. Generalization ofFS andFC for noisy data
FIRPOL, according to (6), is the set of allx for which the linear combinationV(1, xT)T is componentwise non-

negative. With respect to the relative lower bound (10) forj = 1 the generalized set FIRPOL is defined as

F̃S =

{
x ∈ Rs−1 : min

i=1,...,n

(1, xT )V(i, :)T

‖(1, xT )VT‖∞
≥ −εS

}
. (13)
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Figure 1: Model data with and without noise of a three-component system in order to illustrate the polygonsFC, FS, IC andIS and their pendants
for noisy data. Left: The model data set from [5] fork = 1000,n = 500. Right: The data after application of normal distributed pseudo random
noise with mean zero and a standard deviation of 0.01.
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Figure 2: Left plot: PolygonsFS (dashed) andIS (red). Right plot:FC (dashed) andIC (red). The polygons are plotted for the model data shown
in the left subplot of Fig. 1. In the polygons INNPOL the data representativesai andbi are plotted in gray color. The AFS-setsMS andMC are
nonempty.

Analogously the generalization ofFC with respect to (10) forj = 1 reads

F̃C =

{
y ∈ Rs−1 : min

i=1,...,k

U(i, :)Σ(1, yT )T

‖UΣ(1, yT )T‖∞
≥ −εC

}
. (14)

3.3. Computation of̃FS andF̃C

The two polygons̃FS andF̃C can easily and precisely be computed by means of the polygon inflation algorithm
(PIA). The idea of PIA is to approximate the boundary of a bounded setby a sequence of adaptively refined polygons.
The vertices of the polygons are located on the surface of theset. The boundary of the set is assumed to be locally
representable by continuous functions. In [11] the PIA algorithm has been designed for AFS computations. Here PIA
is used for the approximation of the polygons̃FS andF̃C. This makes the computation very easy. In contrast to [11]
no complicated and computationally expensive target function must be evaluated. Instead, according to (6) and (9) a
point x (resp. y) belongs to the surface of the FIRPOL polygons ifV(1, x)T ≥ 0 (resp.UΣ(1, y)T ≥ 0) andV(1, ηx)T

(resp.UΣ(1, ηy)) contains at least one negative component forη > 1. More generally, for the noisy-data case the zero
transition for changingη turns into a−εS or−εC transition. Again, an adaptive polygon refinement strategyenables a
highly accurate boundary approximation. All this makes thecomputational costs low.
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Figure 3: The polygons FIRPOL and INNPOL are drawn for the data set with noise as shown in the right subplot of Fig. 1. The twoupper subplots
demonstrate that INNPOLI (red) is not a subset of FIRPOLF (dashed) for these data. Hence the AFS is empty, i.e. no nonnegative factorization
of D exists. The two lower plots show the generalized polygonsF̃ andĨ each for the factorsC andS. The AFS-setsMS andMC are nonempty.
The boundary lines to strict nonnegativity withx1V j2 + x2V j3 = −V j1, j = 1, . . . , n, resp.y1σ2Ui2 + y2σ2Ui3 = −σ1Ui1, i = 1, . . . , k, are plotted
in faint gray color. The data representing pointsai , i = 1, . . . , k resp.bj , j = 1, . . . , n are plotted in the INNPOL polygons as by gray crosses.

3.4. Generalization of INNPOL for noisy data

The duality theory in [5, 12, 19, 20] describes how a point on the boundary of the polygonFC relates to an affine
hyperplane which touches the dual inner polygonIS. Further, Theorem 3.6 of [5] proves that a vertex ofFC relates to
a (true) facet ofIS. Our aim is to use these duality relations in order to construct from the boundary of the generalized
set FIRPOLF̃C the dual set̃IS. HenceĨS is constructed by exploiting the duality relations. A direct construction
by taking the convex hull of the vectorsai , i = 1, . . . , k, only results inIS and is not consistent with the weakened
nonnegativity constraint.

