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Abstract

Multivariate curve resolution (MCR) techniques can recover the pure component information from the spectral mix-

ture data. Assuming an underlying bilinear model, the data matrix is to be factorized in matrices of the pure component

spectra and the associated concentration profiles. Typically, there are solution continua exist which can be represented

by the area of feasible solutions (AFS). This chapter analyzes the ambiguity of the matrix factorization problem. Var-

ious methods are reviewed for the construction and the numerical approximation of the nonnegative factorizations.

An overview on the history of the AFS up to recent developments is included. Important properties of the AFS are

discussed. Several example problems are analyzed mainly by the FACPACK software.

Key words: area of feasible solutions, FACPACK, multivariate curve resolution, nonnegative matrix factorization,

spectral recovery.

1. Introduction

The spectroscopic analysis of the interaction of matter with electromagnetic radiation allows an extensive information

retrieval not only from chemical reaction systems. Independently of the nature of the interaction of the radiation

(mainly absorption, emission or scattering) the resulting spectra naturally result from superposition phenomena that

are determined by the chemical components.

Typically, a series of spectra is recorded along the time axis of a chemical reaction system. In analogy to the cocktail

party problem [1], or more generally the blind source separation problem, the aim is to extract the underlying pure

component information from the spectral mixture data. In particular, one is interested in the number of the chemical

species, their pure component spectra (in order to identify the chemical species) and their concentration profiles.

Multivariate curve resolution (MCR) methods are prominent tools for unmixing the spectral mixture data. In favorable

cases the data contains characteristic fingerprints that allow a direct identification of certain components. In most

cases, MCR methods suffer from an intrinsic non-uniqueness of the pure component decomposition.

Here we consider bilinear data according to the Lambert-Beer law [2]. The spectral mixture data is stored in a

k × n matrix D. The k measured mixture spectra are written row-wise in D, and the index n denotes the number of the

spectral channels per spectrum. The matrix form of the Lambert-Beer law includes a time and a frequency dependence

[3, 2, 4] and says that the matrix D (approximately) equals the product of the concentration profile matrix C and the

spectra matrix S as

D = CS T + E. (1)

In its columns, the k × s matrix C contains the concentration profiles of the s pure components. Further, the columns

of the n × s matrix S are the associated pure component spectra, and the error matrix E collects all (ideally small or

vanishing) deviations from ideal bilinearity.

The spectral recovery problem means that the two matrix factors C and S are computed from the spectral mixture data

D. Hence this problem is a matrix factorization problem with the important constraint that the factors C and S are

nonnegative matrices. The nonnegativity constraint is not sufficient in order to guarantee that only one factorization

exists aside from trivial permutations and rescalings of the columns of C and S . Instead, many nonnegative factoriza-

tions typically exist apart from the chemically correct factors. Mathematically, this fact is expressed in the existence

of regular transformation matrices T so that

D = CS T = C(T−1T )S T = (CT−1)(TS T ) (2)
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Figure 1: The concentration profiles (left), the pure component spectra (center) and the mixture spectra (right, only every third spectrum is plotted)

for data set 1. The pure component spectra are scaled in a way that they are consistent with the concentration profiles by the kinetic reaction model

and with D = CS T . Blue (X): [Rh((R,R)-iPr–ButiPhane)(COD)]BF4 , red (Y): [Rh((R,R)-iPr–ButiPhane)(MeOH2 )]BF4 .

with nonnegative matrices CT−1 and TS T . These factors can represent a substantially different nonnegative factoriza-

tion of D. This finding is well-known under the keyword of rotational ambiguity [5, 6, 7, 8]. A low-dimensional way

to represent the sets of all possible columns of C and S that appear in nonnegative factorizations of D is the so-called

area of feasible solutions (AFS). This chapter reports on the AFS, on some of its properties and on its numerical

computation. The representation has a focus on the polygon inflation algorithm [9, 10] and its implementation in the

FACPACK software package [11].

The chapter is organized as follows: First, in subsection 1.1 we introduce three data sets that accompany the expla-

nations and serve to illustrate the various methods. In section 2 we give a brief review on MCR-approaches that use

a truncated singular value decomposition (SVD) in order to construct C and S . The AFS is introduced in section 3.

The presentation includes a short history of the AFS-approach and its geometric-constructive background with the

relations to the so-called feasible simplices. Further, we discuss the duality principle and its interpretation in terms of

the geometric AFS construction. Various methods for a numerical computation of the AFS are introduced in section 4.

Section 5 is about the MatLab-toolbox FACPACK for AFS computations and related numerical algorithms. Finally,

several results of numerical experiments are presented in section 6.

1.1. Data sets

In order to discuss the ambiguity underlying the spectral recovery problem, we use three spectroscopic data sets

throughout this chapter. These spectral data sets are an experimental UV/Vis data set for a chemical two-component

reaction system, a three-component model data set and an experimental three-component IR-data set. In this system

a fourth major component exists, which does not show a significant absorption in the selected wavenumber interval.

Each of the three data sets includes a kinetic reaction model, but it is not necessary to have a kinetic model for applying

MCR methods. However, for representation purposes it appears to be favorable to use an accompanying kinetic model

in order to construct the concentration profiles and so the model data. Furthermore, such a model helps to reduce the

rotational ambiguity and to compare the reduction step with other approaches.

Data set 1. This data set is on the investigation of ButiPhane ligands as well as the hydrogenation activity and

selectivity of the corresponding rhodium complexes [12]. The data set covers a number of k = 82 UV/Vis spectra

taken at equal time distances in the interval t ∈ [0, 297]min. Each spectrum uses n = 1951 equidistant spectral

channels in the wavelength interval λ ∈ [260, 455]nm. The underlying kinetic reaction model is

X
k1

−−⇀↽−−
k−1

Y.

Therein X stands for [Rh((R,R)-iPr–ButiPhane)(COD)]BF4 and Y for [Rh((R,R)-iPr–ButiPhane)(MeOH2)]BF4. The

initial concentration values are cX(0) = 2.15 · 10−4 mol l−1 and cY (0) = 0 mol l−1.

Figure 1 shows the concentration profiles of the two chemical components X and Y for the kinetic hard model solution

k−1 = 0 min−1 and k1 = 9.494 · 10−3 min−1, the associated pure component spectra as well as the mixture spectra

forming the rows of D. The first four left and right singular vectors of D and a plot of the first 15 singular values are

shown in figure 2.

Data set 2. For the three-component model problem we use the kinetic reaction model

X
k1

−−⇀↽−−
k−1

Y
k2

−−⇀↽−−
k−2

Z

2
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Figure 2: Results of the singular value decomposition (SVD, see section 2.3) of D for data set 1. Left: the first four left singular vectors. Center:

the largest 15 singular values. Right: the first four right singular vectors. Colors in the order of an ascending count index: blue, red, ochre, purple.
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Figure 3: The concentration profiles (left), the pure component spectra (center) and the mixed spectra (right, only every third spectrum is plotted)

for data set 2. Blue: X, red: Y , ochre: Z.

with k1 = 1, k−1 = 0.25, k2 = 1.5, k−2 = 0.2 and the initial concentrations cX(0) = 1, cY(0) = 0 and cZ(0) = 0. The
equidistant time interval discretization with t ∈ [0, 7.5] uses k = 50 grid points. The computation of the concentration
profiles of X, Y and Z that form the columns of C is done numerically with the MatLab-routine ode45. The ode45
control parameters are RelTol= 10−10 and AbsTol= 10−10. The spectral profiles are assumed as sums of Gaussians in
the following form

aX(λ) = 0.5 exp

(

−
(λ − 27.5)2

100

)

+ exp

(

−
(λ − 70)2

250

)

,

aY (λ) = 0.4 exp

(

−
(λ − 25)2

50

)

+ exp

(

−
(λ − 60)2

150

)

,

aZ(λ) = 0.6 exp

(

−
(λ − 30)2

25

)

+ exp

(

−
(λ − 65)2

25

)

.

The wavelength interval λ ∈ [1, 100] is discretized equidistantly by using n = 500 nodes. The resulting columns

of S are taken as S i1 = aX(λi), S i2 = aY(λi) and S i3 = aZ(λi) for i = 1, . . . , n. This results in the spectral mixture

data matrix according to D = CS T ∈ R50×500. The pure component profiles as well as the spectral mixture data are

presented in figure 3.

Data set 3. The data set was generated in order to analyze the influence of the carbon monoxide pressure on

the rhodium-catalyzed olefin hydroformylation; see [13] for the details on this reaction. The data set comprises

a number of k = 850 (non-equidistant in time) spectra, each with n = 645 equidistant frequency channels in

ν ∈ [1962.1, 2117.6] cm−1. The spectra are taken in the time interval t ∈ [4.72, 883.6] min. The reaction starts

at t = 0. A Michaelis-Menten kinetic

S + K
k1

−−⇀↽−−
k−1

[S − K]
k2

−→ P + K (3)

is assumed. The initial concentrations are cS (0) = 0.44364 mol l−1, cK(0) = 3.0440 · 10−4 mol l−1 and cS−K(0) =

cP(0) = 0 mol l−1. The components S (the substrate/olefin component), K (the hydrido complex) and S − K (the acyl

complex) show significant absorptions in the given frequency window, but not P (the aldehyde).

The pure component profiles (computed by kinetic hard-modeling [14, 15, 4, 16, 17]) as well as the mixture spectra

are presented in figure 4. The dominant left and right singular vectors of the spectral data matrix are shown in figure

5.

3
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Figure 4: The concentration profiles (left), the spectral profiles (center) and the mixture spectra (right, only every 30th spectrum is plotted) for data

set 3. Additionally, the solutions of the fitted kinetic model are drawn by dash-dotted black lines. Blue: olefin, red: hydrido complex, ochre: acyl

complex.
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Figure 5: The dominant singular vectors and the 15 largest singular values of the spectral mixture data matrix D for data set 3. The fourth left

singular vector is strongly oscillating so that no important chemical information can be expected from this singular vector. Colors in ascending

order of the count index: blue, red, ochre, purple, green.

1.2. The colon notation

We use the so-called colon notation in order to get access to the columns and rows from a matrix, see [18]. If

M ∈ Rm×n, then M(:, i) is the ith column vector of M and M( j, :) is the jth row vector of M. Furthermore, M(:, i1 : i2)

is the submatrix of M containing the columns i1 up to i2 of M. The colon notation is used by the numerical computing

environment MatLab.

2. Multivariate curve resolution

Multivariate curve resolution techniques try to reconstruct pure component information from spectral mixture data

according to the bilinear Lambert-Beer law (1). Since nonnegativity of the factors C and S can be assumed, the

mathematical problem underlying the MCR problem is that of a nonnegative matrix factorization (NMF, [19, 20]).

A major complication for all MCR-methods and also for NMF-computation methods is the non-uniqueness of a

factorization. In this section we analyze this non-uniqueness and discuss three strategies for the MCR-data analysis.

The truncated SVD of D plays a key role not only for these methods but also for the construction of the AFS.

