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Abstract

Multivariate curve resolution methods aim at recovering the underlying chemical components from spectroscopic data
on chemical reaction systems. In most cases the spectra and concentration profiles of the pure components cannot
be uniquely determined from the given spectral data. Instead continua of possible factors exist. This fact is known
as rotational ambiguity. The sets of all possible pure component factors can be represented in the so-called area of
feasible solutions (AFS).

This paper presents an AFS study of the pure component reconstruction problem for a series of UV/Vis spectra
taken from an acid-base titration ofN-methyl-6-oxyquinolone. Additional information on the equilibrium concentra-
tion profiles for a varying acid concentration is taken from fluorescence measurements. On this basis chemometric
duality arguments lead to the construction of a unique final solution.

Key words: multivariate curve resolution, nonnegative matrix factorization, rotational ambiguity, spectral recovery,
feasible bands,FACPACK.

1. Introduction

In chemistry and catalysis we are often faced with the problem that the spectral signatures of reactants, intermedi-
ates and products overlap. A proper analysis of UV/Vis, fluorescence or infrared spectra as well as deriving kinetics
requires a clear model-independent decomposition method.Herein we present a general tool that is based on mul-
tivariate curve resolution methods in order to recover purecomponent spectra and simultaneously the concentration
profiles along the reaction coordinate. The concentration profiles can depend on the time (progress of a reaction)
or can depend on a changing temperature, acidity and so on. Inmost cases, a multi-component system cannot be
uniquely determined from the given spectra. Mathematically, continua of possible factors exist, including the chemi-
cally correct solution. In our method, all possible component factors are represented in the so-called area of feasible
solutions (AFS).

Exemplarily, we present an AFS study on the UV/Vis spectra of a recently published dye system, which has only
been characterized by a two-component analysis [44]. The new approach goes much further, which is shown for
the titration grades at an acid-base reaction of the dye. Now, systems including more than two components can be
decomposed easily. All mathematically possible solutionsare displayed in the AFS. With the additional information
on the equilibrium concentration profiles for a varying acidconcentration taken from fluorescence measurements, the
AFS can be reduced to one distinct solution. For the given dyesystem the concentration profiles have been achieved
and the chemical reaction could be described properly.

The AFS approach provides a comfortable graphical user interface and any programming is superfluous. For time
dependent measurements reaction kinetics and thermodynamic properties could be derived. Concentration dependent
studies such as titrations allow the determination of equilibrium constants, here the acid constant.

1.1. Multivariate curve resolution

Multivariate curve resolution (MCR) methods aim at extracting the contributions from the underlying sources to a
given data set. An important application in chemometrics isthe case that the spectroscopic observation of a chemical
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reaction system has yielded a matrixD ∈ R
k×n of absorption values on a time× frequency grid. Thereink is the

number of the measured spectra andn is the number of spectral channels of each spectrum. The problem is to find
the underlying spectra and concentration profiles of the pure components. The Lambert-Beer law in matrix notation
relates the pure component recovery problem to the nonnegative matrix factorization problem

D = CST
. (1)

Proper nonnegative matrix factorsC ∈ Rk×s andS ∈ Rn×s can be interpreted in a way that thes columns ofC are the
concentration profiles of thespure components and the columns ofS are the associated pure component spectra, see
e.g. [28, 25]. If additional information on the reaction system is available, for example some pure component spectra
or concentration profiles, then this can simplify the construction of proper matrix factorsC andS, see e.g. [35] and
the references therein.

For an overview on chemometric methods for solving the MCR problem see the monographs [28, 25]. The MCR-
ALS method [18, 17] is very important. it works with the alternating least squares (ALS). Without claiming any
completeness we would also like to mention the window factoranalysis [29], the evolving factor analysis [27, 24, 26,
20] and the algorithms described in [23, 21].

Here we focus on MCR methods which use a singular value decomposition (SVD) of the matrixD [22, 28, 25],
see Sec. 2.1. All these MCR methods suffer from the fact that the nonnegative matrix factorization problem (1)
typically has continua of possible solutions (C,S). This fact is known as “rotational ambiguity” of the solution
[3, 11, 39, 12, 48]. Soft-modeling (regularization) or evenhard constraints (e.g. by kinetic models) are proper tools
for reducing the rotational ambiguity, see e.g [28, 25]. In the best case these additional constraints are sufficiently
restrictive so that a unique solution can be determined.

