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Abstract

Spectral data preprocessing is an integral and sometimes inevitable part of chemometric analyses. For Nuclear Mag-
netic Resonance (NMR) spectra a possible first preprocessing step is a phase correction which is applied to the Fourier
transformed free induction decay (FID) signal. This preprocessing step can be followed by a separate baseline cor-
rection step. Especially if series of high-resolution spectra are considered, then automated and computationally fast
preprocessing routines are desirable.

A new method is suggested that applies the phase and the baseline corrections simultaneously in an automated
form without manual input, which distinguishes this work from other approaches. The underlying multi-objective op-
timization or Pareto optimization provides improved results compared to consecutively applied correction steps. The
optimization process uses an objective function which applies strong penalty constraints and weaker regularization
conditions. The new method includes an approach for the detection of zero baseline regions. The baseline correction
uses a modified Whittaker smoother. The functionality of thenew method is demonstrated for experimental NMR
spectra. The results are verified against gravimetric data.The method is compared to alternative preprocessing tools.
Additionally, the simultaneous correction method is compared to a consecutive application of the two correction steps.

Key words: NMR data preprocessing, automated phase correction, automated baseline correction, multi-objective
minimization, Whittaker smoother.

1. Introduction

NMR spectroscopy is of extraordinary importance for many research fields in science and medicine. The Nobel
lectures of Richard R. Ernst (1991), K. Wüthrich (2002) andP.C. Lauterbur and P. Mansfield (2003) provide an
excellent overview on the development of NMR spectroscopy and its significance for various fields of application
[10, 27, 17].

This paper focuses on NMR spectroscopy in chemistry or chemical engineering and the problem that NMR spectra
often suffer from various types of misadjustment, distortions and noise. The zero-order misadjustment refers to the
phase difference of the reference phase and the phase which is used by the FID signal recording detector [4]. The
first-order misadjustment can be caused by different sources, e.g., by the delay between excitation and detection or
by phase shifts induced by noise-reducing filters [6]. NMR spectra also suffer from baseline distortions which can be
caused for example by the nonlinearity of the filter-phase response, instrumental instabilities, background signals or
the discrete nature of the Fourier transformation, see [12]. An efficient and reliable correction of the zero- and first-
order misadjustments (phase correction) and a correction of the baseline are prerequisites to facilitate the acquisition
of quantitative results from the NMR spectrum [18]. Especially the application of NMR spectroscopy for reaction
and process monitoring or process control, which has gainedimportance over the last years not only due to the
development of benchtop NMR spectrometer [16], necessitate automatic and robust correction algorithms that can
handle large data sets [3, 19].
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In this paper we present a new preprocessing approach for NMRspectral data which allows to correct the zero-
and first-order misadjustments in a simultaneous way together with the baseline by means of a multi-objective opti-
mization. The simultaneous optimization is a characteristic trait of this new approach.

1.1. Organization of the paper

The paper is organized as follows. Sec. 2 introduces the optimization-based preprocessing approach. To this
end, an objective function is suggested which includes penalty and regularization terms. Its minimization amounts
to a simultaneous phase and baseline correction. In Secs. 3 and 4 we discuss the step-by-step methods for the phase
correction and for the baseline correction. The simultaneous correction method is presented in Sec. 5. The new
method is tested for experimental NMR spectra in Sec. 6. Thisresults are compared to the outcome of a computation
in which the two correction steps are applied in consecutivemanner. Finally, the results are compared to other phase
correction methods.

1.2. Notation

We use the following notation for the NMR signal functions.
dft denotes a complex valued raw NMR spectrum gained by a Fouriertransformation of the

free induction decay (FID).
dpha is a complex NMR signal after a phase correction step. However, only its real part is considered

as the NMR spectrum.
dfinal is a real-valued NMR signal either after step-wise or simultaneous phase and baseline correction.
d stands for a general real-valued NMR signal with or without prior application of correction steps.

2. Optimization-based data preprocessing

The focus of this paper is on a simultaneous and automated correction of the phase and the baseline of NMR
spectra. To this end we use a multi-objective optimization which is a common approach for the implementation of
competing constraints, see for example [4] where an entropyminimization approach is used for phase corrections of
NMR spectra. It is a well-known fact that a multi-objective optimization problem with competing or even conflicting
objective functions often has no single solution which optimizes each constraint. In such cases, the objective functions
are called conflicting and the solution of the simultaneous optimization (also known as multi-objective optimization
or Pareto optimization) represents a trade-off between the conflicting constraints.

Here we consider an objective function which is a weighted sum of penalty functions and regularizing conditions.
This approach makes possible a simultaneous optimization.If all but one of the weight factors are set to zero, then
the optimization is applied only to a single constraint. Theactive constraint can be changed and then the optimization
can be restarted. The constraint functions either penalizenegative entries of the spectra or are used to regularize the
resulting spectra, e.g., in the sense of a small integral or the smoothness of the spectra. Ifd ∈ Rn denotes a real-valued
(discrete) spectrum, then the objective functionf ∶ Rn → R reads

f (d) =
3

∑
i=1
γigi (d/∥d∥max) . (1)

Therein theγi ≥ 0 for i = 1,2,3 are real weight factors and∥d∥max = maxi=1,...,n ∣di ∣ is the maximum norm. The three
functionsgi are

g1(d) =
n

∑
j=1
(min(0, d j + ε1))2 , g2(d) =

n

∑
j=1
(max(0, ∣d j ∣ − ε2))2 , g3(d) =

n−1

∑
j=2
(d j−1 − 2d j + d j+1)2 .