2.1. Ambiguity of the factorization

Three types of solution ambiguity are to be distinguished for the factorization problem D = CS T . These are the

permutation ambiguity, the intensity ambiguity and the rotational ambiguity [7].

The permutation ambiguity expresses the fact that the columns of C and S in a nonnegative factorization D = CS T

can simultaneously be rearranged by inserting a permutation matrix P and its inverse matrix P−1 = PT . Permutation

matrices are formed by permuting the columns (or rows) of an identity matrix. Then

D = CS T = C(PPT )S T = (CP)(PT S T ) = (CP)(S P)T (4)

yields the factors CP and S P. The matrix CP has the same column vectors as C, but in a different order. The same is

true for S P and S . The simultaneous rearrangement of the columns does not provide any deeper insight on the pure

4



components, but justifies to focus only on the possible first columns of C and S if the set of all feasible factorizations

of D is considered. The intensity ambiguity, also called the multiplicative ambiguity [4], is similar to the permutation

ambiguity. The only difference is that the permutation matrix P is substituted by a diagonal matrix with positive

diagonal elements and that PT is substituted by the inverse of the diagonal matrix. In other words, if a column of C is

scaled by constant γ > 0, then the associated column of S is scaled by 1/γ. Clearly, the scaling ambiguity does not

provide any additional information. Hence we ignore these two ambiguities and also their combinations.

The only non-trivial ambiguity is the so-called rotational ambiguity. Then (4) changes to (2) with a non-diagonal,

regular matrix T . If CT−1 and TS T are nonnegative matrices, which is by no means always true, then a significantly

different pure component decompositions of D has been determined. Typically, many such matrices T exist. Hence,

not only a unique factorization does exist, but a continuum of possible nonnegative factorizations. One says that the

MCR problem suffers from the rotational ambiguity. The associated spectral recovery problem has the aim to compute

not only one of the many possible factorizations, but the chemically true pure component decomposition.

2.2. How to deal with the rotational ambiguity

MCR methods have different strategies how to deal with the (disturbing effect) of the rotational ambiguity. Some of

these strategies are as follows:

1. Apply soft constraints in the form of regularization terms. This so-called soft modeling uses assumptions on

the smoothness of the solution, on its unimodality or monotonicity, on the area-integral of the spectrum and so

on. The intention is to steer the factorization process in a direction that finally yields the chemically correct

solution.

2. Use a certain hard modeling. The solution must strictly satisfy this constraint. An important hard constraint

is the consistency of the concentration profiles of the pure components with a given kinetic model. Typically,

optimal reaction rate parameters are determined in the computational process.

3. Compute the full range of all possible columns of the factors C and S that allow a reconstruction of the given

spectral data matrix D in the form D = CS T . One set represents the possible concentration profiles of the pure

components and the other set represents the corresponding pure component spectra. These sets of profiles can

either be drawn in the form of so-called feasible bands [21] or in terms of its expansion coefficients with respect

to the bases of singular vectors. The latter form is the AFS representation.

Several computational methods are available for each of these three approaches:

First, if soft constraints are used, then the pure component factorization can be computed by a numerical minimization

of an objective function that depends on the factors C and S . Then the objective function minimizes the reconstruction

error, namely that D − CS T should be close to the zero-matrix. The objective function further contains a weighted

mean of various penalty and regularization functions. These additional terms of the objective function work in the

sense of a Tychonoff regularization. Alternative ways to apply constraints in MCR methods are iterative schemes

like nonnegative least-squares optimizations which can be combined with update formula in order to implement the

constraints. Typical soft constraints are the smoothness, the unimodality, the monotonicity, sharp peaks and small

entropy. Popular methods are, among others, the famous MCR-alternating least squares method (MCR-ALS, [22, 23]),

the band target entropy minimization (BTEM, [24, 25]), the peak group analysis (PGA, [26]) or even classical NMF

algorithms ([27, 28]), which have no chemistry-related background.

Second, if a chemical reaction is investigated for which a kinetic reaction model is available, hard-modeling is the

method of choice [29, 14, 15, 4, 17]. Then an objective function is constructed that numerically computes the concen-

tration profiles by the solution of an initial value problem for the given ordinary differential equations. The reaction

rate constants are not assumed to be known. They are fitted in a way that CS T optimally approximates D in the least

squares sense. Popular methods that can include hard models are MCR-ALS, SPECFIT [29] or ReactLab [30].

Third, we consider the global approach to compute, instead of a single solution, the set of all possible profiles or their

low-dimensional representatives. This process does not include any soft- or hard-modeling. The approach to compute

extremal profiles by the MCR-BANDS software [31] is closely related, see also [32, 21]. MCR-BANDS explicitly

computes two profiles for each component. For i = 1, . . . , s one either minimizes the signal contribution function

gi(R) =
‖C(R−1)(:, i)R(i, :)S T‖2

F

‖D‖2
F

(5)

or maximizes the function with respect to regular matrices R ∈ Rs×s. The nonnegativity constraint is always active.

The extremal profiles C(R−1)(:, i) and R(i, :)S T provide rough estimates on minimal and maximal profiles. More

5
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Figure 6: Spectral mixture data analysis by MCR-methods. The acronyms are as follows (only one main reference is given for each method):

MCR-ALS: multivariate curve resolution by alternating least squares [23]. NMF: nonnegative matrix factorization [28]. BTEM: band target

entropy minimization [25]. PGA: peak group analysis [26]. IHM: indirect hard modeling [33]. PIA: polygon inflation algorithm [9]. GS: grid-

search [34]. References for SPECFIT, ReactLab and ray casting are [29], [30] resp. [35].

fundamentally, the AFS approach produces the full range of all feasible solutions and is explained in a detailed way

in the following section.

An overview on the listed MCR-approaches and some popular methods is presented in figure 6.

2.3. The singular value decomposition

The singular value decomposition (SVD), see [18], of the spectral mixture data matrix D is the key-ingredient for the

reconstruction of the factors C and S . The SVD of D reads

D = ŨΣ̃ṼT

with orthogonal matrices Ũ ∈ Rk×k and Ṽ ∈ Rn×n. Further Σ̃ ∈ Rk×n is an all-zero matrix except for its diagonal

elements. The columns of Ũ are the left singular vectors and the columns of Ṽ the right singular vectors. The diagonal

elements of Σ̃ are the singular values Σ̃ii = σi ≥ 0 with a decreasing order σ1 ≥ σ2 ≥ · · · ≥ σmin(k,n). For a matrix D

of the rank s it holds σs > 0 = σs+1 = . . . = σmin(k,n). In general, the number of the nonzero singular values indicates

the number of independent absorbing species. The independence of species refers to the linear independence of the

vectors which represent the concentration profiles of the pure components and the independence of the associated pure

component spectra. However, for noisy and perturbed data one typically observes several (positive) singular values

that are close to zero. In ideal cases there is a significant difference between those large singular values that represent

chemical species and the other small singular values that are induced by noise.

The truncated SVD ignores the small singular values and the associated singular vectors that do not carry significant

chemical information. Let s be the number of relevant singular values and let

U = Ũ(:, 1 : s), Σ = Σ̃(1 : s, 1 : s), V = Ṽ(:, 1 : s)

be the matrices of the dominant singular vectors and singular values. Then

D ≈ UΣVT

is a truncated SVD of D by matrices U, Σ and V which each have the rank s. The Eckhart-Young theorem [36, 37]

quantifies the lack-of-fit of the truncated SVD, which is a low rank approximation of D, as ‖D − UΣVT ‖2 = σs+1 in

terms of the spectral norm ‖ · ‖2. See also [38, 39] on these low-rank approximations in the context of the principal

component analysis.

The truncated SVD provides the bases of the dominant left- and right singular vectors in order to construct the pure

component factors in the following form

C = UΣT−1, S T = TVT , (6)

see for example [5, 3, 4, 40]. The effect of (6) is a reduction of the variables of the pure component recovery problem.

The point is that the two matrices C and S have a total of s(k + n) matrix elements. However, it is ineffective to use
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these matrix elements as the variables for minimizing the reconstruction error D−CS T under the constraint C, S ≥ 0.

Instead, equation (6) allows to form C and S only by using the s2 matrix elements of T .

It is worth mentioning that MCR methods can also work in an SVD-free form. The alternating iterative methods for

nonnegative matrix factorizations [27, 28] and the alternating least-squares curve resolution method MCR-ALS [22,

23] belong for instance to the SVD-free methods. However, the latter methods can still use an SVD for pre-filtering

the data. The point is that an SVD of the spectral data matrix can be used in order to form a low-rank approximation

with its rank being equal to the number of expected chemical components. Then the SVD-free factorization method

can be applied to the filtered data.

3. The AFS as a global solution approach

As derived in the last section, the s2 matrix elements of T are sufficient in order to represent feasible, nonnegative

matrices C and S . Next we reduce these s2 degrees of freedom to the smaller number of only s−1 degrees of freedom.

The s − 1 degrees are sufficient in order to represent all possible nonnegative columns of either C or S in terms of the

AFS.

The justification for this reduction is that the set of all possible columns of the factor C (mutatis mutandis of the factor

S ) in all nonnegative pairs of factors C = UΣT−1 and S = VT T is equal to the set of all possible first columns in these

factorizations. This enormous simplification derives from the permutation ambiguity, namely that any column order

is possible; see equation (4). In other words, we are interested in the following two sets of the feasible concentration

profiles and feasible spectra that can appear in a pure component decomposition of D

C =
{

C(:, 1) ∈ Rk : exists invertible T ∈ Rs×s with C = UΣT−1 ≥ 0, S = VT T ≥ 0
}

,

S =
{

S (:, 1) ∈ Rn : exists invertible T ∈ Rs×s with C = UΣT−1 ≥ 0, S = VT T ≥ 0
}

.