An approach for a systematic investigation of the rotational ambiguity is to get access to the set of all nonnegative
factorizations in the form (1) for the given spectral data matrix D. A low-dimensional representation of this set is
called the area of feasible solutions (AFS), see e.g. [6, 34,11, 39]. Within the AFS-setting it is possible to adjoin
extra information on the matrix factors, for example by known concentration profiles or spectra, in a very transparent
way. By means of duality arguments, see [15, 33, 35, 30], thisadditional information can be used in order to restrict
the AFS and to visualize the mutual influence of a given spectrum on the dual concentration profiles and vice versa
[42, 4, 14].

1.2. Contents and organization of the paper

In this paper we analyze series of spectra taken from an acid-base titration of the highly-sensitive dyeN-methyl-6-
oxyquinolone as an acidometer in acetonitrile. First we analyze the ambiguity of the MCR solution. It turns out that
considerable ambiguities exist for one spectrum and also for one profile of equilibrium concentrations in dependence
on the acid concentration. The application of the so-calledclosure constraint, namely a mass balance, does not lead
to a unique solution. Additional information (namely fixed pure component spectra in combination with fluorescence
data) is used in order to construct the final solution. The softwareFACPACK[39, 41] is used for all computations.
The final pure component decomposition is validated againstthe results of a rank annihilation analysis and a kinetic-
model-based factorization [16, 2]; see also the related rank-1 downdates by [5].

The paper is organized as follows: Section 2 introduces SVD-based MCR techniques, the AFS approach for rep-
resenting the rotational ambiguity and the related dualityprinciples for the solution of the spectral recovery problem.
The implementation of these methods in theFACPACK-software is briefly reviewed in Sec. 3. The chemometric
analysis for an acid-base titration is contained in Sec. 4.

2. Chemometric pure component recovery

Next the AFS and related duality principles are shortly explained. The starting point is the SVD-based construction
of factorizationsD = CST .
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2.1. SVD-based construction of pure component factorizations

From a mathematical point of view the factorization (1) is a nonnegative matrix factorization ofD. Typically,
the dimensionsk andn of D are much greater than the number of the underlying chemical componentss. For an
appropriate value ofs (typical values ares ≤ 7) the factorsC andS are computed by means of a truncated SVD of
the data matrix [22]. The truncated SVD has a noise-filteringeffect and readsD = UΣVT with orthogonal matrices
U ∈ Rk×s andV ∈ Rn×s. Further,Σ ∈ Rs×s is a diagonal matrix with the singular values on its diagonal. According to
[22, 28, 25, 31] the factorsC andS can be represented within the truncated bases of left and right singular vectors by
means of a basis transformation matrixT ∈ Rs×s as follows

D = UΣVT = UΣT−1
︸  ︷︷  ︸

C

TVT
︸︷︷︸

ST

. (2)

ThusC = UΣT−1 andS = VTT are representations of thes(k + n) matrix elements ofC andS by the much smaller
number ofs2 matrix elements ofT (and its inverseT−1). Sec. 2.3 shows how these degrees of freedom can be reduced
from s2 to (s− 1)s. For generalT the matricesC andS are calledabstract factorsand can have large negative entries.
The next step is to extract only the nonnegative, chemicallyrelevant factors.

2.2. Computation of nonnegative factors

SVD-based MCR methods on the basis of Eq. (2) aim at constructing a proper matrixT so thatC andS are
the chemically correct factors. The matrixT can be determined by solving a minimization problem for an objective
function which is a weighted combination of penalty/regularization functions [13, 7, 47, 31]. The scalar weightfactors
enable a proper balance between the different constraints and steer the factorization process. However, the resulting
factorsC andS sometimes depend on the constraint presetting of the MCR program. This is an unwanted effect. The
minimization of an objective function is usually not sufficient in order to enforce only one, intentionally the chemically
correct solution.