For the functiong1 we use a relative large weight factorγ1 so thatg1 can be considered as a penalty function. For the
functionsg2 andg3 we take smaller weight factors which results in a regularizing effect in the optimization process.
The functiong1 is applied in order to enforce nonnegative results in the optimization process.The constraint function
g1 is constructed in a way that only negative portions ofd which are smaller than−ε1 are square-summed up and
are used for penalization. In other words, small negative entries whose absolute values are smaller thanε1 are not
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penalized.The functiong2 is used in order to find a solution with a small integral (case of sharp and isolated peaks).
More precisely, the functiong2 accesses the discrete integral in terms of sums of squares.In a similar way tog1 all
entries of∣d∣ which are smaller thanε2 do not contribute to this constraint. Thusε2 can be considered as a level of
accepted deviation of the baseline from the ideal zero-baseline. Finally, the functiong3 sums up the squares of discrete
second derivatives of the data. In this way non-smooth solutions are penalized and smooth solutions are favored in the
usual way of Tikhonov regularizations. The relationsγ1 ≫ γ2, γ3 for the weight factors guarantee that nonnegativity
is a stronger constraint (penalization) whereas a small integral and smoothness of the solutions are weaker constraints
(regularizations). For the case of weakly perturbed spectra and if sharp peaks (small integral with low smoothness)
are desired, then we useγ1 = 10,γ2 = 10−2 andγ3 = 0 as typical values for the weight constants. Ifγ3 is increased,
e.g.γ3 = 0.1 together withγ1 = 10,γ2 = 10−2, then somewhat wider peaks with a slightly increased smoothness are
favored.

The control parameterε1 ≥ 0 in the penalty functiong1 is used in order to weaken the nonnegativity constraint
in a way that only negative components which are smaller than−ε1 contribute to the sum of squares. The control
parameterε2 ≥ 0 in g2 has a similar effect. Only components ofd with ∣d j ∣ ≥ ε2 are taken into consideration for the
sum of squares. Thusε2 is used to ignore the influence of small entries of the spectrum which are close to zero and
which potentially can be traced back to noise or other perturbations. However, evenε1 = ε2 = 0 leads in many cases
to useful results. In (1) the functionsgi are applied to normalized spectrad/∥d∥max. Henceε1 andε2 can be defined
in a scaling-independent way. Otherwise, the magnitudes ofthese control parameters must be adapted to the signal
intensity of the spectrumd. If the spectrum includes large perturbations or other systematic biases, then additional
functionsgi can be added and further control parametersεi can be introduced in order to control or to remove the
influence of these perturbations.

For the numerical minimization off we use a combination of a genetic optimization algorithmwith population
sizes of 20 with 20 generationsand an adaptive nonlinear least-squares solver, namely theACM routine NL2SOL [8].
Our computationally fast program code is written in C and FORTRAN. An implementation in MATLAB by using the
routinesfminsearch, a gradient-free simplex minimization algorithm, orlsqnonlin, a nonlinear least-squares solver
which uses a subspace trust-region method, is also possible. The optimization-based phase correction, see Sec. 3,
and the baseline correction, see Sec. 4, result in preprocessed NMR spectra which fulfill to some extent the various
constraints depending on the weight factors. The optimization process can implicitly determine further parameters
which belong to the optimal solution. Examples are the optimal phase parametersϕ∗0 andϕ∗1 which are optimized in the
phase correction, see Sec. 3. The correction steps can be applied consecutively, see Secs. 3 and 4, or simultaneously,
see Sec. 5.

3. The automated phase correction

This section recapitulates in short form the step of an automated phase correction for the Fourier transformed
spectrum. This phase correction is well-understood, see for example [25, 4, 7, 1]. In Sec. 5 this correction procedure
is a building block of the new simultaneous correction scheme. The phase correction fixes two misadjustments of
zero- and of first-order by solving an optimization problem for the objective functionf given in (1).

3.1. Misadjustments and automated phase correction

Let dft ∈ Cn be the Fourier-transformed FID signal. The aim is to correctthe misadjustments of zero-order and of
first-order [4, 6]. The fundamental relationship ofdft to the real and imaginary parts of the phase-corrected spectrum
dpha ∈ Cn is dpha= (dft ,eiφ) with the Euclidean product(⋅, ⋅) so that the real and imaginary parts are

Re(dpha
j ) = Re(dft

j )cos(φ j) − Im(dft
j )sin(φ j),

Im(dpha
j ) = Im(dft

j )cos(φ j) +Re(dft
j )sin(φ j)

(2)

for j = 1, . . . ,n, see [25, 1]. The vectorφ depends on the two real-valued adjustment parametersϕ0 andϕ1

φ j = ϕ0 + ϕ1
j − 1

n
, j = 1, . . . ,n. (3)
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The optimal phase angleϕ∗0 and phase parameterϕ∗1 minimize the objective functionf by (1) in a way that

f (Re(dpha(ϕ∗0 , ϕ∗1))) = min
ϕ0∈[−π, π),
ϕ1∈[−nπ, nπ)

f (Re(dpha(ϕ0, ϕ1)))

and result in the phase corrected spectrum.

3.2. Ambiguity of the phase correction angles

Nonnegativity of the real part Re(dpha) is not a sufficient constraint for getting unique phase correction parameters
ϕ0 andϕ1. A formal mathematical argument shows that uniqueness cannot be expected: An ideal NMR spectrum is
strictly positive since it is a linear combination with nonnegative coefficients of the (strictly positive) Lorentz profiles
[15]. Additionally the relations (2) and (3) are continuousmappings. Thus nonnegativity of Re(dpha) is guaranteed
at least in a small neighborhood of any pair(ϕ0, ϕ1) which represents a positive function Re(dpha). This yields a
continuum of feasible solutions. Similar regions of feasible solutions with respect to the nonnegativity constraint
are well-known from other fields of chemometrics; see e.g. [13, 23, 14, 24] for the area of feasible solutions in
multivariate curve resolution. However, the ambiguity ofϕ0 andϕ1 is often not very large and uniqueness can be
enforced if an additional regularization as byg2 or g3 is switched on or if for example an entropy regularization is
used [4].