The decisive first columns of C and S are completely determined by the first row of T , respectively the first column

of T−1. Hence, we have traced back the representations of these two sets to the s matrix elements in the first row

of T (first column of T−1). Next, we use the intensity ambiguity that allows us to assume a certain scaling for the

single rows of T respectively the columns of T−1. We select a scaling which makes the first component of the first row

vector of T equal to 1. Alternatively, we can do this for the first component of the first column of T−1. A mathematical

justification for these scalings is required (since leading zero components would prevent a scaling). Fortunately, the

Perron-Frobenius spectral theory of nonnegative matrices [41, 42] guarantees that the first singular vectors necessarily

contribute to any nonnegative linear combination of the singular vectors. This provides the justification to assume

that the first column of T is equal to (1, . . . , 1)T ; for more details see section 3.4 or Theorem 2.2 in [10]. Hence, the

low-dimensional representation of the set S works with the matrix T in the form

T =





1 x1 · · · xs−1

1
... W
1





. (7)

Therein, W is an (s − 1)-by-(s− 1) matrix which is to be specified later. Let x = (x1, . . . , xs)
T be the column vector of

the matrix elements in the first row of T . On the basis of these settings we define the AFS for the spectral factor as

MS =
{

x ∈ Rs−1 : exists W ∈ R(s−1)×(s−1) in (7) such that rank(T ) = s, C = UΣT−1 ≥ 0 and S = VT T ≥ 0
}

. (8)

In words,MS contains all x ∈ Rs−1 so that a regular matrix T exists with T (1, :) = (1, xT ), which results in nonnegative

factors C = UΣT−1 and S T = TVT . The analogous definition of the AFS for the concentration factor reads (in a

somewhat shortened form)

MC =
{

y ∈ Rs−1 : exists a regular T ∈ Rs×s with (T−1)(:, 1) = (1, yT )T and C, S ≥ 0
}

. (9)

3.1. The underlying reduction of the degrees of freedom

The conditio sine quo non for representing the inherent ambiguity of the MCR problem is a reduction of the degrees

of freedom of the factors. This reduction process is summarized in this section. First of all it is worth noting that the

AFS-sets do not depend on the (large) dimensions k and n of the data matrix D. The first reduction step comes from

7
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Figure 7: Reduction of the degrees of freedom (d.o.f.) underlying the low-dimensional representation of feasible profiles of the AFS.

the column-basis representation introduced in (2) or equivalently on the SVD-based representation (6). In this step

the s(k + n) matrix elements of C and S are represented in terms of the s2 matrix elements of the matrix T . Typically,

it holds s ≪ k, n for spectroscopic data.

The focus on the first columns of C and S , as justified above, reduces the representation of the rotational ambiguity to

s variables namely to the first row of T respectively the first column of T−1. To explain this important reduction step

of s2 degrees of freedom of T to only s degrees of freedom, we consider the following nonnegative factorization of D

D = UΣT−1

︸  ︷︷  ︸

=C

TVT

︸︷︷︸

=S T

.

Further let P be the permutation matrix formed by interchanging the first and the ℓth column of the s × s identity

matrix. Then

D = UΣT−1

︸  ︷︷  ︸

=C

TVT

︸︷︷︸

=S T

= UΣ(T−1P) (PT T )VT = (CP)PT S T = (CP) (SP)T

shows that the permutation SP of the columns 1 and ℓ of S corresponds with the permutation PT T of the rows 1 and

ℓ of T . Similarly, the permutation CP of the columns 1 and ℓ of C corresponds with the permutation T−1P of the

columns 1 and ℓ of T−1. In other words, if a certain pure component profile appears in a nonnegative factorization

of D, the same profile appears in another nonnegative factorization in the first column of C or S after a permutation.

Finally, the scaling assumptions T11 = 1 for the spectral AFS and (T−1)11 = 1 for the concentration factor AFS reduces

the number of variables to s − 1. Thus the AFS-sets are subsets of the Rs−1 with the rank s of D. These reduction

steps are illustrated in figure 7.

3.2. The inner and outer polygons and their relations to the AFS

The geometric interpretation of feasible solutions and also the geometric construction of the AFS-sets rest upon two

important polygons. These are the inner polygon, which is also called INNPOL, and the outer polygon, which is also

called FIRPOL [6, 43, 44, 45] and which stands for first polygon. The outer polygon is a superset ofMS , respectively

MC, and contains all points in the (s − 1)-dimensional AFS plane that represent nonnegative profiles. The precise

mathematical definition of these outer polygons is as follows

FS =

{

x ∈ Rs−1 : V

(

1

x

)

≥ 0

}

, FC =

{

y ∈ Rs−1 : UΣ

(

1

y

)

≥ 0

}

. (10)

The inner polygons are the convex hulls of the low-dimensional representations of the columns of D, respectively the

rows of D. Let

ai =
(UΣ)T (2 : s, i)

(UΣ)T (1, i)
, i = 1, . . . , k, and b j =

(V( j, 2 : s))T

V( j, 1)
, j = 1, . . . , n,

be the normalized vectors of expansion coefficients with respect to the left and right singular vectors of the columns

and the rows of D, see also (6) and (7) in [46]. Then the inner polygons are the convex hulls of either the vectors ai or

the vectors b j as

IS = convhull
(

{ai, i = 1, . . . , k}
)

, IC = convhull
(

{b j, j = 1, . . . , n}
)

. (11)

The polygonsFC , IC for data set 2 are plotted on the left in figure 8, and the FS , IS are shown on the right in the same

figure. The polygons are drawn by black solid (inner polygon) and black broken lines (outer polygon). These plots

additionally show the associated AFS-sets in transparent colors. Further, figure 9 exemplarily interprets the meaning

of the outer polygon FS for data set 2. Later in section 5.2 we discuss the MatLab program code to compute and to

plot the inner and outer polygons. Their efficient computation exploits certain duality relations between FS and IC as

well as FC and IS , cf. section 3.6.
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Figure 8: The polygons FC , IC (left) and FS , IS (right) as well as their construction for data set 2. The outer polygons (FIRPOL) FC and FS

are plotted by black broken lines. The vectors a(:, j) respectively b(:, i) are marked by × symbols. The boundaries of their convex hulls are plotted

by black solid lines. The gray lines limit the affine half-spaces y1(UΣ) j2 + y2(UΣ) j3 ≥ −(UΣ) j1, j = 1, . . . , k, respectively x1Vi2 + x2Vi3 ≥ −Vi1,

i = 1, . . . , n. The intersection of the y-half-spaces equals FC and the intersection of the x-half-spaces forms FS . Additionally, the AFS-setsMC

andMS , each consisting of three isolated subsets, are plotted in transparent colors.
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Figure 9: Data set 2: The figure illustrates (in the left subplot) the construction of FS by the intersection of half-spaces that are implicitly defined

by equation (10). The outer boundary of FS is drawn by black broken lines. The gray lines are the limiting lines of various subspaces. The greater

part of these lines does not contribute to the boundary of FS . An arbitrary point x < FS is marked by a black cross. This point is not contained

in some of the half-spaces. The boundary lines of these non-including spaces are drawn in red color. The right subplot shows the function which

belongs to this point x < FS . This function has negative parts around λ = 30 (drawn red) and can therefore not be a feasible spectral profile.

3.3. On the history of the area of feasible solutions

In 1971 Lawton and Sylvestre presented not only the truncated SVD approach to (re)construct the factors C and

S in [5]. They also analyzed the (rotational) ambiguity of the factorization problem for two-component systems.

They presented their results in form of the so-called Lawton-Sylvestre plot of cones in the two-dimensional plane.

There was no need to make use of the first-column-equal-1 scaling as introduced in (7) for the AFS approach. The

Lawton-Sylvestre construction uses the permutation ambiguity and the single row representation with respect to T .

The one-dimensional AFS for two-component systems can be extracted by intersecting the Lawton-Sylvestre plot by

a line parallel to the ordinate and with the abscissa coordinate equal to 1.

The next developmental step goes back to Borgen and Kowalski in 1985 [6]. They extended Lawton-Sylvestre plots to

three-component systems (s = 3) and introduced the seminal geometric interpretation of a feasible solution. Notable

contributions also came from Sasaki, Kawata and Minami [47] in 1983 and Meister [48] in 1984. The only difference

to the AFS-sets (8) and (9) is a somewhat different scaling. Borgen and Kowalski devised a geometric construction

procedure [6] for the AFS that results in the so-called Borgen-plots.

The efforts to compute extremal profiles of the AFS by the MCR-BANDS software [31] are a different approach to

estimate the degree of rotational ambiguity; see the work of Gemperline in 1999 [32] and Tauler in 2001 [21].
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In 2005 Rajkó and István revived the Borgen plots by analytical investigations and by the application of tools from

computational geometry [43]. In 2006 Vosough et al. presented the first generic numerical algorithm for the approxi-

mation of the AFS for (s = 2)-component systems [34], namely the grid-search method. This approach was analyzed

in more detail by Abdollahi, Maeder and Tauler in 2009 [49]; therein the notion of the area of feasible solution was

used for the first time, however in a slightly different manner.

In 2011 Golshan, Abdollahi and Maeder presented the triangle enclosure algorithm for approximating the boundary

of the area of feasible solutions [8]. This method was the first fast (grid-search is comparatively slow) numerical

algorithm to approximate the AFS. The method works stably for noisy data. An alternative computational method,

namely the polygon inflation algorithm, was introduced in 2013 by Sawall, Neymeyr et. al. as an adaptive, stable

and very fast numerical AFS-approximation method for three-component (s = 3) systems [9, 10]. In 2013 Golshan

Maeder and Abdollahi extended the triangle enclosure algorithm for four-component systems (s = 4) by slicing the

three-dimensional AFS and subsequent planar approximations by triangle enclosure [50]. In 2015 Jürß et al. presented

an extension of the geometric Borgen plot construction [44, 45] to experimental spectral data sets including a low noise

level and small negative data entries, which might result from a background subtraction. The ray casting algorithm

for the computation of the AFS for systems with s = 2, 3, 4, . . . chemical components was introduced in 2017 [35].

The same research group has introduced the dual Borgen plots for the simultaneous computation of two dual AFS-sets

MS andMC for three-component systems in extension of the geometric construction process. The dual Borgen plot

construction is also possible for noisy data. However, the dual Borgen plot approach is not exclusively of geometric-

constructive nature but includes in one step a polygon approximation by the polygon inflation procedure. See also

[51, 52] for further reviews on the various developments.

3.4. Properties of the AFS

Next we summarize central properties of the AFS. The remaining part of section 3 has a mathematical character. All

concepts (definitions) and theorems are accompanied by comments on their meaning and interpretation. Next restrict

the presentation to properties of the AFS MS . Analogous properties hold for MC due to the bilinear structure of

the factorization. The point is that a transposition applied to D = CS T yields DT = S CT and that this changes the

positions of C and S . Next we need the term of an irreducible matrix.

Definition 3.1 (See also [41, 42]). A symmetric n × n-matrix H with n ≥ 2 is called reducible if an n × n permutation

matrix P exists so that

PHPT =

(

H1,1 0

0 H2,2

)

.

Therein H1,1 is an m × m-matrix with 1 ≤ m < n. Otherwise, H is called irreducible.

For the following theory we have to assume the irreducibility of the two matrices DT D and DDT for the spectral data

matrix D. For experimental spectral data matrices D and for non-degenerated model data sets the irreducibility should

always be satisfied. Otherwise the spectroscopic data can be separated to independent non-overlapping subsets, i.e. the

reaction breaks down into two independent subreactions and the chemometric analysis can be applied separately to

the subsets. Analogously, the setMC can only be constructed if the matrix DDT is irreducible.

Assumption 3.2. D is a nonnegative matrix with rank(D) = s that has at least one factorization D = CS T with the

nonnegative factors C ∈ Rk×s and S ∈ Rn×s. Furthermore, DT D and DDT are assumed to be irreducible matrices.

As formally proved in theorem 2.2 of [10] the irreducibilty of DT D guarantees that the representation T (:, 1) =

(1, . . . , 1)T in (7) can be justified and that the AFS MS can be constructed. The mathematical basis for this is the

so-called Perron-Frobenius spectral theory of nonnegative matrices [53].