In contrast to aiming at a single solution which potentiallyis only an approximation, it is also possible to compute
the sets ofall possible nonnegative factorsC andS with D = CST . Such approaches are band boundary computations
[8, 46] and the AFS computation.

2.3. The area of feasible solutions

The AFS is a low-dimensional representation of either all nonnegative spectra, namely the possible columns of
S, or all nonnegative concentration profiles, namely the columns ofC, with D = CST . In other words, we consider
all concentration profiles and all spectra which can be extended to nonnegative matricesC and S in D = CST

[6, 34, 11, 39, 10, 37, 45]. These feasible columns ofC or S with eitherk or n components can be described in a
low-dimensional way by the rows ofT. The reason for this is that the matrix elements ofT in (2) are the expansion
coefficients of the spectra with respect to the basis of the right singular vectors. The associated concentration profiles
depend in a similar way onT−1. Without loss of generality the desired nonnegative spectrum can be assumed to be
located in the first column ofS = VTT , cf. Eq. (2). The associated expansion coefficients are given by the first row of
T with the form

T =



1 x1 · · · xs−1

1
... W
1


, (3)

whereW is an (s− 1) × (s− 1) submatrix ofT. The first column ofT equals the all-ones vector; see [39] for the
justification of this implicit scaling. On the basis of thesearrangements the AFS for the spectral factor is defined as

MS = {x ∈ R
s−1 : existsW ∈ R(s−1)×(s−1) with rank(T) = s, C = UΣT−1 ≥ 0 andS = VTT ≥ 0}. (4)

The AFS comprises all (s− 1)-dimensional vectorsx ∈ Rs−1 which can be completed by a matrixW ∈ R(s−1)×(s−1) so
thatT by (3) is a regular matrix andC,S ≥ 0. Similarly, one can also define the AFSMC which represents all feasible
nonnegative columns ofC, see [37].
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The AFS setsMS andMC for two-component systems can easily be constructed [22, 1,3]. Several geometric
and numerical algorithms are known to compute the AFS for (s= 3)-component systems [6, 34, 11, 39, 41, 19, 9, 43].
For (s = 4)-component systems the AFS computation is much more difficult and only few publications are available
[12, 43]. See also [10, 37] for an overview on the AFS topic.

Here three-component systems (s = 3) are in the focu of interest. For this case the polygon inflation method
[39, 41] is an effective, very fast and easy-to-control algorithm for AFS computations. In Sec. 3 the software module
Complementarity& AFS (3 components)of FACPACKis used in order to construct the AFS. It is also used to reduce
the ambiguity successively by involving additional systeminformation, see Sec. 2.4.

Up to now we have rigorously assumed nonnegativity ofD, C andS. However, experimental spectral data after
preprocessing steps, e.g. background subtraction, may contain small negative entries. The rank-s truncation of the
data matrix by the SVD can be a further source of small negative entries. Then small negative entries should also
be accepted inC andS as otherwise the productCST cannot reproduce small negative entries ofD. To this end the
polygon inflation algorithm uses a control parameterε ≥ 0 on the acceptance of small negative entries ofC andS.
The feasibility check works as a lower bound on the relative magnitude of negative entries. If rank(T) = s, then a
violation of the inequalities

C ji

max
ℓ=1,...,k

|Cℓi |
≥ −ε, j = 1, . . . , k, and

S ji

max
ℓ=1,...,n

|Sℓi |
≥ −ε, j = 1, . . . , n, (5)

andi = 1, . . . , s is used for a penalization in the minimization process.

2.4. Duality underlying the factors C and S

The factorization problemD = CST is sometimes accompanied by a certain pre-knowledge of parts of the factors.
For instance, a spectrum of a reactant or a reaction product might be known or it is possible to determine the concen-
tration profile of a chemical component. A further case is that a frequency window is known in which some of the
chemical components are absent.

This information on the columns ofC and/or S can be exploited in order to reduce the rotational ambiguityof
the solution. The reason for this is that the constraints of nonnegativity ofC andS and the equalityD = CST imply
restrictions onC if S is partially given and vice versa. These mutual constraintsare related to the duality principle or
complementarity theory [15, 33, 35, 4, 30].