4. The automated baseline correction

The automated baseline correction consists of two steps. Inthe first step, intervals on the chemical shift axis are
detected in which the baseline dominates in the sense that the NMR signals by the chemical sample are of minor
importance. In a second step a smooth baseline function on the complete chemical shift axis is fitted to the already
identified “pure baseline intervals”. The first step is the more difficult one. The correctness of the complete baseline
sensitively depends on the correct detection of the pure baseline intervals. In this section we always assume that the
NMR spectrumdphahas already undergone (a more or less successful) phase correction. Moreover, we consider while
referring todpha only its real part.

4.1. Detection of pure baseline intervals

In this section we call a chemical shift value (on the abscissa of an NMR spectrum) apure-baseline valueif its
associated signal intensity cannot be assigned to characteristic NMR signals of the chemical sample. Neighboring
pure baseline values can be aggregated to pure baseline intervals. Before running the baseline detection procedure,
a Savitzky-Golay filter [22, 21] is applied to the NMR spectrum dpha. The Savitzky-Golay filter is well-known to
increase the signal-to-noise ratio and to preserve the characteristic form of the signal. The degree of the approximating
polynomial isℓ and the width of the moving window is 2m1 + 1. Thus 2m1 + 1 consecutive components of the vector
dphaare filtered by polynomial approximations with the polynomial degree of at mostℓ. If dpha ∈ Rn, then the Savitzky-
Golay filter computes for each integer numberi =m1+1,m1+2, . . . ,n−m1 a polynomialpi of degreeℓ (or less) which
approximates the points (of the moving window)

(x j ,d
pha
j ), j = i −m1, . . . , i +m1,

in the least-squares sense. Thex j are the discrete values on the abscissa. The least-squares approximationpi is
evaluated within the moving window and yields the smoothed datad̃ ∈ Rn as

d̃i = pi(xi), j = i −m1, . . . , i +m1,

andd̃i = di for all remaining indices which do not belong to the moving window. For the remaining abscissa valuesxi

with i ≤m1 respectivelyi ≥ n−m1 the points(x j ,d
pha
j ) with j = 1, . . . ,2m1 + 1 respectivelyj = n− 2m1, . . .n are used

for computingpi . The smoothed approximations are given again in the formd̃i = pi(xi).
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The next step is to detect abscissa values of the smoothed signal d̃ whose signal intensities are close to their local
mean values. To this end we compute the quantities

zi =
i+m2

∑
j=i−m2

⎛
⎝d̃ j −

i+m2

∑
j=i−m2

d̃ j
⎞
⎠

2

. (4)

which is the sum of the squares of the deviations ofd̃ j from its mean in a window of the width 2m2 + 1 and where the
outer sum runs again through the 2m2 + 1 indices of the window which is centered atxi . Thezi are computed for the
indicesi =m2 + 1,m2 + 2, . . . ,n−m2.

Remark 4.1. Only the components zi with i = m2 + 1,m2 + 2, . . . ,n−m2 are defined. We set zi = 0 for i = 1, . . . ,m2

and i=m2 + 1, . . . ,n−m2 in order to work (for convenience) only with n-dimensional vectors. The baseline detection
procedure only needs the components zi , i =m2 + 1, . . . ,n−m2.

Next the indices are determined for which the (nonnegative)components ofz are smaller than a given threshold
value. By (4) a component ofzvanishes if a consecutive series of components ofd̃ in a window with the width 2m2+1
satisfy a linear relation. We assume such a linear behavior to occur in pure baseline intervals. The selection criterion
is as follows: With the control parametersαcrit ∈ (0, 1) andδcrit > 0 we define the set of indices which belong to
baseline values as

Mbl = {i ∶ zi/zthres≤ δcrit} .

Thereinzthres is a threshold value which is computed as follows: First then− 2m2 real numberszm2+1, . . . ,zn−m2 are
sorted in ascending order. Then we take the⌈αcrit(n− 2m2)⌉th value of this sequence of sorted numbers. Therein⌈⋅⌉
denotes the ceiling function which is the nearest integer tothe argument of the ceiling function which is greater than
or equal to its argument. In simple words, the setMbl contains all indices which belong to windows of the index-width
2m2 + 1 in which the components behave linearly or nearly linearly.

Appropriate control parameters arem1 = 20, m2 = 40, αcrit = 0.95 andδcrit = 1.1 for the case a step-by-step
correction of the phase and the baseline. Appropriate values for simultaneous correction steps arem1 = 20,m2 = 40,
αcrit = 0.5 andδcrit = 1.1.

4.2. Baseline computation

The requirements for the baseline are as follows: On the one hand the baseline should be a smooth function and
on the other hand the baseline should fit the datadpha for all indices in the setMbl. For experimental and noisy
data these requirements can be somewhat contradictory asdpha with respect toMbl may be non-smooth. We use the
baseline recognition process suggested in [9, 5], which is very similar to the Whittaker smoother [26]. The idea is
to consider a baselineu which is given by the vectoru ∈ Rn. Hence the baseline is a continuous function which for
eachi = 1, . . . ,n− 1 is given by the linear interpolation ofui andui+1 on the interval[xi , xi+1]. The aim is that the
ui approximate the given valuesdpha

i for i ∈ Mbl and which is as smooth as possible. Then the associated Lagrange
function reads

L(u, λ) = n−1

∑
i=1
δi,Mbl(dpha

i − ui)2 + λ(ui+1 − ui

xi+1 − xi
)2

.