The construction of̃IS is based on its duality tõFC. The duality relation of a pointz to its dual hyperplane
E = {y ∈ R

s−1 : yTz = −1} is introduced in Def. 3.1 in [5]. In Lemma 3.3 and Theorem 3.5 of [5] the focus is
on duality of boundary points of̃FC to tangential hyperplanes of̃IS in order to construct̃FC from ĨS. However,
the duality of polygons is an involutory mapping which relates in the same way the boundary ofĨS to tangential
hyperplanes of̃FC. Thus the polygoñIS can be defined as

ĨS =
{
x ∈ Rs−1 : the dual hyperplaneE of x has an empty intersection with the interior ofF̃C

}
. (15)

Equivalently, the empty intersection ofE with the interior ofF̃C can be expressed in a way thatE has either an empty
intersection withF̃C or at most touches its boundary. An alternative way to write this polygon is

ĨS = closure({x ∈ Rs−1 : E ∩ F̃C = ∅ for E being the dual affine hyperplane ofx}),
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where closure denotes the topological closure of a set, i.e.the set augmented by all its limit points. Analogously, the
set

ĨC =
{
y ∈ Rs−1 : the dual hyperplaneE of y has an empty intersection with the interior ofF̃S

}
(16)

is the pendant of the polygonIC for the case of noisy data.

3.5. Computation of̃IS from F̃C

Numerically, we computẽIS by constructing the dual points of the edges of the convex hull of F̃C. These relations
are illustrated in Figs. 1 and 2 in [5]. Alternatively, one can compute for the vertices of the convex hull of̃FC the
associated dual half-spaces which are oriented in a way thateach includes the origin; see Lemma 3.5 in [5]. The
intersection of all these half-spaces yieldsĨS (and is close to the initial polygonIS).

The figures 1, 2 and 3 illustrate the polygonsIS andIC and their noisy data pendants for the three-component
model problem described in [5]. The dimensions arek = 1000 andn = 500. First Fig. 1 shows (a subset of) the
series of spectra without and with noise. We have added normal distributed pseudo random noise with mean zero and
a standard deviation of 0.01. It holds for the relative componentwise minimum/maximum that min(D)/max(D) =
−3.3 · 10−2 and for the rank-3 approximation that

‖D − UΣ(:, 1 : 3)V(:, 1 : 3)T‖F
‖D‖F

= 1.6644· 10−2. (17)

For the noise-free case Figure 2 illustrates the polygonsFS andIS as well asFC andIC together with their generating
boundary lines (aroundFC) and generating points (the gray stars inIS). Finally, Fig. 3 shows the situation for noisy
data. First the polygons are drawn without any consideration for the perturbed data. Then no triangle exists in FIRPOL
which includes INNPOL. Consequently the AFS-setsMS andMC are empty. Further the generalized noise-adapted
polygonsF̃S andĨS resp.F̃C andĨC are plotted. For these polygons the AFS-setsM̃S andM̃C are nonempty. We
have to show that these sets are good approximations ofMS andMC for the case of noisy/perturbed data, see Sec. 4.5.

Remark 3.1. 1. The computational costs for a numerical approximation ofF̃S and F̃C by the polygon inflation
algorithm are small, see Sec. 3.3.

2. For the computation of̃FC a precise boundary approximation is recommended in order toguarantee a stable
subsequent application of the duality principles for the computation of̃IS. The control parameterεb on the
boundary precision is explained in Sec. 3.9.1 of [10]. A reasonable parameter choice isεb ≤ 10−6.

3. The control parameterεC limits the relative magnitude of negative entries of C according to(10); the parameter
εS works similarly for the factor S . Increasing the value ofεS results in an expansion of̃FS and thus in a
shrinkage of the dual polygoñIC. (The shrinkage of̃IC is a consequence of Lemma 3.3 in [5] as the inner
points ofĨC are dual to hyperplanes which do not contribute to the boundary of F̃S and vice versa.) The
geometric construction process shows thatM̃S is expanded at the outer boundary and that̃MC is expanded at
its inner boundary. Similarly, increasing the value ofεC results in an expansion of̃FC and in a shrinkage of the
dual polygoñIS. Thus the set̃MS grows at its inner boundary and̃MC grows at the outer boundary. These
relations are illustrated for example by Figure 6 in [3], Figure 17 in [9] and Figure 15 in [8].

For noisy dataεC and εS should not be chosen too small as otherwise no feasible factorizations exist that
meet the conditions. Then the AFS is empty. It is an interesting question which parameter selections can yield
isolated feasible solutions; see [26] for the so-called data-based uniqueness in the noisy data case.