The assumption 3.2 is the basis for various important properties of the AFS. First, theorem 3.3 is about the geometric

interpretation of a feasible solution in terms of a simplex which is located in the polygon FS and which encloses

IS . This theorem generalizes the classical construction principles of Borgen and Kowalski [6] of Borgen plots for

two-component systems to systems with s ≥ 3 chemical components.

Theorem 3.3 (Geometric condition on a feasible factorization; see [6, 43, 44, 46]). On the assumption 3.2 a point

x ∈ Rs−1 belongs toMS if and only if

1. x is contained in the outer polygon FS and

2. further s − 1 points exist inMS so that the simplex, which has these s points as vertices, encloses IS .
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Figure 10: Check whether x = (1, 0)T belongs toMS for data set 2. Left column: x, FS and IS are plotted two times. There is no simplex with

the vertex x = (1, 0)T that is contained in FS and includes IS . Two possible simplex-constructions are presented. Upper row: all vertices of the

triangle are contained in FS but one of its edges intersects IS . Hence one concentration profile has negative entries (upper row, blue concentration

profile). All three spectra are nonnegative as all vertices of the triangle are located in FS . In the lower row, the triangle is constructed in a way that

it tightly encloses the inner polygon but none of its edges are allowed to intersect the inner polygon. Then, necessarily one of its vertices is located

outside the outer polygon. Therefore, the three associated concentration profiles are nonnegative, but one spectrum (drawn in ochre) has negative

entries. Hence x = (1, 0)T cannot be an element ofMS .
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Figure 11: Check whether or not x = (1.5,−0.5)T belongs to MS for data set 2. Left: x, FS and IS . 2nd from left: Construction of a proper

triangle that is contained in FS and that encloses IS . As the construction succeeds, the associated concentration profiles (2nd from right) and

spectral profiles (right) are all nonnegative. Hence x = (1.5,−0.5)T is an element ofMS .

This theorem is explained for data set 2 in figures 10 and 11. In figure 10 we check whether x = (1, 0)T belongs to

MS . The first condition x ∈ FS is fulfilled and it has still to be checked if two other points in FS exist so that the

associated triangle encloses IS . Such elements do not exist. In the upper line of plots in figure 10 a triangle with

vertices in FS is selected so that the factor S is nonnegative. However, one edge intersects the inner polygon IS and

so the associated concentration profile has some negative parts. In the lower line of plots in figure 10 a triangle which

tightly encloses IS is constructed. Hence C is nonnegative. However, one vertex is outside FS , so the associated

spectral profile has negative entries. In figure 11 we check whether x = (1.5,−0.5)T belongs toMS . Since x ∈ FS

the first condition is fulfilled. Furthermore, two other points in FS exist so that the triangle (with these three points

as vertices) encloses IS . Hence, it holds (1.5,−0.5)T ∈ MS . These two additional vertices of the triangle are not

uniquely determined.

The next theorem summarizes some simple geometric properties of the AFSMS .

Theorem 3.4 (Summary of properties from [10, 35, 54]). On the assumption 3.2 it holds that:

1. The outer polygon FS , called FIRPOL in [6], is a bounded set. Thus its subsetMS is also a bounded set.

2. The origin, i.e. the null vector, is an element of the outer polygon FS but it is not contained inMS .

3. The intersection ofMS with a ray starting at the origin is either empty or a (gap-free) interval.

4. The setMS is a closed set (in the topological sense of closed sets, namely that all boundary points belong to

the set).
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All these geometric properties can be simply checked by the reader for any AFS, e.g. for the AFS sets shown in figure

13. Some immediate consequences of this theorem for general AFS are as follows: If MS consists of more than

one (isolated) subset, then these subsets cannot contain holes. In the other case, namely that the AFS continuously

surrounds the origin, the origin with its neighborhood is the only hole in the AFS.

3.5. The case of two-component systems

For two-component systems (s = 2) it has become standard practice [34, 49, 55] to work with a matrix T in the form

of

T =

(

1 t12

t21 1

)

, (12)

instead of using T by (7). The AFS representations according to (12) and (7) differ in terms of their scaling. In each

of these two cases the AFS is one-dimensional and consists of two separated finite intervals of real numbers.

In order to analyze the relations between these AFS-representations let D = CS T be a nonnegative factorization which

allows us to form the matrix T̃ = S T V . With the theory underlying theorems 3.3 and 3.4 one can show that T̃11 > 0,

T̃21 > 0 as well as T̃12 ·T̃22 < 0. After a proper (re)scaling and with the approach from (12) we have t12 < 0 and t21 > 0.

Hence, if the one-dimensional AFSMS equals the union of two intervals in the form M̃S = Ĩ− ∪ Ĩ+ with respect to T

by (12) and ifMS = I− ∪ I+ is the AFS with respect to (7) with Ĩ−, I− ⊂ {x ∈ R : x < 0} and Ĩ+, I+ ⊂ {x ∈ R : x > 0},

then it holds that Ĩ− = I− and Ĩ+ = {x
−1 : x ∈ I+}.

3.6. Duality relations between outer polygons and inner polygons

This section discusses relations between the AFS for the spectral factor S and the AFS for the concentration factor

C. Due to the equation D = CS T the factors C and S are closely coupled and so are various geometric properties

of these AFS sets and their construction principles. Unfortunately, the duality theory is somewhat complicated and

we cannot introduce and explain the geometric and mathematical background here. Instead, we must refer to the

numerous references.

The geometric interpretation by theorem 3.3 and the geometric construction of the AFS-sets are based on the polygons

FS and IS respectively FC and IC . For ease of presentation we prefer to talk of polygons. However, in the general

case s > 3, the four sets FS , IS , FC and IC are polyhedra. These four polygons (polyhedra) are convex and bounded

subsets in Rs−1. A direct computation of the outer polygons FS and FC can be computationally expensive. Further, a

direct computation of IS and IC can be hard for noisy data. These two problems can be solved by means of duality

relations between the geometric objects.

The duality principle for nonnegative matrix factorizations in the low-dimensional AFS representation is described in

[56, 57, 46, 58]. See also the closely related complementarity theory in [59, 60, 61, 62]. Duality-based algorithms

enable a fast computation of the polygonsFS andFC for (noise-free) model data and also to approximate the polygons

IS and IC for noisy data. In theorem 3.5 we describe duality relations between the columns of C and S in the AFS-

space representation.

Theorem 3.5 (Duality relations in the AFS-space [57, 59, 46]). Let D = CS T be a nonnegative matrix factorization

according to (6) so that T = S T V. Further, let the row vectors x(i) be the representatives of the columns of S , and let

the column vectors y( j) be the analogous representatives of the columns of C, i.e.

x(i) =
T (i, 2 : s)

Ti1

, i = 1, . . . , s, y( j) =
(T−1)(2 : s, j)

(T−1)1 j

, j = 1, . . . , s.

Then it holds for i , j that

s∑

ℓ=1

x
(i)

ℓ
y

( j)

ℓ
= −1.

The following definition prepares the ground for explaining the duality relations between the polygons in the AFS-

space.
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Definition 3.6. A nonzero vector x ∈ Rs−1 and an affine hyperplane E = {y ∈ Rs−1 : yT xE = −1} are called dual if

xE = x.

In words, definition 3.6 says that a nonzero vector x determines its dual affine hyperplane and that an affine hyperplane

(not including the origin) determines its dual generating vector x. The next theorem 3.7 describes duality relations

between FS and IC and the similar relations between FC and IS .

Theorem 3.7 (Duality between inner and outer polygons [56, 57, 46]). The vertices (respectively faces) of FS are

dual to the faces (respectively vertices) of IC . Analogically, the vertices (resp. faces) of FC are dual to the faces

(resp. vertices) of IS .

With the help of theorem 3.7 the inner polygons and the outer polygons can easily be computed as follows:

- For noise free data one can compute the inner polygon IS as the convex hull of the ai, i = 1, . . . , k, and the

inner polygon IC as the convex hull of the b j, j = 1, . . . , n. (The numerical computing environment MatLab

provides the routine convhull for these computations.) Then the vertices of FC are the dual vectors of the edges

of IS . Analogously, the vertices of FS are the dual points of the edges of IC .

- For noisy data we compute approximations to the outer polygons FS and FC for example by the (inverse)

polygon inflation procedure, see section 4.6 or [10]. Then the vertices of IC are determined as the dual vectors

of the edges of FS and the vertices of IS as the dual vectors of the edges of FC . See [58] for details on this

procedure.

Theorem 3.7 also applies to any dimension s ≥ 3. Then we consider inner and outer polyhedra (instead of polygons)

and faces of the polyhedra instead of edges.

3.7. Approximations of the inner/outer polygons for noisy data

The strict definition of the AFS-sets does not allow any deviation from the nonnegativity C, S ≥ 0. However, for

experimental noisy and distorted spectral data one should accept small negative entries in D and also in its factors C

and S . Without accepting such entries, the AFS-sets might be empty. We recommend the following lower bounds on

the relative size of the acceptable negative entries

Ciℓ

max |C(:, ℓ)|
≥ −εC , i = 1, . . . , k, and

S jℓ

max |S (:, ℓ)|
≥ −εS , j = 1, . . . , n, (13)

for ℓ = 1, . . . , s with small control parameters εC , εS ≥ 0. The polygon inflation algorithm [9, 10] and the ray casting

method [35] work with these bounds. A different approach is to set all negative entries equal to zero and to use the

ssq-function (the Frobenius norm) as a measure of the distance of the spectral data to its reconstruction [34, 49, 8, 50].

If the constraints (13) are used, then the polygons FS , FC , IS and IC differ slightly from their form for strict non-

negativity constraints. In order to compute the AFS for noisy and experimental data, the publication [58] suggests the

approach to compute first approximations of FS and FC with respect to (13) and then to construct IS and IC by using

the underlying duality. Figure 12 shows FS , FC , IS and IC for data set 3 with respect to (13) and εC = εS = 6 · 10−3.

The ai, i = 1, . . . , k respectively b j, j = 1, . . . , n, are also drawn together with the affine hyperplanes that define FS

and FC .

3.8. Orientation of the AFS plots

The AFS-sets decisively depend on the choice of the singular vectors. Although the singular values of D are unique,

the singular vectors are not uniquely determined even if all singular values are simple (i.e. have the multiplicity 1).

Here we do not consider the case of multiple singular values with their high degree of freedom in the determination

of the singular vectors. For simple singular values only the orientation of the singular vectors (namely positive or

negative sign) remains undetermined. However, the first left- and right singular vectors are sign-constant due to the

Perron-Frobenius theory (i.e. either nonpositive or nonnegative) and we assume U(:, 1) > 0 and V(:, 1) > 0.