Thereinδi,Mbl is the Kronecker delta andλ the Lagrange multiplier. The first summand is the error of theapproximation
of dpha

i by u only for indices inMbl and the second summand is a measure for the smoothness of the piecewise linear
baseline.

The necessary condition for an extremum of∇uL = 0 yields the linear system of equations

(M + λB)u = Mdpha. (5)

ThereinM ∈ Rn×n is a diagonal matrix with the diagonal elements

Mii = { 1, if i ∈ Mbl,

0, if i ∉ Mbl
,
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andB ∈ Rn×n is the tridiagonal matrix

B =

⎛⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

⋱ ⋱ ⋱

−1 2 −1
−1 1

⎞⎟⎟⎟⎟⎟⎠
.

Remark 4.2. The system of linear equations (5) is symmetric and trilinear. It can be solved by a direct solver with
low costs which increase only linearly in the dimension n.

Having found the baselineu, we compute the baseline corrected spectrumdfinal by a subtraction of the baseline
dfinal = dpha

− u. The choice of the Lagrange multiplier is still a degree of freedom;λ = 1000 is a reasonable choice.

4.3. Incompleteness of Mbl

An appropriate construction of the setMbl is decisive for a successful baseline identification. It is no problem if
single or even several indexes of pure-baseline regions arenot included inMbl as the baseline construction algorithm
uses a linear interpolation over these missing points. The other case, namely that indices belong toMbl which are
associated with the true NMR signals of the chemical components, is very annoying. Then the baseline contains parts
of the spectrum and the baseline subtraction distorts the spectrum. Therefore our index selection algorithm works in
a defensive manner. Only those indexes are added toMbl which belong to pure baseline regions of the spectrum.

4.4. Simplicity of the phase and baseline correction

The various steps of the phase and the baseline corrections might appear to be technical. However, all computa-
tional steps are very simple, can easily be programmed and require low computation times. The algorithm should be
as robust, stable and general as possible and should work especially for experimental NMR spectra. The method in
[4] is a prominent example of a simple and stable method.

4.5. The problem of data-overfitting

Ideally NMR spectra can be assumed to consist of finite sums ofLorentz profiles [15]. Lorentz profiles decay
much more slowly than Gauss profiles. These facts seem to contradict our approach for the baseline detection. It
identifies regions in which signal contributions from the chemical sample are ignored. In these regions the baseline
subtraction forces the spectrum to zero whereas Lorentzians are always nonzero. Thus our baseline approach can
lead to small inconsistencies for simulated NMR spectra, ifa global or interval-wise integration of the spectrum is
applied and if these integrals are compared with the integrals of the preprocessed data. However, we cannot confirm
comparable small inconsistencies of experimental NMR spectra, see the results in Sec. 6 on the ratios of integrals of
different peaks which represent concentration data on some of the chemical components.

4.6. Algorithmic variations

The suggested approach for the baseline correction opens a variety of possibilities for improvements. Other
strategies for the detection ofMbl and for the baseline regularization can be used. Further, the baseline detection can
use a wavelet-based smoothing instead of the Savitzky-Golay filtering. See also [5, 29, 28].

5. Simultaneous automated phase and baseline correction

This section explains how the automated phase correction, see Sec. 3, and the automated baseline correction, see
Sec. 4, can be integrated into a simultaneous optimization procedure. Such a simultaneous optimization, which is also
called a multi-objective optimization or Pareto-optimization, is well known to produce better solutions of optimization
problems with competing or even conflicting objective functions [20]. The key observation is that the optimal solution
with respect to one constraint is usually not optimal with respect to the other constraints and vice versa. Therefore,
the optimal solution of the multi-objective optimization represents a trade-off between the conflicting constraints.We
call our program code SINC, which stands forsimultaneousNMR (signal)correction.
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Figure 1: The Fourier transformed1H-spectra for the two chemical sample mixtures 1 and 2, see Sec. 6.1, prior to any phase and baseline
corrections. The spectra are plotted only for the relevant ppm-intervals.

5.1. Idea of the approach

For the simultaneous optimization we use again the objective function f of Equation (1). In contrast to applying
consecutive preprocessing steps, now the spectrum is evaluated by a minimization off not until the baseline cor-
rection is applied. The optimization with respect to the variablesϕ0 andϕ1 includes baseline corrections as internal
computations. We fix the index setMbl, which specifies the pure baseline regions of the spectrum, by means of an
initial baseline step . There is no benefit to re-computeMbl in each cycle of the simultaneous optimization as its
changes are expected to be marginal, but may cause instabilities.

5.2. The algorithm of SINC

The algorithm of the simultaneous phase and baseline correction (SINC) starts with a given Fourier transformed
FID signaldft ∈ Cn and reads:

1. An initial phase correction is applied tod according to Sec. 3. The result is denoted bydpha.

2. The set of baseline indicesMbl is computed fordpha.

3. The simultaneous optimization for the parametersϕ0 andϕ1 is started by minimizing the objective function
f (ϕ0, ϕ1):
(a) Compute the phase corrected spectrumdpha= Re(ϕ0, ϕ1).
(b) Compute the baselineu for dpha with respect to the fixed index setMbl.

(c) Evaluate the objective valuef (dpha
− u).