We cannot recommend a fixed rule how to determine the values ofεS andεC. The FACPACK software always
tries to use small parameter values. The polygon inflation algorithm first tries to compute a strict-nonnegative
matrix factorization (NMF) of D in a way that the smallest entries of its factors are equal to or greater than 0.
However, if no initial strict NMF can be found in this optimization process, then small positive values ofεS and
εC must be accepted. In other words, small matrix elements close to zero are accepted. If in such a case these
parameters are equal to the smallest possible values so thatan NMF exists, then at least one subset of the AFS
is often very small. Then it cannot be guaranteed that the AFSincludes the chemically correct solution. In this
work we useεS = εC = 5 · 10−2 for the model problem from [5] which corresponds to the valueof the rank-3
approximation error(17).
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Figure 4: The experimental hydroformylation data set together with the pure component factors. Left: Every 25th spectrum of the 850 spectra is
plotted. Center: The true concentration profiles computed by kinetic modeling. Right: The true pure component spectra.Color coding: Olefin
(blue), acyl complex (green), hydrido complex (red).

3.6. Geometric AFS construction

Finally, the boundary curves of the AFS-setsMS andMC are determined. This is done by the simultaneous
geometric construction algorithm, see the first part of thispaper [5]. The only difference is that the algorithm is
applied toF̃S, F̃C andĨS instead ofFS, FC andIS. The algorithm yields the inner parts of the boundary curvesof
the two AFS-sets. The outer parts of the boundary curves are given by parts of the boundaries of̃FS andF̃C. The
construction of the polygons̃MC andM̃S is based on the inequalities (10). The same constraints are used in order to
compute the FIRPOL polygons by the polygon inflation algorithm. Thus the inner and outer parts of the boundary are
fitting to one another for the case of noisy data.

3.7. Non-convexity of̃FS

The acceptance of small negative entries ofC andS may have the consequence that the polygonsF̃S and F̃C

lose their convexity. Non-convexity is an unwanted side effect. On the one hand the non-convexity ofF̃C results in
problems in the duality-based construction ofĨS. On the other hand the triangle rotation process for the simultaneous
AFS construction, which determines the points of intersection of tangents of̃IS with boundary of the surrounding
polygon F̃S, can find more than two points of intersection in the case of a non-convex setF̃S. Then additional
steps are required in the program implementation in order toselect the correct points of intersection. In our program
implementation we avoid such problems with “slightly” non-convex sets in a way that we always work with the convex
hulls of F̃ resp.F̃C.

4. Numerical results

The new algorithm is tested for an FT-IR experimental data set from the hydroformylation process. For this noise-
including data set we first draw the polygons̃F , F̃C and ĨS. The series of spectra has undergone a background
subtraction and a baseline correction. After this, the simultaneous geometric construction yields the AFS-setsMS

andMC. These AFS-sets are compared to the corresponding approximations by theFACPACKsoftware. Further
the results are compared to the generalized Borgen plots. The results are analyzed and the computation times are
discussed. All computations were run on a PC with an Intel 3.40GHz quad-core processor and 16GB RAM. The main
algorithm is implemented in fast C-routines. The program isexecuted on a single core of the processor.

4.1. Rhodium catalyzed hydroformylation

From the series of 850 FT-IR spectra only a spectral window with 645 spectral channels is considered. ThusD ∈
R

850×645. The associated time and wavenumber intervals aret ∈ [4.7, 883.6]min andν ∈ [1962.3, 2117.6]cm−1. Three
major absorbing components contribute to the spectra, namely an olefin component, an acyl complex and a hydrido
complex. The reaction product, an aldehyde, shows no absorption in the spectral window. For the experimental details
see [27]. The series of spectra and the true pure component spectra and concentration profiles, which are computed
by using additionally a kinetic model, are presented in Fig.4.
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(black broken line) and̃IC (red line). The gray lines define the boundary ofFC and the dark gray crosses are the data representing vectorsbj ,

j = 1, . . . , n. Right: The polygons̃FS (black broken line) and̃IS (red line) are drawn. The gray lines define the boundary ofFS and intersect in
the left lower region the polygoñFS. The dark gray crosses represent the data vectorsai , i = 1, . . . , k. The left plot illustrates major differences
betweeñIC andIC. The triangle rotation algorithm applied toFC andIC would result in an empty AFSMC. A similar situation is illustrated in
the right plot, whereIS intersectsFS. In particular two half-spaces (by the gray lines) in the right plot do not include the origin due to the fact that
min(D) = −4.8 · 10−4.