The underlying idea for the detailed analysis, which is explained in [35], is based on Eq. (2) whereC andS are
coupled via the matrixT. If for example one pure component spectrum is given, then anassociated row ofT can be
determined. Due to the equationT−1T = Is, a known row ofT implies linear and affine constraints on the columns of
T−1. This yields according toC = UΣT−1 in linear, respectively affine, constraints for the columns ofC. An extreme
case is that all but one spectra are given. Then the concentration profile of the remaining/complementary chemical
component is uniquely determined except for positive scaling.

2.5. Reduction of the AFS by duality arguments

The linear and affine constraints due to known parts ofC or S can be visualized in the AFS [42, 4, 14]. The
reduced ambiguity expresses itself in a reduced size of the AFS after taking into consideration the known parts of
C or S. The reduction of the ambiguity is analyzed in this paper forthe three-component system of an acid-base
titration, see Sec. 4. For this system we demonstrate how a known spectrum of one of the components (this spectrum
is represented by a certain point in the AFS) restricts by duality arguments thes− 1 concentration profile of the two
remaining chemical components. In the AFS of the concentration factor these components are located in an (s− 2)-
dimensional affine hyperplane. This hyperplane is (in a mathematical sense)dual to a given fixed point in the spectral
AFS. To be explicit, the dual affine hyperplane of a three-component system for the case of a given spectrum is a line
in the concentrational AFS. Similar relations hold in the reversed direction. For an (s= 4)-component system a given
point in the spectral AFS is dual to a plane in the concentrational AFS and vice versa. See [42, 38] for more details
on these relations and for mathematical formula underlyingthis duality of points and affine hyperplanes.
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Figure 1: A screen-shot of the graphical user interface of the FACPACK-moduleComplementarity& AFS (3 components). A first concentration
profile is constructed. The example data set is explained in Sec. 4. The construction steps are explained in Sec. 3. The boundaries of the two
AFS-sets forC andS are drawn in black in the two lower plots. The user can move themouse pointer through the AFS and the associated spectrum
or concentration profile is shown simultaneously. By pushing the left mouse button, a certain solution can be fixed. The different scaling in the plot
ofMC compared to the AFS plots in Figs. 6-8 is explained by the factthat the matrixΣ is taken into account here, but is omitted in Figs. 6-8.

3. Data analysis with FACPACK

The chemometric analysis in Sec. 4 uses the software packageFACPACKwhich provides a convenient MatLab
graphical user interface (GUI) for AFS-computations for two-, three- and four-component systems.The software is
available on theFACPACK-homepage [36]. In particular we utilize theFACPACKmoduleComplementarity& AFS
(3 components)that serves to construct a pure component decomposition on the basis of the two AFS-sets for the
factorsC andS. Known parts of the factors can be identified in the AFS. The program uses duality arguments, see
the complementarity theorem [35], in order to visualize thecorrelations of the factorsC andS interactively. This
approach reduces the rotational ambiguity of the nonnegative matrix factorization problem drastically.

The steps of the chemometric analysis are illustrated by Figs. 1 and 2 that show screen-shots of this program if
applied to the UV/Vis-data of Sec. 4. First the spectral data is loaded to the program (see step 1 in Fig. 1). Certain
control parameters can be set in an optional step (see step 2 in Fig. 1). The AFS sets are drawn after checking the AFS
box (see step 3). The chemometric pure component reconstruction is started by selecting the radio buttonfirst (see step
4). Then the mouse pointer can be moved through the concentrational AFS. Simultaneously the concentration profile
which belongs to the AFS-coordinates under the mouse pointer is drawn. Any solution can be locked by clicking the
left mouse button. The selected solution in the concentrational AFS is linked to a straight line in the spectral AFS (by
duality arguments). This blue straight line in Fig. 1 represents a significant restriction on the feasible spectral profiles.