Remark 5.1. The functions gi in (1) are applied to normalized spectra d/∥d∥max. Further, the automatic detection of
the baseline intervals is independent of the normalizationof dpha. The resulting baseline correction step is homoge-
neous of order 1 with respect to the input data. Thus the resulting algorithm of the automated and simultaneous phase
and baseline correction is independent of the signal scaling. Thus the weighting parametersγi in (1) do not have to
be scaled with a changing amplitude of the data.
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5.3. Impact and selection of the control parameters

The SINC algorithm works with various control parameters. In the objective function (1) the Lagrange multipliers
γ1, γ2 andγ3 determine the relative weighting of the constraint functions. Most important is the nonnegativity of the
data so thatγ1 has to be larger thanγ2, γ3. Reasonable values are given in Section 2. The parameterε1 in g1 is the
acceptance level for relative negative entries. For mediumup to large noise levels a maximal value ofε1 = 0.05 is
suggested in order to allow for larger negative (noise-)entries. A similar parametrization is suggested forε2, which
controls noisy or shifted baselines in the regularization functiong2.

The baseline detection is a crucial part of the SINC method. The degree of the polynomial used by the Savitzky-
Golay filter should be small, e. g.ℓ ∈ {1, 3}. The band-width parameterm1 depends mainly on the numbern of
channels but also on the width of the peaks. Typical valuesm1 ∈ {10, . . . ,30} are suggested ifn is large. For small
n we usem1 ≤ 10. The valuem2 controls the band width for the comparison process in order to decide whether or
not a channel belongs to a pure baseline interval. A typical choice form2 is m2 = 2m1. Further decisive parameters
for the detection of pure baseline intervals areαcrit andδcrit. If αcrit is large, then more channels are considered for
the baseline correction. Ifαcrit = 1, then all channels are declared as pure baseline intervalswhich is not acceptable.
The other extreme isαcrit = 0 which means that no baseline correction can be applied. Fordata including low up to
medium noise levels we useαcrit ∈ {0.3, 0.95}. For a higher noise level we suggestαcrit ≤ 0.7. The parameterδcrit is
closely linked toαcrit. A large value ofδcrit increases the length of pure baseline intervals. For data including a low or
a medium noise level we useδcrit ∈ {1.0, 2.0}. For a higher noise level we suggestδcrit ≤ 1.25.

The actual correction of the baseline is controlled by the Lagrange multiplierλ. If the pure baseline intervals
are determined properly, then we useλ ∈ [10−2, 106] and observe only a minor impact of the choice ofλ on the
computational results.

6. Numerical results for experimental NMR spectra

Next the new method is tested for experimental NMR spectra. We compare the results of the new simultaneous
preprocessing not only with the results of consecutive phase and baseline corrections, but also with an exclusive phase
correction. We also compare the results with the entropy minimization approach [4] and the two-stages-tuning as
introduced in [1]. The program codes of these two methods arecombined with the adaptive iteratively re-weighted
penalized least squares approach from [9, 11]. We have applied these methods with and also without their baseline
correction algorithms.Additonally we have applied the software package Mnova by Mestrelab.

6.1. Experimental NMR spectra

The1H NMR spectra of the first two sample mixtures are taken with a medium field NMR spectrometer (Spinsolve
Carbon, Magritek, Wellington/New Zealand) using a 1 Tesla permanent magnet so that the proton Larmor frequency
equals 42.5 MHz. The spectra are taken with a flip angle of 90○, a repetition time of 30 s, a number of 32 scans and an
acquisition time of 6.4 s. The Fourier transformed FID contains a number ofn = 65 536 data points.The13C spectrum
for sample mixture 3 is taken with a Bruker Ascend 400 MHz (console Avance 3 HD 400, probe CyroProbe Prodigy,
Bruker Biospin, Rheinstetten/Germany) NMR spectrometer using a 9.4 Tesla vertical superconducting magnet with a
proton Larmor frequency of 400.25 MHz. The spectrum is taken with a13C inverse gated pulse sequence, a flip angle
of 60○, a relaxation delay of 100 s, a number of 512 scans, and an acquisition time of 1.36 s.

Sample mixture 1. The1H NMRspectrum is taken from a sample containing0.66 gof 2-propanol (Sigma-Aldrich,
anhydrous,≥ 99.5 mass-%) and0.266 gof toluene (Merck, Uvasol,≥ 99.9 mass-%). The resulting mole fractions
of 2-propanol (PrOH) and toluene (Tol) in the mixture are: xPrOH = 0.7918± 0.0007 mol/mol and xTol = 0.2082±
0.0007 mol/mol, respectively. The real and the imaginary parts of the Fourier transformed spectrum are presented in
the left subplot of Fig. 1.

Sample mixture 2. The 1H NMR spectrum is taken from a sample containing0.594 g of ethyl acetate (Sigma-
Aldrich,≥ 99.5 mass-%) and0.428 gof toluene (Merck, Uvasol,≥ 99.9 mass-%). The resulting mole fractions of ethyl
acetate (EtAc) and toluene in the mixture arex̃EtAc = 0.5921± 0.0008 mol/mol and x̃Tol = 0.4079± 0.0008 mol/mol,
respectively. The real and the imaginary parts of the Fourier transformed spectrum are shown in the right subplot of
Fig. 1.

8



0246
0

0.5

1

1.5

2

2.5

3

3.5

x 10
7

chemical shift/ ppm

in
te

n
si

ty
/
a.

u
.

0246

0

2

4

6

8

10
x 10

5

chemical shift/ ppm

in
te

n
si

ty
/
a.

u
.

zoom along the intensity axis

Figure 2: NMR spectra for the binary mixture of 2-propanol and toluene, see the sample mixture 1, after application of three forms of data
preprocessing. Left: the NMR spectrum on the relevant 7–(-1) ppm range. Right: zoom along the ordinate-direction. The blue spectrum results
from exclusive application of the phase correction, and thegreen spectrum is the outcome of a consecutive application of the phase and baseline
correction steps. The new simultaneous phase and baseline correction algorithm yields the red spectrum. Obviously thebest spectrum results from
the simultaneous correction algorithm.