Due to a background subtraction and also due to a subsequent SVD-based low-rank approximation the matrix
D includes small negative entries. The smallest matrix entryof D is min(D) = −4.8 · 10−4. The relative size of the
smallest matrix entry equals min(D)/max(D) = −6.5·10−3; the minimum and the maximum are taken componentwise.
Further, the relative error of the rank-3 approximation ofD reads

‖D −CST‖F

‖D‖F
=

√∑n
i=4σ

2
i∑n

i=1σ
2
i

= 5.995· 10−3 (18)

with C andS containing columnwise expansions with respect to the firsts = 3 left- and right singular vectors.
The “true” pure components are computed by adding a kinetic Michaelis-Menten hard model, cf. [28, 29, 30].The
ssq-deviations of the Michaelis-Menten solutionsC(ode) from the pure component factor are computed as

di =
‖C(ode)(:, i) − α(UΣ(1, y1(i), y2(i))T‖22

‖C(ode)(:, i)‖22

with norm-minimizing scaling constantsα. The numerical values are (2.2 · 10−4, 5.2 · 10−5, 1.5 · 10−4) for the three
components.

4.2. FIRPOL, INNPOL and parameter setting

First the polygons̃FS and F̃C are computed by polygon inflation with the control parameters ε = εS = εC =
6.0 · 10−3 as lower bounds for the relative sizes of negative entries inC andS, see Eqns. (13) and (14). See [10, 11]
for the details on these control parameters. Then the duality theory in [5] is the basis to compute from̃FC the inner
polygonĨS for the case of noisy data, see Sec. 3.5.

Figure 5 shows the FIRPOL and INNPOL polygons for the hydroformylation data set together with their pendants
for slightly negative data. Additionally, the spectral data representing vectorsai , i = 1, . . . , k, and theb j, j = 1, . . . , n
are plotted. The gray straight lines represent the affine half-spaces whose intersections define the FIRPOL polygons
FS andFC. The left subplot in Figure 5 highlights that the data representatives and thus their convex hull INNPOL
intersect FIRPOL. The consequence is an empty AFS. However,the smaller and modified set̃IC (in red) is completely
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control par. number of vertices computation times [s]
εb δ F̃S F̃C ĨS F̃S & F̃C ĨS

10−5 10−4 326 512 119 0.192 0.164
10−6 10−5 814 786 90 0.381 0.654
10−7 10−6 1 456 1 118 104 0.796 1.704
10−8 10−7 2 232 1 458 105 1.112 3.691
10−9 10−8 3 094 1 848 281 1.837 7.514

Table 1: Computation times for̃FS andF̃C and for the duality based construction ofĨS from F̃C for different precisionsεb and different stopping
criteriaδ of polygon inflation. The parameterεb controls the accuracy of the boundary approximation. The stopping criteriaδ controls the number
of edges, see [10, 11, 31]. We useδ = 10εb.

number of tangents contr. param. number of vertices computation times [s] for̃MS andM̃C

minit mall εb δ M̃S M̃C F̃S, F̃C, ĨS geom. constr. Total comp. time
1 500 3 206 10−6 10−5 3 445 6 091 1.035 0.143 1.172
2 500 5 495 10−7 10−6 5 982 10 267 2.500 0.378 2.878
5 000 7 995 10−7 10−6 7 964 14 229 2.500 0.570 3.070
10 000 14 530 10−8 10−7 14 007 25 184 4.803 1.348 6.151
15 000 19 530 10−8 10−7 17 968 33 105 4.803 2.003 6.806

Table 2: The computation times of the dual Borgen plot methodare listed for different numbers of tangents and different precision parametersεb.
The computation times for computing the polygonsF̃S, F̃C andĨS as well as the times for the construction of the two dual AFS-sets are tabulated
separately. The parameter settingminit = 2500 andεb = 10−7 is sufficient for a high-resolution computation.

contained inF̃C. The right subplot of Figure 5 shows two gray straight lines which bound two half-spaces which do
not include the origin. By the mathematical theory this is only possible ifDTD is an reducible matrix or ifD includes
negative entries. Here it holds componentwise that min(D) = −4.8 · 10−4. In particular the first right singular vector
contains positive and also two small negative entries (whereas forD ≥ 0 the Perron-Frobenius theory guarantees that
the first singular vector can be selected nonnegative. By themodified definition ofF̃S this unwanted effect disappears.