The sign-indeterminacy of all other singular vectors results in an ±-indeterminacy of the orientation of the axes in

the AFS plots. In order to cure this problem and to improve the comparability of AFS plots we set up the following

convention on the right singular vectors V(:, j) (which also determines the signs of the left singular vectors)

max V(:, i) ≥ −min V(:, i), i = 2, . . . , s. (14)
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Figure 12: For data set 3 the polygons FC , IC (left) and FS , IS (right) are drawn with respect to the weakened nonnegativity constraint (13). The

gray lines limit the affine half-spaces y1(UΣ) j2 + y2(UΣ) j3 ≥ −(UΣ) j1, j = 1, . . . , k, respectively x1Vi2 + x2Vi3 ≥ −Vi1, i = 1, . . . , n. Hence these

straight lines serve to construct the boundaries of FC and FS with respect to the strict/non-weakened nonnegativity constraint. If small negative

matrix entries in the sense of (13) are accepted, then FS and FC increase in size. We use εC = εS = 6 · 10−3. The resulting boundaries of FS and

FC are drawn as red broken lines. The data representing vectors ai and b j are marked by black × symbols. In the left plot, some of the ai are located

outside FC (which would be impossible for strictly nonnegative data and which would make an AFS construction impossible). This problem can

be cured by exploiting the duality relations. First, FS determines the dual polygon IC (red solid line in the left subplot). Second, FC determines

the dual polygon IS (red solid line in the right subplot). Without these modified polygon constructions, the two AFS-sets would be empty since no

triangle exists in FS (respectively FC ) that encloses IS (respectively IC ), see theorem 3.3.

In words, equation (14) means that the component of the largest modulus is assumed to be positive. Practically,

changing the sign of the i0th singular vector means that the associated AFS plot has a flipped xi0−1-axis. The possible

axis orientations of a two-dimensional AFS for a chemical three-component system are shown in figure 13 for data

set 3.

4. Methods for the construction and numerical approximation of the AFS

This section reviews some of the techniques for the construction or numerical approximation of the AFS in more

detail, cf. the list of methods introduced in section 3.3. First, we discuss a numerical test on the feasibility, namely

whether a certain point x belongs to the AFS.

4.1. Numerical feasibility test

A central ingredient of any numerical AFS-approximation method is the numerical test in order to decide if a certain

x is feasible. Next, we describe such a test applicable to model data and to noisy experimental data. This approach

uses the weakened nonnegativity constraints (13) that tolerate small negative entries in C and S . The starting point is

the objective function

f (x,W) =

s∑

ℓ=1

k∑

i=1

(

min

(

0,
Ciℓ

max C(:, ℓ)
+ εC

))2

+

s∑

ℓ=1

n∑

j=1

(

min

(

0,
S jℓ

max S (:, ℓ)
+ εS

))2

+
∥
∥
∥Is − T+T

∥
∥
∥

2

F
(15)

with T by (7) and C and S by (6). A vector x ∈ Rs−1 is accepted as an element of the AFS if and only if

F(x) = min
W∈Rs−1×s−1

f (x,W) < ε f (16)

with a small control parameter ε f . A typical choice is ε f = 10−12. For example, this test is used in [9, 10, 35]. It is

also used for all numerical AFS approximation methods in this chapter.

Each evaluation of F(x) requires the solution of a nonlinear least-squares problem with (s−1)2 variables and a residual

vector with s(k + n + s) components. We use the powerful adaptive nonlinear least-squares program code NL2SOL

[63, 64] in our software. In order to make the implementation of the feasibility test efficient, we apply a first-stage

rapid test (whether x is contained in the outer polygon). If this test is not successfully passed, then x <MS . Otherwise,

if x is located in the outer polygon, then the computationally expensive test based on (15) and (16) is applied to test

the AFS membership [10].
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Figure 13: Possible axis orientations of a two-dimensional AFS for the chemical three-component systems underlying data set 3. The standard axis

orientations ofMS and MC use the sign selection rule specified in (14). The three other AFS-plots each forMS and MC refer to possible sign

changes of the second and third singular vector and correspond to reflections along the different axes.
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Figure 14: The Lawton-Sylvestre plot (left) for data set 1. The gray lines are the boundaries of the affine half-spaces ξ1 ≥ −ξ2Vi2/Vi1, i = 1 . . . , n,

(only every fifth line is plotted). The black lines define the “outer” boundaries with respect to the nonnegativity constraint. The crosses are the

spectral data representatives (σ1U j1, σ2U j2), j = 1, . . . , k. The broken black lines are the “inner” boundaries of the two cones of feasible points

ξ that are drawn as blue and red areas. The two feasible cones are plotted in light blue and light red. The associated AFSMS (right plot) is the

intersection of the two cones with the line with the fixed coordinate ξ1 = 1.

4.2. Lawton-Sylvestre plots for s = 2 and s = 3

The Lawton-Sylvestre plots [5] can be computed for two- and three-component systems and represent graphical

representations in two or three dimensions. These plots have the same information content as the AFS-plots, but do

not make use of the leading-1 normalization as introduced in (7). Thus Lawton-Sylvestre plots have a dimension that

is greater by 1 compared to AFS plots for the same system. Feasible regions are formed by the points (ξ1, ξ2) so that

S (:, 1)T = ξ1V(:, 1)T + ξ2V(:, 2)T

is a possible profile of a nonnegative factorization of the spectral mixture data matrix D. If the SVD is selected in a

way that V(:, 1) > 0, then theorem 2.2 in [10] predicts that ξ1 > 0. One can show that the set of feasible (ξ1, ξ2) has

the form

X =

{

(ξ1, ξ2) : ξ1 > 0 and

(

− min
i: Vi2>0

Vi1

Vi2

≤
ξ2

ξ1
≤ min

i

σ2Ui2

σ1Ui1

or max
i

σ2Ui2

σ1Ui1

≤
ξ2

ξ1
≤ − max

i: Vi2<0

Vi1

Vi2

)}

.

This set consists of two semi-infinite cones. The apex of each cone is the origin (the null vector). However, the origin

does not belong to the cone. Figure 14 shows the spectral factor cone X for data set 1. The intersection of X with the

straight line with the fixed coordinate ξ1 = 1 results in the one-dimensional AFSMS as considered in this paper.

Lawton-Sylvestre plots can also be computed for s ≥ 3. However, their visual presentation in higher dimensions is

not very informative. For s = 3 the set X can consist of three-dimensional semi-infinite cones. Once again, each
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Figure 15: Three-dimensional Lawton-Sylvestre plots for data set 2 with three chemical components.
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Figure 16: Geometric construction of the inner boundary curve of the spectral AFS for data set 2. Left: One tangent h (green line) of the inner

polygon is shown which touches IS (black solid line). The two points of intersection S 1 and S 2 (×) of h with the boundary of FS (black broken

line) are marked. Starting from these two points, the two lines g1 and g2 (blue) are computed as tangents of IS . The intersection of g1 and g2 (+)

is P. Since P is in FS , this point is an inner boundary point ofMS . Center: The same construction for 18 different tangents results in 18 boundary

points. Right: The curve through these boundary points (red solid line, for 1000 tangents) covers the inner boundary ofMS . In combination with

the boundary curve of the outer polygon FS the spectral AFSMS (colored areas) is shown. For this data set the AFS consists of three isolated

subsets.

cone has its apex in the origin (the null vector), but the apex does not belong to the cone. Figure 15 shows typical

3-dimensional Lawton-Sylvestre plots, namely for data set 2.

4.3. Borgen plots by geometric construction

The geometric construction of Borgen plots for three-component systems is an elegant and fast approach to construct

the AFS [6, 43, 44, 46]. Essentially, the geometric construction yields the “inner” parts of the boundary of the AFS.

The remaining parts of the boundary, namely the “outer” boundary belongs to the boundary of the outer polygon.

4.3.1. Classical Borgen plots

The theoretical background for the construction of Borgen plots is theorem 3.3. For a three-component system a

certain point in the AFS-plane belongs to its inner boundary if it is contained in the outer polygon FS and if two

additional points on the boundary of FS exist so that the triangle spanned by these three vertices tightly encloses IS .

For details see lemma 4.3 in [46]. Thus the inner boundary can be constructed either by an analytic curve construction

[43] or by a triangle rotation process. In the latter process a tangent rotates around IS and for every tangent h a

triangle is computed with one edge being h. The triangle tightly encloses IS and has two vertices on the boundary

of FS . If the third vertex is in FS , then this vertex is an inner boundary point, see lemma 4.3 of [46]. The set of all

these points forms the inner boundary. Figure 16 illustrates the geometric construction of the inner boundary for the

spectral AFS and data set 2.
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by (16) is evaluated on the rectangle [−0.5, 2] × [−1, 1] discretized on a mesh with 150 × 151 nodes. Right: the corresponding AFS MS for

ε f = 10−5 .

4.3.2. Generalized Borgen plots

Generalized Borgen plots extend the geometric AFS construction from the noise-free (model data) case to the noise-

loaded (experimental data) case [44, 45]. In this approach convex combinations with nonnegative expansion coef-

ficients are substituted by affine combinations that use triangles whose vertices can slightly leave FS . Thus small

negative entries in S are accepted. Furthermore, the restriction that the triangles have to enclose IS is slightly broken

in order to accept small negative entries also in the factor C. This approach does not use the constraint (13) on the

relative size of negative entries but works with lower bounds on the negative entries (in a non-relative way).

4.3.3. Dual Borgen plots

The recent approach of dual Borgen plots extends the construction of a single Borgen plot to the simultaneous con-

structions of the two Borgen plots for the spectral factor and the concentration factor. The simultaneous construction

using duality relations between the two AFS-sets speeds up the process considerably. The general algorithm is intro-

duced in [46]. In [58] an algorithmic extension for noisy data is explained. The method accepts negative entries in

the sense of (13) and works in a stable way even for noisy data. Compared to the classical Borgen plots not only one

triangle is constructed per tangent but three of them. The two other triangles lead (via the duality relations) to the

inner boundary points ofMC . For noisy data, first approximations of FS , FC, IS and IC are computed (cf. figure 12)

and then the geometric constructions are carried out for these polygon approximations.

4.4. Grid-search for s ≥ 2

The grid-search method is a brute-force numerical algorithm in order to compute the AFS-sets [34, 49]. The method

works, in principle, for any s ≥ 2. It can be applied to noisy data. First a grid in the Rs−1 is defined and then the

numerical feasibility test by means of the function F(x) by (16) is executed for all nodes of the grid. The accuracy

of the approximation depends on the grid width of the discretization. Figure 17 illustrates the grid-search process for

hx1
= 1.68 · 10−2, hx2

= 1.33 · 10−2 and ε f = 10−5 for the spectral AFS and data set 2. In this context, we also refer to

the particle swarm optimization as presented in [65].

4.5. Triangle enclosure for s = 3

The triangle enclosure algorithm is a method for the approximation of the AFS for three-component systems [8].