Sample mixture 3. The 13C NMR spectrum is taken from a sample containing0.09040± 0.0001 mol/mol of N-
Methyldiethanolamine (Sigma-Aldrich,≥ 99 mass-%),0.0099± 0.0001 mol/mol of sodium carbonate (Th. Geyer,
≥ 99.8 mass-%),15.0083 gof water (deionized and purified with a water purification system (Milli-Q Reference A+
System, Merck Millipore, Billerica/US-MA)). Sodium carbonate was dried for 12 h at 120 °C before using and all
other chemicals were used without further purification. Fordetails on the sample see [2].

The uncertainties of all mole fractions of the components inthe two sample mixtures are estimated from the given
accuracy of the laboratory balance and the uncertainties ofthe purities of the samples.

6.2. Application of the phase and baseline corrections

The NMR spectra for the two mixtures as described in the sample mixture 1 and 2 are subjected to three different
preprocessing methods. The control parameters for these computations, namely the weight factorsγi and the trun-
cation parametersεi , are already given in Sec. 2. The preprocessed NMR spectra are plotted in Figs. 2 and 3. The
blue spectrum results from an application of only the phase correction to either the NMR spectrum of the 2-propanol
mixture with toluene, see Fig. 2, or to the NMR spectrum of theethyl acetate mixture with toluene, see Fig. 3. Espe-
cially for the largest peaks some positive dispersion is still present. The green spectra in these two figures represent
the results of a consecutive application of the phase and baseline correction steps. The new simultaneous phase and
baseline correction algorithm yields in Fig. 2 and in Fig. 3 the red spectrum. The Pareto optimal solution of the
simultaneous correction is always the best correction.

Fig. 4 shows the pure baseline regions in blue color along thecomplete chemical shift axis for the two sample
mixtures. As explained in Sec. 4.3 it is of crucial importance that the index sets are not too large. It is much better to
omit some data points of pure baseline regions (which are then filled by linear interpolation) than to assign data points
at peak flanks incorrectly to the baseline. This would resultin significant distortions of the spectrum, see Sec. 4.4.

Fig. 5 shows a comparison of the four preprocessing methods for sample mixture 3. These methods are the
simultaneous phase and baseline correction (SINC), the entropy minimization approach [4] including a simple base-
line correction and the two-stages tuning [1] including a simple baseline correction. We also corrected the spectrum
with standard algorithms provided in the software package Mnova (Mestrelab, Santiago de Compostela, Spain). For
brevity, this method will be called Mnova in the following. In Mnova we applied for the phase correction the automatic
consecutive algorithms ”Global”, ”Minimum Entropy”, ”Selective”, ”Baseline Optimization”, ”Metabonomics”, ”Re-
gion Analysis”, and ”Whitening”. We also used the settings ”Filter: Autodetect” and ”Smooth Factor: Autodetect”
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Figure 3: NMR spectra for the ethyl acetate mixture with toluene, see the sample mixture 2, after application of three forms of data preprocessing.
Left: the NMR spectrum on the relevant 8.5–(-1.5) ppm range.Right: zoom along the ordinate-direction. The blue spectrum results from exclusive
application of the phase correction, and the green spectrumis the outcome of a consecutive application of the phase and baseline correction steps.
The new simultaneous phase and baseline correction algorithm yields the red spectrum. As in Fig. 2 the best results are obtained by the simultaneous
correction algorithm.

for the consecutive baseline correction. The results gained by SINC and Mnova are almost identical. A detail enlarge-
ment of the peak close to 167.9 ppm shows small deviations of the results of these two methods compared to entropy
minimization and two-stages tuning.

Remark 6.1. The SINC method, the entropy minimization approach and alsothe two-stages-tuning method use the
Fourier transformed FID signal as the data input for the their respective preprocessing steps. In contrast to this,
the highly elaborated and powerful Mnova software typically takes the raw FID signal as input and additionally
applies FID preprocessing steps as drift correction, apodization, zero filling, linear prediction and further steps. For
the purpose of comparison we imported the Fourier transformed FID signal to Mnova and applied its preprocessing
steps. We are aware that this does not capitalize the full strength of data preprocessing implemented in Mnova.

6.3. Verification of the results

The gravimetric values on the portions of NMR-resonant hydrogen nuclei in the sample mixtures 1 and 2 are used
in order to verify the results of the new method, cf. [18]. To this end we have to know which peaks belong to which of
the two chemical compounds in the respective mixture. Then the integrals for the single peaks as well as their relations
are computed. Finally the deviations to the expected gravimetric values are calculated. These integral calculations
are also executed for the spectra which result from an exclusive application of the phase correction and also for the
spectra which result from a consecutive application of the phase and baseline correction steps. Additionally, we apply
this comparative gravimetric analysis to the spectra whichare attained by the entropy minimization approach [4], the
two-stages-tuning method [1]and Mnova.

The gravimetric analysis is first applied to the sample mixture 1. We consider only the peaks or peak group
which are centered at 0.66, 1.7, 3.5, 4.6 and 6.6 ppm. The second and the fifth peak group belong to toluene andthe
remaining ones belong to 2-propanol. The numbers of the associated protons arep = [6, 3, 1, 1, 5]. The following
chemical shift intervals are used for the integration:

µ1 = [0.3, 0.9]ppm, µ2 = [1.5, 1.9]ppm, µ3 = [2.8, 4.0]ppm, µ4 = [4.2, 5.0]ppm, µ5 = [6.0, 7.1]ppm.