With the parametersεb = 10−7 andδ = 10−6, see theFACPACKmanual, the polygoñFS has 1456 vertices and̃FC

has 1118 vertices. The duality theory allows us to constructĨS from givenF̃C. ThenĨS has only 104 vertices. The
much smaller number of vertices of̃IS is due to the fact that the convex hull of̃FC is used for the dual construction,
see Sec. 3.7. This has characteristically reduced the number of vertices. Finally, the inner polygoñIC has 236
vertices. Figure 5 shows the polygons for a fixed set of control parameters. Table 1 lists the computation times for
other parameter selections. The computation is still very fast forεb andδ close to zero, which results in a larger
number of vertices of the polygons.

4.3. Geometric construction of the dual AFS-sets

The final step is the simultaneous geometric construction ofthe inner boundaries of the AFS-setsMS andMC.
The construction algorithm is explained in the first part of this paper [5]. The only difference is thatFS, FC and
IS are substituted bỹFS, F̃C and ĨS. We use the control parametersεb = 10−7 and δ = 10−6. The resulting
AFS-sets are shown in Fig. 6. These AFS-sets are plotted together with the approximations by the polygon inflation
based AFS computation byFACPACKand also with the results by the generalized Borgen plots algorithm. The first
two approximations coincide, but there are small differences to the generalized Borgen plots, see Fig. 6. The “true
solution” (by kinetic hard-modeling) are marked by bold colored crosses. The dual Borgen plot uses a rotation angle
increment of 360◦/5000= 0.072◦ and some additional tangents, especially those which coveredges of̃IS. The total
number of used tangents is 7995. The geometric constructionby duality takes 0.570s and the overall dual Borgen plot
construction takes 3.070s.
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Figure 6: The AFS-setsMC andMS for the experimental spectral data set. The three isolated subsets for each of the two AFS-sets by the dual
Borgen plot method are drawn in green, red and blue.The colored x-markers represent the Michaelis-Menten hardmodeling results as plotted in
Fig. 4. The residuals for all solutions in the AFS has the fixedvalue 5.995· 10−3 by Eq. (18). Their boundaries coincide with the dash-dotted lines
which are the boundaries of the AFS approximations by the polygon inflation based AFS computation with theFACPACKsoftware. Dotted black
lines: The right figure also shows the AFS approximation by the generalized Borgen plot algorithm. Minor differences can be seen at the boundary
of the blue set. Additionally the sets̃F andF̃C are marked by broken black lines. The inner boundaries of theAFS-sets are plotted in black.

contr. param. number of vertices computation times [s]FACPACK-PIA
εb δ M̃S M̃C M̃S M̃C M̃S andM̃C

10−3 10−3 261 295 8.725 13.019 21.744
10−4 10−3 271 299 12.389 17.033 29.422
10−4 10−4 679 663 27.055 30.605 57.660
10−5 10−4 669 663 37.768 39.743 77.511

Table 3: The computation times are tabulated of theFACPACK-based AFS computation by the polygon inflation algorithm (FACPACK-PIA). The
times are considerably larger than those of the dual Borgen plot construction, see Table 2. The boundaries of the AFS-sets by the two methods
coincide apart from small deviations of the size of the control parameterεb.

4.4. Variation of the number of tangents

The dual Borgen plot construction is run with different numbers of tangents. For the computations we use initial
numbersminit of 1500, 2500, 5000, 10000 and 15000 tangents; consecutive tangents enclose a fixed rotation angle.
These tangents are augmented to a total numbermall of tangents. These additional tangents primarily refer to edges of
ĨS by the duality relations. The computation times for the polygon constructions and for the following duality-based
simultaneous AFS construction are listed in Table 2. The computation times remain to be in the range of few seconds
even for the highest resolution. These results are to be compared with alternative methods for AFS computations.