Then Fig. 2 (upper screen shot) demonstrates how a second concentration profile is determined. Once again,
duality arguments result in restrictions in the spectral AFS, see the green straight line. The point of intersection
of these two straight lines uniquely determines the spectrum of one chemical component. Finally, the screen shot
in the lower part of Fig. 2 illustrates how the pure componentdecomposition is completed after determining a third

5



−3 −2 −1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

8

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

x 10
−3

−0.2

0

0.2

0.4

0.6

0.8

1

200 250 300 350 400 450 500 550 600
−0.2

0

0.2

0.4

0.6

0.8

1

step 5: select the 2nd conc. profile

−3 −2 −1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

8

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

x 10
−3

−0.2

0

0.2

0.4

0.6

0.8

1

200 250 300 350 400 450 500 550 600
−0.2

0

0.2

0.4

0.6

0.8

1

step 6: select the 3rd conc. profile

Figure 2: In addition to Fig. 1 these two screen-shots demonstrate the construction of the second (upper screen-shot) and of the third (lower screen-
shot) concentration profile. The duality theory increasingly limits the feasible solutions, which means that the rotational ambiguity is reduced.
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Figure 3: Series of UV/Vis spectra on the protonation ofMQz in acetonitrile. Left: 2D-plot. Right: 3D-plot.
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Figure 4: Reaction scheme of the proton transfer toN-methyl-6-oxyquinolone (MQz), dimerization to [MQzHMQz]+ and split of the dimer to
MQc+ with an increasing acid concentration.

concentration profile. The user has then the option to refine the decomposition by releasing any arbitrary concentration
or spectral profiles and to modify it until a complete optimalsolution is found.

TheFACPACKsoftware uses the polygon inflation algorithm for AFS computations and provides all the chemo-
metric software tools within a conveniently usable graphical user interface. This includes interfaces for the data
import, for an optional data preprocessing and the data export. Other AFS computation methods are the so-called
Borgen plots [6, 34] and the recent dual Borgen plot approach[40, 38]. Alternatively, the rotational ambiguity un-
derlying MCR factorizations can be illustrated in terms of the bands of feasible profiles [8, 46] and by using the
MCR-Bands software. The steps of our chemometric analysis can be applied in similar form to the sets of feasible
bands.

3.1. Control parameter setting

The numerical AFS computation is controlled by several parameters, e.g. stopping criteria for the optimization
procedure, the boundary precision, a bound on the sum of least squares of the objective function, the maximal number
of cycles of the optimization and the maximal number of function evaluations. For the detailed description of these
parameters we refer to [39]. The program provides default values for all parameters which ensure in most cases a
stable, precise and fast AFS computation. Finally, the parameterε in Eq. (5) controls the size of acceptable negative
entries ofC and S and thus the size of the AFS. Increasingε results in an expansion of the AFS-sets. For all
computations we usedε = 2 · 10−4.

4. Chemometric analysis of an acid-base titration

Here we study a series of UV/Vis spectra of a titration ofN-methyl-6-oxyquinolone (MQz) in acetonitrile with the
trifluoromethanesulfonic superacid. The acid is denoted byHA. The series of spectra is plotted in Fig. 3. The AFS is
constructed for the spectral factor and for the factor of equilibrium concentration profiles in dependence on the acid
concentration. Finally, a unique pure component factorization is constructed by involving information on known pure
component spectra and fluorescence measurements of the equilibrium concentrations. The addition of information for
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the two matrix factorsC andS distinguishes the present approach from other works as [42,4, 14]. See Sec. 4.4 for
the details.

4.1. Experiment and spectral data

Fig. 4 shows the protonation scheme ofN-methyl-6-oxyquinolone (MQz) which includes an intermediate dimer-
ization, see also [32]. A total number ofk = 12 UV/Vis spectra are taken for increasing concentration values of the
superacidHA. The interval of concentration values ofHA is [0, 1.264· 10−3]mol l−1. Each spectrum is a vector with
n = 401 components which are the absorption values in the wavelength window [200, 600]nm. Hence,D ∈ R12×401.
Fig. 3 shows the series of spectra in a 2D- and a 3D-plot.