For the sample mixture 1 we consider six verification valuesδi = xNMR
i − xTol for i = 1, . . . ,6. The indexi represents

the different combinations of peak areasA j that can be applied to calculate the mole fractionxNMR
i . The indexj runs
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Figure 4: The automatically detected pure baseline intervals are colored blue (along the ordinate) for the two sample mixtures 1 and 2.
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Figure 5: The four preprocessing methods are compared for the sample mixture 3. The color code is as follows: the new SINC-method (blue), the
entropy minimization approach [4] including a simple baseline correction (green), the two-stages-tuning method [1] including a simple baseline
correction (cyan) and Mnova (red). Mnova is directly applied to the Fourier transformed FID signal, see Remark 6.1. SINCand Mnova yield nearly
the same results, whereas the other two methods show small deviations especially for the peak close to 167.9 ppm.

through the five chemical shift intervals. We calculate the following combinations of the mole fraction of toluene:

xNMR
1 = A2/(A1 + A2), xNMR

2 = A2/(A3 + A2), xNMR
3 = A2/(A4 + A2),

xNMR
4 = A5/(A1 + A5), xNMR

5 = A5/(A3 + A5), xNMR
6 = A5/(A4 + A5).

Therein theA j areA j = I(dfinal(µ j))/p j, i = j, . . . ,5, whereI(dfinal(µi)) is a numerical approximation of the peak area
in spectrumdfinal on the integration intervalµi which is divided by the number of the associated protonspi .

The gravimetric analysis is also applied to the sample mixture 2 with the six verification values̃δi = x̃ NMR
i − x̃Tol.

For this example the selected peak groups are contained in the chemical shift intervals

µ̃1 = [0.2, 0.8]ppm, µ̃2 = [0.9, 1.4]ppm, µ̃3 = [1.5, 1.8]ppm, µ̃4 = [3.0, 3.8]ppm, µ̃5 = [6.0, 7.0]ppm.

The associated numbers of protons for these five peak groups are p = [3, 3, 3, 2, 5]. The peaks in the intervals̃µ1,
µ̃2 and µ̃4 belong to ethyl acetate, and the peaks inµ̃3 andµ̃5 belong to toluene. Thẽx NMR

i for this mixture are as
follows:

x̃ NMR
1 = A3/(A1 + A3) x̃ NMR

2 = A3/(A2 + A3), x̃ NMR
3 = A3/(A4 + A3),

x̃ NMR
4 = A5/(A1 + A5), x̃ NMR

5 = A5/(A2 + A5), x̃ NMR
6 = A5/(A4 + A5).
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verif. New method (multi-objective opt.) min. entropy approach [4] two-stages-tuning [1] Mnova
value no baseline corr. consec. opt. simult. opt. no baseline sep. baseline no baseline sep. baseline incl. baseline

δ1 1.3 ⋅ 10−3 3.4 ⋅ 10−3 4.0 ⋅ 10−3 1.3 ⋅ 10−3 6.4 ⋅ 10−3 −1.9 ⋅ 10−3 7.3 ⋅ 10−3 −1.2 ⋅ 10−3

δ2 5.0 ⋅ 10−3 −8.6 ⋅ 10−4 3.3 ⋅ 10−4 5.0 ⋅ 10−3 5.4 ⋅ 10−3 8.4 ⋅ 10−3 8.7 ⋅ 10−3 7.0 ⋅ 10−3

δ3 −2.6 ⋅ 10−3 −1.6 ⋅ 10−3 2.7 ⋅ 10−4 −2.6 ⋅ 10−3 1.1 ⋅ 10−3 5.6 ⋅ 10−3 5.3 ⋅ 10−3 −2.0 ⋅ 10−3

δ4 5.4 ⋅ 10−3 7.3 ⋅ 10−3 4.1 ⋅ 10−3 5.4 ⋅ 10−3 1.2 ⋅ 10−2 −8.2 ⋅ 10−3 2.2 ⋅ 10−3 2.2 ⋅ 10−3

δ5 9.2 ⋅ 10−3 3.0 ⋅ 10−3 3.8 ⋅ 10−4 9.2 ⋅ 10−3 1.1 ⋅ 10−2 1.9 ⋅ 10−3 3.6 ⋅ 10−3 1.1 ⋅ 10−2

δ6 1.4 ⋅ 10−3 2.2 ⋅ 10−3 3.2 ⋅ 10−4 1.4 ⋅ 10−3 7.0 ⋅ 10−3 −8.4 ⋅ 10−4 2.0 ⋅ 10−4 1.3 ⋅ 10−3

1
6∑∣δi ∣ 4.18 ⋅ 10−3 3.05 ⋅ 10−3 1.57 ⋅ 10−3 4.18 ⋅ 10−3 7.28 ⋅ 10−3 4.48 ⋅ 10−3 4.55 ⋅ 10−3 4.05 ⋅ 10−3

Table 1: The table lists the verification valuesδi , i = 1, . . . ,6, which are the deviations from the numerical integration approximations from the
gravimetric value 0.2082 mol/mol. Eightdifferent preprocessing techniques are considered. The new simultaneous multi-objective optimization in
the fourth column gains in most instances the smallest error. The last row contains the mean values of the absolute verification values.Mnova is
directly applied to the Fourier transformed FID signal, cf.Remark 6.1.

verif. New method (multi-objective opt.) min. entropy approach [4] two-stages-tuning [1] Mnova
value no baseline corr. consec. opt. simult. opt. no baseline sep. baseline no baseline sep. baseline incl. baseline

δ̃1 −7.9 ⋅ 10−3 −3.9 ⋅ 10−3 1.2 ⋅ 10−4 −7.9 ⋅ 10−3 −2.0 ⋅ 10−3 −2.0 ⋅ 10−2 −1.1 ⋅ 10−2 −7.4 ⋅ 10−3