4.5. Comparison of the results

The AFS-sets̃MS andM̃C for perturbed/noisy data are compared toFACPACKbased AFS computation by the
polygon inflation algorithm (FACPACK-PIA) and also to the generalized Borgen plots (GBP). For these comparisons
we consider different choices of the control parameters.

4.5.1. Comparison to polygon inflation method
Table 3 contains the computing times for the AFS computations by FACPACK-PIA for different settings of the

boundary precisionεb and the stopping criteriaδ. Even for the default control parameter settingsεb = δ = 10−3

FACPACK-PIA requires about 21.7s for the computation of̃MS andM̃C. In contrast to this, the dual Borgen plot
method even with a smaller control parameter and with a number of 5000 initial tangents takes only about 3s. Hence
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control parameters number of vertices Comp. times [s] GBP
rot. angle d-stopping MS MC MS MC

10−1 10−3 2120 – 3.027 –
10−1 10−4 2102 – 2.958 –

5 · 10−2 10−3 3490 – 5.226 –
5 · 10−2 10−4 3505 – 5.317 –

Table 4: Computation times of the generalized Borgen plot (GBP) method. The numbers of computed tangents are comparableto the dual Borgen
plot method, see Table 2, but much smaller than those ofFACPACK-PIA, see Table 3. The AFSMC cannot be computed with GBP as the magnitude
of negative components is too large.

the dual Borgen plot construction is about 7 times faster than the (already fast)FACPACK-PIA method. The precision
of the results is not affected. The AFS approximations by these methods coincide aside from differences of the
magnitude of the boundary precisionεb.

The high efficiency of the dual Borgen plot method can be explained by the fact that it immediately accesses the
structure-forming objects, namely the polygons FIRPOL andINNPOL. In contrast to this, the optimization based
FACPACK-PIA algorithm explores for each subset of the AFS its boundary by using an adaptive approximation algo-
rithm. This also explains whyFACPACK-PIA detects a characteristically smaller number of vertices, see Tables 2, 3
and 4. However, the smaller number of vertices does not affect the precision of the boundary approximation which is
controlled by the parameterεb as the non-detected vertices belong to pairs of edges which are nearly collinear.

4.5.2. Comparison to generalized Borgen plots
Table 4 contains the computation times and number of vertices for the approximate construction ofMS by the

generalized Borgen plot (GBP) method. For the default control parameter settingsrot. angle= 0.1 andd-stopping=
10−3 the computation ofMS is completed within 3s. The resulting AFS-sets by GBP are slightly different to the
AFS-sets by the dual Borgen plot method due to the different approach to use absolute lower bounds on the acceptable
negative matrix entries compared to the relative bounds (10). Further GBP cannot compute the AFSMC since the
magnitude of negative entries in this experimental data setis too large.

5. Conclusion

MCR methods should be suitable for applications to experimental spectral data including noise, perturbations,
baseline drifts and other types of errors and nonlinearities. Data preprocessing steps as baseline corrections, back-
ground subtractions or noise-reducing low-rank approximations can introduce small negative entries to the spectral
data set. The classical Borgen plots by Borgen and Kowalski cannot handle such data with small negative entries.

The present paper devises a way on how to work with small negative data entries in the dual Borgen plot con-
structions. The idea is to map the weakened nonnegativity constraints to two modified, namely increased, polygons
FIRPOL, which represent in the classical Borgen plot construction exactly the nonnegativity constraints. For given
FIRPOL, duality principles help to construct a corresponding modified polygon INNPOL. This reorganized construc-
tion of the polygons INNPOL and FIRPOL, which are nesting sets of the AFS, is followed by the dual Borgen plot
construction as introduced in the first part of this paper [5]. The resulting overall process combines the elegance of
the geometric Borgen plot construction with the numerical robustness of the optimization-based AFS computation
methods as triangle enclosure [7], polygon inflation [10, 11] and ray casting [15].

The approach to map the weakened nonnegativity constraint to a modified definition of the polygon FIRPOL
makes it possible to implement not only lower bounds on the relative size of negative matrix entries (as used here),
but also to use absolute lower bounds as done in the generalized Borgen plot (GBP) method. In general, constraint
implementation via a re-definition of the polygons FIRPOL and INNPOL in the Borgen plot constructions appears to
be a challenging research topic.
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