The three dominant chemical components of this reaction system are the chemical indicatorMQz, the dimer
species [MQzHMQz]+, the protonated indicatorMQc+ as well asHA andA−. The latter two components in negligible
extent contribute to the absorption in the analyzed wavelength interval. The reaction equations with kinetic constants
read

2MQz+ HA
k1
−−⇀↽−−
k−1

[MQzHMQz]+ + A−,

[MQzHMQz]+ + HA
k2
−−⇀↽−−
k−2

2MQc+ + A−.
(6)

For stoichiometric reasons the weighted sum of concentration values fulfills

c(MQz) + 2c([MQzHMQz]+) + c(MQc+) = c0 (7)

with the initial concentrationc0 = 9.84269· 10−4mol l−1. The chemometric analysis is based on the following steps:
First we compute an SVD ofD and also the AFS sets, see Sec. 4.2. The rotational ambiguitywhich is represented by
these AFS sets is then visualized in terms of feasible bands,see Sec. 4.3. In order to reduce the rotational ambiguity, we
add in a first step the pure component spectrum of the reactantMQzand in a second step the equilibrium concentration
profiles ofMQzandMQc+, see Sec. 4.4.

4.2. SVD and AFS computation

Fig. 5 shows the first five left/right singular vectors and the 12 singular values ofD. These data clearly indicate
three dominant singular values and thus onlyMQz, [MQzHMQz]+ andMQc+ have relevant absorptions in the given
wavelength window. This result is confirmed by the associated three left/right singular vectors which have a non-
oscillatory character and are expected to include relevantstructural information. The singular values and the singular
vectors indicate a relatively large signal-to-noise ratiofor the given spectraD. This is a good basis for a successful
construction of the two AFS sets and also for exploiting the underlying duality of the factorsC andS. The polygon
inflation method is applied withδ = εb = 10−4 andε = 2·10−4 as upper bounds on the relative size of negative entries.

The AFS-sets indicate a small ambiguity of the solution for the two componentsMQzandMQc+ (in blue and red)
in the spectral AFS since the area of the associated subsets of the AFS is very small. The subsets of the concentrational
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chemical componentsMQz(blue), [MQzHMQz]+ (green) andMQc+ (red). The results are computed withε = 2 · 10−4.

AFS which belong to the componentsMQz (blue) and [MQzHMQz]+ (green) are also small. Thus the associated
series of spectra and concentration profiles only show a small variation. In other words the rotational ambiguity is
of moderate magnitude. Only the pure component spectrum of [MQzHMQz]+ and concentration profile ofMQc+

contain considerable ambiguities.

4.3. Bands of possible profiles representing the ambiguity

The rotational ambiguity inherent to an AFS can also be represented by drawing the associated bands of feasible
spectra and the band of feasible equilibrium concentrationprofiles. This is done in Fig. 7. The colored crosses in the
left two AFS plots mark positions for which the associated spectra or concentration profiles are drawn. More than
one point for one chemical component is considered in the spectral AFS of [MQzHMQz]+ and in the concentrational
AFS of MQc+.

The series of spectra and concentration profiles are drawn inFig. 7. The upper row of plots show the spectral AFS
and their spectral bands. The color code for the AFS sets and the bands is as follows. Blue color is used forMQz,
green for [MQzHMQz]+ and red forMQc+. The subsets of the AFS-sets with the largest area, namely [MQzHMQz]+

in the spectral AFS andMQc+ in the concentrational AFS, are associated to the series of the feasible spectra (green)
and concentration profiles (red), see the centered column ofFig. 7.

The two plots in the centered column of Fig. 7 show the bands ofthe possible factors in a non-scaled form (as
obtained by theFACPACKsoftware). Two spectra (MQzandMQc+) and one concentration profile ([MQzHMQz]+)
are almost uniquely determined; the latter by duality. The equilibrium concentration profile of (MQz) has a very
low rotational ambiguity. However, the spectrum of [MQzHMQz]+ and the concentration profile ofMQc+ show a
considerable ambiguity.