δ̃2 −5.5 ⋅ 10−3 −4.1 ⋅ 10−3 1.6 ⋅ 10−4 −5.6 ⋅ 10−3 −3.4 ⋅ 10−3 −1.2 ⋅ 10−2 −1.4 ⋅ 10−2 −4.0 ⋅ 10−3

δ̃3 −7.9 ⋅ 10−4 −3.4 ⋅ 10−3 −1.1 ⋅ 10−3 −8.0 ⋅ 10−4 −2.5 ⋅ 10−4 −1.3 ⋅ 10−2 −2.4 ⋅ 10−3 5.0 ⋅ 10−3

δ̃4 −3.0 ⋅ 10−3 1.9 ⋅ 10−3 4.1 ⋅ 10−4 −3.0 ⋅ 10−3 5.8 ⋅ 10−3 −9.3 ⋅ 10−3 1.0 ⋅ 10−1 −9.9 ⋅ 10−3

δ̃5 −6.3 ⋅ 10−4 1.7 ⋅ 10−3 4.5 ⋅ 10−4 −6.5 ⋅ 10−4 4.4 ⋅ 10−3 −1.2 ⋅ 10−3 1.0 ⋅ 10−1 −6.5 ⋅ 10−3

δ̃6 4.1 ⋅ 10−3 2.4 ⋅ 10−3 −8.0 ⋅ 10−4 4.1 ⋅ 10−3 7.6 ⋅ 10−3 −1.8 ⋅ 10−3 1.1 ⋅ 10−1 2.4 ⋅ 10−3

1
6 ∑ ∣̃δi ∣ 3.66 ⋅ 10−3 2.90 ⋅ 10−3 5.03 ⋅ 10−4 3.68 ⋅ 10−3 3.92 ⋅ 10−3 9.70 ⋅ 10−3 5.78 ⋅ 10−2 5.87 ⋅ 10−3

Table 2: The table lists the verification valuesδ̃i , i = 1, . . . ,6, which are the deviations from the numerical integration approximations from the the
gravimetric value 0.4079 mol/mol. Eightdifferent preprocessing techniques are considered. The new simultaneous multi-objective optimization in
the fourth column gains in most instances the smallest error. The last row contains the mean values of the absolute verification values.Mnova is
directly applied to the Fourier transformed FID signal, cf.Remark 6.1.

Remark 6.2. Some entries of the preprocessed spectra can be negative especially if only a phase correction is applied,
see e.g. the blue spectra in Figs. 2 and 3. All negative entries are set to zero prior to the numerical integration process
in order to avoid major errors - but there is no necessity for this cut-off of negative entries.

Table 1 lists the verification values for the sample mixture 1for eight different preprocessing techniques. The
analogous values for the sample mixture 2 are given in Table 2. Figure 6 is a semi-logarithmic plot of all these
verification values. The final conclusion is:

1. The phase correction approach as used here is very similarto the one presented in [4] on the basis of an entropy
minimization (see the columns 1 and 4 in the Tables 1 and 2).

2. The simultaneous phase and baseline correction by multi-objective optimization produces the best results for
the given experimental NMR spectra. The separate baseline correction step improves in all cases the results
for previous phase correction steps. The smallest deviations in the gravimetric analysis are observed for the
simultaneous correction scheme.

7. Conclusion

Competing or even conflicting objectives arise in many optimization problems. In most cases such optimization
problems cannot successfully be solved by optimizing each objectives in a step-by-step manner as no single solution
can be found which simultaneously optimizes all constraints. Instead, a trade-off is needed between the objectives.
The new algorithm for the phase and baseline correction of NMR spectra demonstrates how the multi-objective opti-
mization methodology improves the data preprocessing for NMR data. A characteristic trait of the suggested algorithm
is that the detection of pure baseline regions is done only inan initial phase.
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Figure 6: The deviationsδi from the gravimetric values 0.2082 mol/mol and the deviations̃δi from 0.4079 mol/mol for theeight different pre-
processing methods. The numerical values are listed in Tables 1 and 2. The color code is as follows: (○) for the new method but only with a
phase correction, (×) for consecutive phase and baseline corrections by the new method, and (+) for the simultaneous phase correction by the
multi-objective optimization. Further, (⊳) represent only the phase correction by minimum entropy approach, (⊲) for the minimum entropy ap-
proach with a separate baseline correction step, (◻) for only the phase correction by the two-stages-tuning approach, (◇) for the two-stages-tuning
approach with a separate baseline correction stepand (☆) for the phase and baseline correction by Mnova. Mnova is directly applied to the Fourier
transformed FID signal, cf. Remark 6.1.

The new method is tested for two NMR spectra and shows clear improvements compared to a consecutive op-
timization. In a following paper we plan to present an extensive and systematic comparison for various data sets.
Further algorithmic variations, e.g. the use of wavelets for the detection of the pure baseline regions, are possible and
the topic of future research.
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[24] M. Sawall, A. Jürß, H. Schröder, and K. Neymeyr.On the analysis and computation of the area of feasible solutions for two-, three- and four-

component systems, volume 30 of Data Handling in Science and Technology, “Resolving Spectral Mixtures”, Ed. C. Ruckebusch, chapter 5,
pages 135–184. Elsevier, Cambridge, 2016.

[25] C.H. Sotak, C.L. Dumoulin, and M.D. Newsham. Automaticphase correction of Fourier transform NMR spectra based on the dispersion
versus absorption (DISPA) lineshape analysis.J. Magn. Reson., 57(3):453–462, 1984.

[26] E.T. Whittaker. On new method of graduation.Proc. Edinburgh Math. Soc., 41:63–75, 1923.
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