It works in a stable way also for noisy data. The idea is to compute a chain of equilateral triangles that covers the

boundary of the AFS. Each triangle has at least one vertex inMS and at least one vertex outsideMS . Two consecutive

triangles share a joint edge. If the AFS consists of three separated subsets, then the algorithm is applied to each of the

subsets. If the AFS is a topologically connected set containing a hole, then two triangle chains are generated, one for

the inner and one for the outer boundary. The accuracy of the boundary approximation depends on the side length.

The triangle enclosure algorithm works as follows: At an initialization phase a first feasible point is assumed to

be given in the subset of the AFS that is to be approximated. Such a feasible point can be computed by an NMF
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Figure 18: Approximation ofMS by the triangle enclosure algorithm for data set 2. The edge length of the equilateral triangles is 0.03. Left: the

initialization phase starts with an interior feasible point (+×+×+×) and builds a straight chain of triangles (broken black lines). A chain of 27 triangles

covering a part of the boundary of the AFS is drawn in red. Right: finally all feasible vertices of the vertices in the triangle chain are piecewise

linearly connected, which forms the approximation of the boundary ofMS .

of the given spectral mixture data matrix. This feasible point is taken as a first vertex of an arbitrary equilateral

triangle. Its side length is equal to a given pre-defined small number that finally determines the quality of the boundary

approximation. If none of its vertices leaves the AFS, then the triangle is reflected along one of its edges to form a

new triangle. If none of the vertices leaves the AFS, then the reflection process is continued in a way that forms a

straight chain of triangles, see the left plot in figure 18. If a first triangle has at least one vertex in the AFS and at least

one vertex outside the AFS, then the initialization phase comes to an end and the iteration phase starts. Let ∆ be an

equilateral triangle that crosses the boundary ofMS in the sense that one vertex (P1) is feasible and one vertex (P2)

is not feasible. The third vertex can be feasible or not feasible. Next the current triangle is reflected along the edge

from P1 to P2. This results in a new triangle ∆′ with a new, uniquely determined vertex P′
3
. Again, the new triangle

is reflected either along the edge from P′
3

to P1 or from P′
3

to P2 (the algorithm uses for this reflection the edge that

crosses the boundary of the AFS). The iteration stops if the triangle chain closes. The process is illustrated in figure

18 for data set 2 and with the side length equal to 0.03.

In [50] an extension for the sliced approximation of the AFS-sets for four-component systems (s = 4) is introduced.

Therein the slices are generated along the x3 coordinate. For each slice a two-dimensional AFS is computed by the

triangle enclosure algorithm.

4.6. Polygon inflation algorithms for s = 3

The polygon inflation algorithm [9] and the inverse polygon inflation procedure [10] are numerical methods for the

approximation of the AFS boundary (respectively for each of its subsets) by an adaptively refined polygon in the case

s = 3. For further references see [51, 52, 66]. The method facilitates a very accurate boundary approximation. It is

fast and stable even for noisy data.

The idea of polygon inflation is to approximate the boundary curve of each AFS subset by a sequence of adaptively

refined, inflating polygons. The vertices of these polygons are (with a high precision) located on the boundary of

MS . The starting point is a single feasible solution (e.g. from an initial NMF). A triangle is constructed around this

initial point so that its three vertices are all located on the boundary of the AFS. This triangle is a first, coarse polygon

approximation of the AFS. Then the polygon is iteratively refined by edge subdivisions. To this end, the algorithm

computes a new vertex as the point of intersection of the perpendicular bisector of a given edge and the boundary of

the AFS (subset). If the new vertex is outside the old polygon, then the current step is an inflation. In some cases,

the new vertex is located in the current polygon. The latter case amounts to a deflation. If a new edge is computed,

then a correction-distance parameter is stored in a vector ∆. Based on all correction-distances of the current polygon,

the next edge is selected in a way that a further edge refinement is executed in regions of the boundary where the

past refinement step has provided a large correction-distance. This is the idea of the adaptive process. The iteration

continues until all correction-distances fall below a critical value δ. This defines the stopping criterion. With certain

modifications the method can also compute punctiform or line-shaped subsets of the AFS. Figure 19 shows a flow

chart of the polygon inflation algorithm. The progress of the approximation process ofMC by polygon inflation is

presented in figure 20 for data set 2.
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Figure 19: Flow chart of the polygon inflation algorithm.
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Figure 20: Progress of the adaptive polygon approximations by means of the polygon inflation algorithm in order to computeMC for data set 2.

The total number of current vertices for the three subsets is N. The final boundaries of the AFS are drawn by black dash-dotted lines.

The inverse polygon inflation algorithm works as follows: First the polygon inflation procedure is used in order to

compute the outer polygon FS . Then a second polygonM∗
S

with

M∗S =
{

x ∈ R2 : ∃W ∈ R2×2 by (7) with rank(T ) = 3, UΣT−1 ≥ 0, (TVT )(2 : 3, :) ≥ 0
}

(17)

is determined, which serves to determine the inner boundary ofMS . For details see [10]. Finally, the desired AFS

is constructed as the intersectionMS = FS ∩ M
∗
S

. The inverse polygon inflation method is the suitable method if

the AFS consists of a contiguous area containing a hole (around the origin). Moreover, rare cases of three-component

systems in which the AFS-sets consist of more than 3 isolated subsets can also be treated by the inverse polygon

inflation method. Also a “standard” three-subset AFS can be approximated by inverse polygon inflation. However, the

standard polygon inflation method is faster for this case. Punctiform or line-shaped AFS-subsets cannot be detected.

The progress of the approximation process ofMC by inverse polygon inflation for data set 2 is presented in figure 21.

Figure 22 shows a flow chart of the inverse polygon inflation algorithm.

4.7. Ray casting for s ≥ 2

Ray casting is a simple, general algorithm for AFS computations for any dimension s ≥ 2 [35]. The method is stable

for noisy data and can be used to calculate dimension-degenerated AFS subsets as line-intervals for s = 3, faces for

s ≥ 4 and so on. Ray casting is computationally faster than grid-search and of comparable computational costs as

triangle enclosure. It is much slower than the geometric construction approaches or the polygon inflation method.

Ray casting works like radar scanning. A set of N rays is sent to uniformly distributed directions in the (s − 1)-

dimensional sphere. Polar coordinates (in 2D) or spherical coordinates (for 3 or more dimensions) can be used to

construct the uniformly distributed directions. If 3i, i = 1, . . . ,N, are the direction vectors starting at the origin, then

the points of intersections Ri3i with the boundary of FS are computed. The Ri are real numbers. If Ri3i is a feasible

point, then the smallest possible positive ri is determined so that ri3i is also a feasible point. Then the line segment

[ri,Ri]3i (where [ri,Ri] is the interval of real numbers from ri to Ri) is the intersection of the AFS with the semi-infinite

ray with the direction 3i. The theoretical basis for showing that this intersection has the form of a contiguous interval
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Figure 21: Progress of the inverse polygon inflation algorithm in order to computeMC for data set 2. The set FS and the subsetM∗
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Figure 22: Flow chart of the inverse polygon inflation algorithm.

is theorem 3.4 (items 2 and 3). The resulting interval-shaped intersections of the AFS with the rays are clustered. The

endpoints of neighboring intervals are interpolated within each cluster. This forms the boundary curve (or surface) of

a subset of the AFS. The ray casting method is similar to the grid-search method but works with one less dimension.

Figure 23 demonstrates an application of ray casting for the approximation of the spectral AFS for the data set 2 with

a number of N = 100 rays.

Ray casting can be implemented with an adaptive control. Then areas are detected in which the ray density should

be increased in order to avoid vertices not being detected. The adaptive strategy requires an initial ray casting ap-

proximation with Ninitial rays. A vertex detection algorithm tries to identify intersecting edges and locally increases

the resolution. The further refinement is stopped if only small local errors are detected. The adaptive strategy is very

effective compared to a global, uniform refinement. Figure 24 illustrates the local refinement in the neighborhood of

crucial vertices.

4.8. On the influence of the control parameters bounding small negative entries

As already pointed out in section 3.7, it appears to be a necessity to accept and to control small negative entries in the

pure component factors C and S . This is especially the case for noisy data or in the presence of background signals

or nonlinear effects violating the ideal bilinearity of the Lambert-Beer law. Otherwise, AFS approximation methods

would be restricted to ideal model data. All generically numerical AFS approximation methods and also the dual

Borgen plot construction can deal with noise and small negative matrix entries. With certain limitations this is also

valid for the generalized Borgen plots approach. The size of the control parameters allow us to distinguish between

acceptable deviations from the constraints C, S ≥ 0 as well as D = CS T and unacceptably large deviations.

Even the classical ssq-function approach from [34, 49, 8, 50] can deal with noise and small negative matrix entries.

The technique is to set the negative elements to zero and then to evaluate the reconstruction functional ‖D − CS T ‖

that should be as small as possible. We use a different approach in this chapter, in [9, 10, 67, 68, 35, 58] and in the

FACPACK software package, namely the parameters εC and εS control the relative size of negative entries as specified

in equation (13).

A proper choice of these parameters is important in order to compute meaningful results. Generally, for increasing

values εC and εS the area of the AFS increases. If these control parameters and thus the AFS are too small, then the

chemically correct solution might not be contained in the AFS. Otherwise, if the control parameters together with
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Figure 23: Application of the ray casting algorithm with N = 100 rays in order to approximate the spectral AFS for data set 2. Left: The equiangular
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is marked in red, blue or ochre. Right: Piecewise linear interpolation of the end points of neighboring lines yields the boundary curve of an AFS

subset.
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Figure 24: Ray casting with and without an adaptive refinement strategy to approximate the spectral AFS for data set 2. Left: Non-adaptive ray

casting with a relatively low resolution by N = 100 equiangular rays tends to cut certain vertices. The dash-dotted black lines stand for the correct

AFS. Especially the blue AFS subset shows truncated vertices. Right: Adaptive ray casting results in an improved approximation. The initial

number of rays is Ninitial = 100. The final approximation with a locally increased resolution and N = 325 rays.

the AFS are too large, then the information content of the AFS is small. Figure 25 shows the AFS-sets for various

parameter choices for data set 3. Additionally, the true solutions (computed by using a kinetic hard model) are plotted.

The first choice εC = 3.88 · 10−4 and εS = 2.65 · 10−3 is too restrictive as not all true factors are covered by the AFS.

A proper selection for this data set appears to be εC = εS = 0.006.

4.9. Special AFS shapes

Next we determine the AFS for three nonnegative matrices with either the rank 3 or the rank 4. These matrices do not

originate from a chemical reaction system but illustrate more general shapes of an AFS.

Example 4.1. For the following three simple model problems the AFS MC equalsMS apart from an axis scaling

(that is the y1-axis gets the scaling factor σ1/σ2 and y2-axis is to be multiplied by σ1/σ3). For the first problem this

fact is not surprising since D is a symmetric matrix. For the other two problems the structure of DT is closely related

to the structure of D.

1. This matrix is inspired by [69]. With

CT = S T =





α 1 1 α β β

1 α β β α 1

β β α 1 1 α




(18)

we get D = CS T . We choose α = 0.5 and β = 0.075. The AFS consists of six separated subsets, see figure 26.