The two plots in the right column of Fig. 7 show the same profiles after an application of a scaling with respect to
the so-called closure constraint, which is the mass balanceunderlying (7). The scaling constants are computed in the
sense of least-squares along the full acid concentration axis. This results in concentration values ofMQc+ equal to
the initial valuec0 = 9.84269· 10−4 at the highest acid concentration. A side effect of this scaling is that an additional
scaling ambiguityappears for the concentration profile of the dimer [MQzHMQz]+ (green curves). In other words
the profile of this component has been qualitatively determined, but not quantitatively. With the given information on
the system this remaining ambiguity cannot be broken up. Forthe related triples of concentration profiles in the right
lower plot of Fig. 7 the squared sum of errors

1
c0

12∑

i=1

(ci(MQz) + 2ci([MQzHMQz]+) + ci(MQc+) − c0)2

has approximately the value 4.1 · 10−8. Therein the indexi runs through the 12 different values of the acid concen-
tration for which the equilibrium concentrations of the three componentsMQz, [MQzHMQz]+ andMQc+ are to be
determined.
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Figure 7: AFS-based analysis of the rotational ambiguity. Color code:MQz in blue color, [MQzHMQz]+ in green color andMQc+ in red color.
Left column of plots: In the spectral AFS two spectra (crosses for MQzandMQc+) are fixed due to their low ambiguity. A series of points in the
green subset of the AFS is considered. These are marked by green crosses and represent a series of possible spectra of [MQzHMQz]+. By duality
arguments the equilibrium concentration profile of [MQzHMQz]+ is uniquely determined, see the green cross in the concentrational AFS. The blue
crosses (MQz) only show a small variability, whereas the equilibrium concentration profiles ofMQc+ (red) show a strong variation. The remaining
four subplots show the bands of spectra and concentration profiles which belong to the marked points in the AFS. The width of these bands is large
if the points in the AFS show a strong variation. These plots show the profiles in a non-scaled and also in a scaled form; see the explanations.

4.4. Involvement of additional chemometric information

In order to attain a final and unique pure component decomposition some additional information on the chemical
reaction system is to be added. This is done in two steps:

First the pure component spectrum ofMQz is set to be equal to the first measured spectrumD(1, :). The justifica-
tion for this is that the concentration vector of the three chemical components for an initial acid concentration of zero
equals (c0, 0, 0). Furthermore, the last spectrumD(12, :) is set to the pure component spectrum of componentMQc+.
This fixes two points in the spectral AFS. The underlying duality uniquely determines (up to scaling) the equilibrium
concentration profile of the dimer [MQzHMQz]+, see the left column of plots in Fig. 8. As explained in Sec. 4.3 some
ambiguity still remains.

The second step is that fluorescence measurements make it possible to determine the equilibrium concentration
profiles ofMQz(blue curve) andMQc+ (red curve). Once again the duality of these known parts of the factorC to the
factorS uniquely determines the spectrum of the dimer [MQzHMQz]+. This completes the pure component recovery.
All results are shown in Fig. 8.

4.5. Result verification by means of rank annihilation and kinetic-hard modeling

In Sec. 4.4 we have involved the pure component spectra ofMQz and of MQc+ to the final pure component
recovery. Good approximations of these spectra are accessible from the first and last column ofD. The associated
concentration values areC(1, :) = (c0, 0, 0) andC(12, :) = (0, 0, c0). These data also make it possible to apply a rank
annihilation analysis [16, 2] in the form of two rank-1 downdates [5]

D̃ = D −
C(:, 1)
C(1, 1)

D(1, :) −
C(:, 3)

C(12, 3)
D(12, :). (8)
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Figure 8: Reconstruction of the final solution as explained in Sec. 4.4. Upper left plot: Two pure component spectra are fixed in the spectral AFS (×
markers). Lower left plot: The duality underlyingC andS in D = CST uniquely determines one point in the concentrational AFS (green×marker).
Centered column of figures: Fluorescence measurements determine two of the concentration profiles (blue and red markersin the concentrational
AFS). Once again a duality argument uniquely determines thespectrum of the dual spectrum, namely the spectrum of the dimer [MQzHMQz]+.
Right column of figures: The final pure component factorization.