As σ2 = σ3, the orientation of the AFS depends on the choice of the singular vectors. The geometric Borgen

plot construction, the grid-search method, the inverse polygon inflation algorithm and the ray casting approach
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Figure 25: AFS computations for data set 3 and for different settings of the control parameters εC and εS , see equation (13). The outer polygons
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by kinetic hard modeling) are marked by black circles. The AFS-sets grow for increasing values of εC , εS . If the control parameters are too small,

then the true solutions are not necessarily contained inMC , respectively inMS .22
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Figure 26: AFS shapes for the three matrices (18)–(20). For each of these matrices the AFSMC equalsMS aside from scaling. The outer polygons

are plotted by black broken lines and the inner polygons are drawn by black solid lines respectively by a gray area. Left: The AFSMS for D by

(18) with α = 0.5 and β = 0.075. Due to σ2 = σ3 the orientation of the axes remains undetermined. Center: The AFSMS for D by (19) with a 0-,

1- and 2-dimensional subset. Right: The AFSMS for D by (20) consists of subsets with the dimensions 0 up to 3.

can be applied in order to compute this AFS. A successful application of triangle enclosure and direct polygon

inflation would require algorithmic modifications.

2. The nonnegative 3 × 3 matrix

D =





1 1 1

0 1 1

0 0 1




(19)

does not contain chemistry-related data. However, the AFS construction is possible and results in three isolated

subsets. One subset is punctiform, one subset is line-shaped and the third subset is a two-dimensional area

subset. The AFS construction succeeds with one of the geometric approaches (Borgen plots), the triangle

enclosure method, the direct polygon inflation algorithm or the ray casting method. The methods of grid-search

and inverse polygon inflation fail due to the dimension-degeneracy.

3. The nonnegative 4 × 4 matrix

D =





1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1





(20)

extends the construction principle underlying (19), namely of an all-1 upper triangular matrix, by increasing

the dimension by 1. The AFS consists of a punctiform, a line-shaped, an area and a volume subset. The ray

casting method or the sliced triangle enclosure method can be used in order to compute this AFS.

5. AFS-computations with FACPACK

FACPACK is a software package written in MatLab (with a core of fast C- and FORTRAN-subroutines) for the

computation of AFS-sets for two-, three- and four-component systems [11]. The software comes with a user-friendly

graphical user interface (GUI) and is freely available on the FACPACK-homepage

http://www.math.uni-rostock.de/facpack/

Executable program codes of FACPACK are provided for Windows, Unix and macOS. The test data and the MatLab

program code elements as presented in section 5.2 are also available on the FACPACK homepage.

5.1. Modules

The FACPACK software has a module structure that is explained in the following. The main modules are those on AFS

computation (2 and 3 components), Duality/Complementarity & AFS (3 components), Generalized

Borgen plots and AFS computation (4 components). For all modules the user data has to be loaded from
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*.mat-files. Therein the spectral mixture data has to be saved row-wise in the matrix D. Optionally, one can provide

two grid vectors x and t. The vector x contains the coordinates on the abscissa of the spectra (typically frequency values

or wavenumbers) and t contains the time values of the measurements. If x and t are not provided, then x = (1, . . . , n)

and t = (1, . . . , k) is the default setting. For further explanations see [70, 11].

The polygon inflation algorithm and the inverse polygon inflation algorithm are implemented in the module AFS-com-

putation (2 and 3 components). Figure 27 serves as a quick reference for this module in order to compute the

spectral AFS in application to data set 2. A special feature of these computations is the live-view-mode. The user can

move the mouse pointer through the AFS and simultaneously the reconstructed (transformed) profiles are drawn. By

pressing the left mouse button the profile under the current mouse pointer is locked. If one feasible solution is locked,

then the remaining and reduced AFS-subsets can be computed by means of equality constraints [71, 72]. This process

can be started by clicking the no. 1-button. Next a second profile can be locked in a similar way. Again, the reduced

AFS can be computed with the no. 2-button.

The module Duality/Complementarity & AFS (3 components) is designed in order to compute the two dual

AFS-setsMS andMC and to construct a complete factorization step-by-step in an interactive way. Figure 28 contains

a quick reference for this module for data set 2. A triangle in the AFS plane containingMS defines a complete factor

S and therefore simultaneously determines the factor C. This triangle is directly related to a second triangle in the

AFS plane that containsMC . The vertices of this triangle determine the columns of C. In this module the user can

select and modify the vertices of the two triangles by selecting and moving the vertices by the computer mouse in the

form of a live-view-mode. The current factors C and S are plotted simultaneously.

The geometric construction of the AFS is implemented in the module Generalized Borgen plots. In figure 29 a

quick guide for this module is presented in application to the spectral AFS for data set 2. The module is very similar

to the module AFS-computation (2 and 3 components). Differences exist in regard to the axis scaling. One can

either use a row-sum scaling (RSV-scaling) according to [6, 43] or the first-singular-vector scaling (FSV-scaling) as

used in equation (7). Further, the control parameters on the extent of acceptable perturbations have to be selected in

an absolute way.

Finally, the ray casting algorithm for four-component systems is implemented in the module AFS-computation (4

components). Figure 30 illustrates a quick guide for this module in order to compute the spectral AFS for the

example four components/example5.mat that is supplied by the FACPACK software. The live-view-mode works if

a 3D-mouse is used and the program runs under Windows. Sliders are available for the 3 coordinates. The isolated

subsets of the AFS can be plotted separately.

5.2. Useful hints how to get access to the FACPACK results and figures

FACPACK provides the user with the possibility of saving the computational results in individual files. These files

can either be loaded in the command window or can be used for an independent post-processing of the results. The

variables are saved in the form of structure-formatted data.

If for example the AFS-computation (2 and 3 components)-module has been used for a three-component sys-

tem and the results have been saved by the Save all-button, then the AFS is saved as a cell array. The boundary

curves of the AFS-subsets are stored in AFS{1}, AFS{2} and AFS{3}. Then AFS{i}(:,1) refers to the x1-coordinates

and AFS{i}(:,2) to the x2-coordinates. The sets of feasible profiles are saved in the cell array TransformedAFS and

can be accessed in an analogous way.

Next we present some useful MatLab-commands for the presentation and modification of the FACPACK results.

Plot an AFS that consists of three separated subsets:

COL = [.85 .85 1; .85 1 .85; 1 .85 .85];

col = [0 0 1; 0 .5 0; 1 0 0];

load results_facpack_afs_USERDATA.mat

for i=1:3

fill(AFS{i}(:,1), AFS{i}(:,2), COL(i,:), 'linewidth', 1, 'edgecolor', col(i,:));

hold on;

end

hold off

axis tight

xl = get(gca, 'xlim');

yl = get(gca, 'ylim');

set(gca, 'fontsize', 22, 'xlim', 1.05*xl, 'ylim', 1.05*yl)
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Figure 27: Quick reference in six steps for the module AFS-computation (2 and 3 components) that is an implementation of the polygon

inflation algorithm. Data loading (step 1). Select the number of components, here s = 3 (step 2) and compute an initial NMF (step 3). Select the

polygon inflation method (step 4) and compute the spectral AFS (step 5). Show the corresponding feasible profiles for one of the AFS subsets (step

6). The AFS for the concentration factor can be computed by pushing the Transpose button after data loading.
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Figure 28: Quick reference in six steps for the module Duality/Complementarity & AFS (3 components). Load the data (step 1). Compute

the two dual AFS-sets (step 2). Select a first profile by moving the mouse pointer through the spectral AFS and lock a proper spectral profile (step

3). Select a second (step 4) and a third (step 5) profile in an analogous way. Any concentration profile or spectral profile can be changed in order

to modify the pure component factorization (step 6).
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Figure 29: Quick reference in four steps for the module Generalized Borgen plots that implements the geometric AFS construction. Load

the data (step 1). Select the AFS scaling (step 2) and compute the spectral AFS (step 3). Plot the corresponding feasible profiles for one of the

subsets of the AFS (step 4).

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

channel
0 10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

channel

−1

−0.5

0

0.5

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

αβ

γ

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

step 1

step 1a

step 2

step 3

step 4

step 5
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subset (step 4) in order to plot the corresponding feasible profiles (step 5). This demonstration uses example four components/example5.mat that
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set(gcf, 'paperpositionmode', 'auto')

print('-depsc', '-loose', 'USERPICTURE')

Plot an AFS that is a topologically connected set containing a hole around the origin:

load results_facpack_afs_USERDATA.mat

fill(AFS{1}(:,1), AFS{1}(:,2), [.7 .7 .7], 'linewidth', 1, 'edgecolor', 'k')

hold on;

fill(AFS{2}(:,1), AFS{2}(:,2), [1 1 1], 'linewidth', 1, 'edgecolor', 'k')

hold off

axis tight

xl = get(gca, 'xlim');

yl = get(gca, 'ylim');

set(gca, 'fontsize', 22, 'xlim', 1.05*xl, 'ylim', 1.05*yl)

set(gcf, 'paperpositionmode', 'auto')

print('-depsc', '-loose', 'USERPICTURE')

Plot the AFS and mark imported spectral profiles in the AFS:

COL = [.85 .85 1; .85 1 .85; 1 .85 .85];

col = [0 0 1; 0 .5 0; 1 0 0];

load results_facpack_afs_USERDATA.mat

load EXTERNALFILE % this file contains in the variable S columnwise spectral profiles

tt = S'*V(:,1:3);

tt = diag(1./tt(:,1))*tt;

for i=1:3

fill(AFS{i}(:,1), AFS{i}(:,2), COL(i,:), 'linewidth', 1, 'edgecolor', col(i,:));

hold on;

end

plot(tt(:,2), tt(:,3), 'kx', 'markersize', 10, 'linewidth', 1)

hold off

axis tight

xl = get(gca, 'xlim');

yl = get(gca, 'ylim');

set(gca, 'fontsize', 22, 'xlim', 1.05*xl, 'ylim', 1.05*yl)

set(gcf, 'paperpositionmode', 'auto')

print('-depsc', '-loose', 'USERPICTURE')

Plot the feasible profiles (for an AFS consisting of three isolated subsets):

col = [0 0 1;0 .5 0;1 0 0;0 1 1];

load results_facpack_all_USERDATA.mat

for i=1:3

figure(i)

plot(x, TransformedAFS{i}, 'color',col(i,:))

axis tight

yl = get(gca, 'ylim');

set(gca, 'fontsize', 22, 'xlim', x([1 end]), 'ylim', [min(0, 1.05*yl(1)) 1.05*yl(2)])

set(gcf,'paperpositionmode','auto')

print('-depsc','-loose',['USERPIC_FP_',num2str(i)]);

end

Computation and plot of the inner and outer polygons:

load USERDATA.mat

% the spectral data matrix is D with the dimensions (k x n)

% k is the number of spectra, n is the number of channels

% s is the number of components

s = 3;