If perturbations are ignored, theñD is a rank-1 matrix which contains in its columns only multiples of the spectrum
of the dimer [MQzHMQz]+. For experimental spectral data we must take into account noise and other perturbations.
Thus a singular value decomposition ofD̃ is applied. The left and the right singular vectors corresponding to the
largest singular value are the desired equilibrium concentration profile and spectrum of [MQzHMQz]+. The profiles
are plotted in Fig. 9 by dashed lines. The results of the AFS-based approach are plotted by solid lines. Relevant
difference must be stated in particular for the spectrum of the dimer [MQzHMQz]+ which attains close to 500nm a
minimal negative component of−1.7 · 10−2 by rank annihilation. The AFS-based approach prevents negative entries
of such a magnitude. There are also differences between the equilibrium concentration profiles of the two methods.

In order to judge which of the approaches provides the betterresults, we have fitted the kinetic model (6) to the
computed pure component factors each for the two computational approaches. Such kinetic models are well known to
be stringent decision makers [45]. For these computations we have setk−1 = k−2 = 0 as the trifluoromethanesulfonic
superacid does not let expect a notable back reaction. The results are plotted in Fig. 10. They clearly indicate that
the AFS-based decomposition provides the better results. This conclusion is supported by the following relative error
values

reldiffi :=
‖C(sol)(:, i) −C(kin)(:, i)‖

‖C(sol)(:, i)‖

on the differences of the kinetic-model-based concentration profilesC(kin)(:, i) for the the components fori = 1, 2, 3 to
the solution profilesC(sol)(:, i) of the AFS-based approach and the rank annihilation approach. These relative errors
have been computed with respect to the maximum norm (maximalvalue of absolute error values) and the Euclidean
norm (sum of squares)

AFS-based solution: ‖ · ‖max : reldiff = (0.039, 0.050, 0.048), ‖ · ‖2 : reldiff = (0.089, 0.088, 0.103),

Rank annihilation: ‖ · ‖max : reldiff = (0.117, 0.121, 0.092), ‖ · ‖2 : reldiff = (0.235, 0.223, 0.195).
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Figure 9: Comparison of the results of a rank annihilation analysis (dashed lines) with the results of the AFS-based approach for the reduction of
the rotational ambiguity.

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

1

2

3

4

5

6

7

8

9

x 10
−4

concentrationHA [mol/l]

m
o

l/l

kinetic fit to the AFS-based factors.

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

1

2

3

4

5

6

7

8

9

x 10
−4

concentrationHA [mol/l]

m
o

l/l
kinetic fit to the rank annihilation factors

Figure 10: Kinetic model fits (dash-dotted lines) to the two solutions as shown in Fig. 9.

5. Conclusion

The ambiguity of the solutions of the pure component factorization problem is a fundamental complication, which
is often hidden by the fact that MCR software packages produce only one solution. However, this single solution must
be considered to be only a more or less reliable approximation of the true solution. In this study we have shown that a
unique pure component decomposition can be gained for the given three-component system consisting ofN-methyl-
6-oxyquinolone (MQz), the zwitterionic species [MQzHMQz]+ and MQc+. The underlying rotational ambiguity
of the pure component factorization problem for this systemis computed and represented in the AFS. Versus the
background of the AFS, various chemometric techniques are employed in order to reduce the ambiguity. The final
pure component factorization is verified against an alternative chemometric approach and also against a kinetic-model
of the reaction scheme. The results underline the effectiveness of AFS-based chemometric analyses and demonstrates
the effectiveness ofMQzas an optical acidometer.
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[34] R. Rajkó and K. István. Analytical solution for determining feasible regions of self-modeling curve resolution(SMCR) method based on

computational geometry.J. Chemom., 19(8):448–463, 2005.
[35] M. Sawall, C. Fischer, D. Heller, and K. Neymeyr. Reduction of the rotational ambiguity of curve resolution techniques under partial

knowledge of the factors. Complementarity and coupling theorems.J. Chemom., 26:526–537, 2012.
[36] M. Sawall, A. Jürß, and K. Neymeyr. FACPACK: A softwarefor the computation of multi-component factorizations andthe area of feasible

solutions, Revision 1.3. FACPACK homepage: http://www.math.uni-rostock.de/facpack/, 2015.
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