[U,S,V] = svds(D,s);

for i=1:s

if min(V(:,i)) < -max(V(:,i))

V(:,i) = -V(:,i);
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U(:,i) = -U(:,i);

end

end

a = diag(1./U(:,1)/S(1,1))*U(:,2:3)*S(2:3,2:3);

b = diag(1./V(:,1))*V(:,2:3);

% computation of the indices of a resp. b that represent vertices of the inner polygons

cips = convhull(a(:,1),a(:,2));

cipc = convhull(b(:,1),b(:,2));

% computation of the inner polygons

IPS = a(cips,:);

IPC = b(cipc,:);

% computation of outer polygon (FIRPOL) for S by using duality and IPC

FPS = [];

m = size(IPC,1);

for i=1:m-1

X = [IPC(i,:); IPC(i+1,:)];

FPS(end+1,:) = X\[-1;-1];

end

FPS(end+1,:) = FPS(1,:);

% computation of outer polygon (FIRPOL) for C by using duality and IPS

FPC = [];

m = size(IPS,1);

for i=1:m-1

X = [IPS(i,:); IPS(i+1,:)];

FPC(end+1,:) = X\[-1;-1];

end

FPC(end+1,:) = FPC(1,:);

% plot outer polygon and inner polygon for S

figure(1)

plot(FPS(:,1), FPS(:,2), IPS(:,1), IPS(:,2), 'linewidth', 1)

% plot outer polygon and inner polygon for C

figure(2)

plot(FPC(:,1), FPC(:,2), IPC(:,1), IPC(:,2), 'linewidth', 1)

6. Numerical results and comparative analysis

In a comparative analysis the feasible concentration profiles and the feasible spectral profiles are analyzed for the data

sets as introduced in section 1.1. The computation of the various areas of feasible solutions is the first, intermediate

step. The associated feasible profiles are determined for each subset of the AFS. To this end, each AFS subset is

covered by a regular grid. Further, the boundary curve is covered by additional equidistant grid points. The total

number of nodes of the grid plus the number of nodes on the boundary curve is m. These nodes z1, . . . , zm ∈ Rs−1

represent the spectral profiles according to

a(i) = (1, zT
i )VT , i = 1, . . . ,m.

First, figure 31 shows the AFS and the bands of feasible solutions for the two-component data set 1. Figure 32 presents

the analogous results for data set 2. In each case, the AFS subsets show the grid that is used for the band evaluation.

Finally, for data set 3 the feasible profiles are computed for the AFS-sets as plotted in the third row of figure 25. The

control parameters of this calculation are εC = εS = 6 · 10−3. The bands of feasible profiles are presented in figure 33.

6.1. MCR-BANDS results

The MCR-BANDS software supplies extremal concentration profiles and spectra by minimizing or maximizing the

signal contribution function (5), see [31, 32, 21]. For an s-component system 2s spectral profiles and 2s concentration

profiles are computed. Here we apply MCR-BANDS to data set 2. For each of the resulting profiles we compute

the low-dimensional AFS representatives. Figure 32 shows in its two lower rows of plots the bands of solutions for

equally distributed points in the AFS together with the extremal profiles by MCR-BANDS. The equally distributed

points in the AFS are marked by crosses in the upper row of plots. The MCR-BANDS profiles are plotted as black

broken lines. These profiles represent useful approximate enclosures for the bands of solutions. However, in some
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Figure 31: Analysis of the feasible profiles for the two-component data set 1. The upper row shows the AFSMC for the concentration factor and the

corresponding AFS for the spectral factorMS . The gray circles serve to define the outer boundary and the black crosses are the data-representing

vectors. The red and blue line markers in the AFS mark the positions for which the spectral profiles and concentration profiles are evaluated. These

profiles are drawn in the lower row of figures.

regions, e.g. the upper bound of the spectral profiles for Y in the λ ≈ 80...100 interval, the approximation is poor.

Additionally, figure 34 shows where the representatives of the MCR-BANDS profiles are located in the AFS sets. In

general, the MCR-BANDS profiles have the tendency to be represented by points that are located on the boundary of

the AFS. However, the MCR-BANDS maximum profile for the spectrum of Y is associated with a point close to the

boundary, see also [73, 55]. In figure 34 faint markers illustrate the convergence history of the iterative optimization

in MCR-BANDS.

6.2. Comparison of computational results

Finally, we compare some of the various methods with respect to their precision and the computational costs. This

comparison is restricted to the three-component model data set 2. The reference solution is constructed geometrically

(Borgen plots) with a number of N = 12 610 tangents.

For a fair comparison each of the methods is implemented in fast C-code. Furthermore, we apply the same program

routine for the feasibility check of points in the AFS plane. For this purpose we consistently use the objective function

F(x) by (16) and not the ssq-function. All computations have been performed on a standard PC with an Intel i7-6700

CPU with 3.40GHz and 16 GB RAM. Only one processor core has been used.

The tables 1-6 contain the numerical data for the grid-search method, the Borgen plot approach, the triangle enclosure

method, the polygon inflation algorithm, the inverse polygon inflation algorithm and the ray casting approach with

adaptive control. We compare the accuracy of the boundary approximation for each of the three AFS subsets (subset

1 belongs to component X, subset 2 to Y and subset 3 to Z). Furthermore, figure 35 compares the methods in a log-log

graph with respect to the boundary approximation accuracy and the computation time. The result of these comparisons

for the model data set 2 is as follows: For this noise-free data, the geometric Borgen plot construction is the fastest and

most accurate method. Polygon inflation follows on the next position. Grid search and triangle enclosure require more

computation time in order to achieve a comparable accuracy. The adaptive ray casting method has a mid-position.

7. Summary

The reliability of multivariate curve resolution methods in chemometrics is largely determined by an appropriate

approach to deal with the ambiguity underlying pure component factorizations. The systematic analysis of this am-

biguity leads to the area of feasible solutions as a low-dimensional representation of the possible factors only with

respect to the nonnegativity constraint.

The wide range of possible methods to construct or to compute these ranges of feasible solutions is reviewed in

this chapter. Many of the fundamental properties of the AFS have been highlighted. The various algorithms and

their program implementations for the computation of feasible bands and/or the AFS enable an unbiased view on the

annoying ambiguity problem.
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Figure 32: For data set 2 this figure shows the AFS-sets MC and MS in the top row. Colored crosses mark the AFS elements for which the

associated concentration profiles are drawn in the middle row of plots. The associated spectral profiles are drawn in the lower row. Additionally,

the MCR-BANDS profiles are plotted as black broken lines.

We hope that the FACPACK software can substantially support the user in his tour through the chemical data analysis.

We explicitly recommend the application of the program segments, as introduced in section 5.2, for the data post-

processing. These programs allow the user a deep access to all computational results of FACPACK for his personal

research purposes and for graphical visualization tasks.
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Rotation Number of Computation Boundary accuracy Number of

angle [◦] tangents time [s] subset 1 subset 2 subset 3 vertices

1.00 459 1.99 4.711 · 10−3 2.917 · 10−3 4.866 · 10−4 99

0.50 819 2.00 2.367 · 10−3 1.066 · 10−3 9.023 · 10−5 162

0.10 3699 2.00 1.746 · 10−4 3.118 · 10−4 3.689 · 10−5 667

0.05 7299 2.14 1.746 · 10−4 1.310 · 10−4 3.689 · 10−5 129

Table 1: Geometric construction of MS by triangle rotation according to the Borgen plot construction for data set 2. The rotation angle varies

between 1 and 0.05 degrees.

Step size Grid Computation Boundary accuracy Number of

hx1
, hx2

time [s] subset 1 subset 2 subset 3 vertices

2.5 · 10−2 101 × 73 13.53 3.183 · 10−2 3.107 · 10−2 2.469 · 10−2 254

1.0 · 10−2 251 × 181 78.81 9.879 · 10−3 1.433 · 10−2 1.469 · 10−2 654

5.0 · 10−3 501 × 361 280.23 4.941 · 10−3 4.785 · 10−3 4.785 · 10−3 1315

1.0 · 10−3 2501× 1801 6142.81 9.930 · 10−4 9.643 · 10−4 9.045 · 10−4 6623

Table 2: Application of the grid-search approach in order to approximateMS for data set 2. The results are computed for several grid resolutions.

Edge length a Computation Boundary accuracy Number of

time [s] subset 1 subset 2 subset 3 triangles

2.5 · 10−2 1.29 2.474 · 10−2 3.217 · 10−2 2.317 · 10−2 565

1.0 · 10−2 2.83 9.830 · 10−3 1.504 · 10−2 9.329 · 10−3 1429

5.0 · 10−3 5.58 5.122 · 10−3 6.550 · 10−3 5.846 · 10−3 2865

1.0 · 10−3 27.43 1.129 · 10−3 1.497 · 10−3 9.779 · 10−4 14345

Table 3: Application of the triangle enclosure algorithm in order to computeMS for data set 2. The results are computed for several edge lengths

a. In some degenerated geometric situations the boundary approximation error can be larger than the edge length of the equiangular triangles.

εb, δ Computation Boundary accuracy Number of

time [s] subset 1 subset 2 subset 3 vertices

10−2 0.86 2.401 · 10−2 2.571 · 10−2 1.572 · 10−2 94

10−3 2.90 1.530 · 10−3 1.804 · 10−3 1.407 · 10−3 194

10−4 7.19 1.887 · 10−4 2.286 · 10−4 3.508 · 10−4 404

Table 4: Application of the polygon inflation algorithm in order to computeMS for data set 2. The results are computed for some settings of the

control parameters εb (boundary precision) and δ (stopping criterion). The adaptive approximation strategy works reliably.

εb, δ Computation Boundary accuracy Number of

time [s] subset 1 subset 2 subset 3 vertices

10−2 3.70 9.074 · 10−3 1.634 · 10−2 1.321 · 10−2 78

10−3 7.09 1.446 · 10−3 2.654 · 10−3 1.997 · 10−3 146

10−4 16.72 1.470 · 10−4 7.401 · 10−4 2.886 · 10−4 30

Table 5: Application of the inverse polygon inflation algorithm in order to computeMS for data set 2. The results are computed for some settings

of the control parameters εb (boundary precision) and δ (stopping criterion). By construction, the inverse polygon inflation algorithm requires at

least twice the computing time compared to the (direct) polygon inflation algorithm.

εb Number of rays Computation Boundary accuracy

Nbasic N (final) time [s] subset 1 subset 2 subset 3

100 286 1 · 10−3 13.46 1.730 · 10−3 6.993 · 10−3 1.241 · 10−3

100 368 5 · 10−4 20.05 9.349 · 10−4 7.350 · 10−4 7.247 · 10−4

100 786 1 · 10−4 50.82 1.876 · 10−4 1.994 · 10−4 4.570 · 10−4

Table 6: Application of the ray casting method with a simple adaptive control strategy in order to compute MS for data set 2. The results are

computed for some boundary precision parameters εb and a number of Nbasic = 100 initial rays.
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