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Abstract

A major problem of multivariate curve resolution methods is the underlying non-uniqueness of the pure component

decompositions. This raises the question how a chemical experiment should be designed so that the solution ambiguity

is as small as possible. Changes of the reaction conditions belong to the possible variations whereas for a fixed

chemical reaction system the pure component spectra appear to be unchangeable.

The paper investigates and discusses the possibility to design a chemical experiment in a way that minimizes the

ambiguity of the factorization. The analysis identifies regions of the spectra that are responsible for a small ambiguity.

Certain sources are identified that are responsible for an increased ambiguity by means of an a posteriori analysis. This

results in recommendations how to construct spectral measurements incorporating a reduced factorization ambiguity.

Furthermore, lower bounds on an unavoidable base level of ambiguity are specified under the constraint of fixed

reactants. The problem analysis is accompanied by investigations of several experimental data sets.
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1. Introduction

Design of experiments (DoE) is a methodology for the planning and the statistical analysis of experiments. The

aim is to detect and to explain changes of the extractable system information with respect to changes of the experi-

mental conditions. Mainly with the background of agricultural applications, the statistician R. Fisher developed the

principles of DoE in 1926 [1] and later in 1935 in his book entitled Design of Experiments [2]. Today, DoE is a very

important and widely used method that supports scientists in the systematical development of statistical experimental

designs.

This paper deals with the related problem to which extent the uncertainty of the results of multivariate curve

resolution (MCR) methods for the pure component decomposition of series of spectra can be reduced by changing the

experimental conditions. Conditions for reducing the rotational ambiguity in MCR computations have a history for

more than two decades. Tauler and coworkers showed between 1993 and 1995 how additional constraints as selectivity

and local rank assumptions as well as multiset and multiway data can help to reduce ambiguity [3, 4, 5]. At the same

time Manne [6] published his influential resolution theorems where such conditions were confirmed. On the side of

method development these findings led among others to evolving factor analysis method of Maeder [7], the window

factor analysis by Malinowski [8] and the Heuristic Evolving Latent Projections (HELP) by Kvalheim and Liang [9].

Further, Paatero and coworkers developed the Positive Matrix Factorization (PFM) method for factorizations of air

source apportionment data [10, 11]. All these methods exploit the knowledge where certain components of a mixture

exist or are absent, and where they contribute or do not contribute to the measured signal. Further, any zero pattern in

the spectral mixture data or the pure component factors contains a valuable information on the pure components. All

these criteria define starting points for applying DoE techniques for decreasing rotational ambiguities for the individual

analysis of single data sets and also for the simultaneous analysis for multiset and multiway data. The importance of

well-designed chemical experiments for the subsequent numerical analysis of the spectral data has been pointed out

by many authors; for the context of operando spectroscopy in homogeneous catalysis we refer to Garland [12].

The uncertainties in the solution of MCR problems due to the rotational ambiguity can be displayed in the form of

feasible bands or in the low-dimensional form by the so-called Area of Feasible Solutions (AFS). Our analysis does not

include an application of DoE in the sense of statistical methods for information extraction. Instead, we investigate the

problem of an uncertainty reduction by analyzing conditions how chemical experiments should be designed in order

to reduce the rotational ambiguity. The analysis also considers the question which spectral windows (of the series of

spectra) are decisive for the extent of the solution ambiguity. We derive by means of an a posteriori analysis conditions

and recommendations of how to design a chemical experiment and how to plan the spectral measurements in an a priori
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way so that the spectroscopic observation and the subsequent MCR analysis can yield reliable pure component factors

with a reduced uncertainty. The recommended changes of the experimental conditions can concern the selection of the

solvent, changes in temperature or pressure, the presence or non-presence of perturbations together with the question

of a spectral background treatment and so on.

1.1. The MCR problem and its solution ambiguity

We consider the MCR problem for a (k×n)-matrix D whose k rows are formed by a series of spectra. Each spectrum

has n spectral channels. The aim is to determine the pure component factors, namely a matrix of concentration profiles

C ∈ Rk×s and a second matrix S ∈ Rn×s of the pure component spectra, with

D = CS T + E. (1)

Ideally the residual matrix E is the zero matrix or otherwise elementwise close to zero. The number s denotes

the number of the pure components. The factorization problem, i.e. to compute for an experimentally measured

(nonnegative) matrix D the two nonnegative matrix factors C and S so that (1) is satisfied for neglectable E, cannot be

expected to have a unique solution. Naturally, we ignore simultaneous permutations of the columns of C and S and

comparable positive column scaling of these matrices as trivial sources of a solution ambiguity. Instead the non-trivial

non-uniqueness, the so-called rotational ambiguity, is a major problem [8, 13, 14, 15, 16]. The AFS, see Section 2.1

for details, is a low-dimensional representation of the possible columns of either C or S and has extensively been

studied in recent years [17, 18, 19, 20, 21, 22, 23, 24, 25].

The bilinear Lambert-Beer model (1) determines the two pure component factors as the two influential quantities

to form the mixture data; we ask how to change the reaction system with the aim of a reduction of the rotational

ambiguity. Reasonably, a change of the reactants of the chemical reaction system makes no sense and hence the

factor S of the pure component spectra is not subject to any change. Nevertheless, we discuss the effect of isolated

peaks or frequencies with partly non-absorbing components on the AFS. In contrast to this, changes of the reaction

conditions, which do not lead to new chemical products, can considerably change the concentration profiles of the

pure components that form the columns of C. Additionally, repeated experiments with very different concentration

values can also reduce the ambiguity of the MCR solutions.

The questions of the rotational ambiguity of MCR solutions and techniques for an ambiguity reduction (e.g. by

duality arguments [26, 27, 28]) are discussed in many of the publications referenced above. Our analysis has some

relations to the works of Manne [6] as well as Rajkó and coworkers [29]. The two papers are widely known and are

important concerning the uniqueness or partial uniqueness of MCR solutions for bivariate data. A key-principle in

[29] is the data-based uniqueness whereas in [6] principles of a profile-based uniqueness in selective windows are

developed. In these two works the focus is on unique solutions. In contrast to this, we here analyze a reduction of the

AFS-sets of solutions under changing conditions. For the extreme case of a reduction up to uniqueness our results are

consistent with those in [29].

In general, unique pure components can only be determined in special cases for experimental spectral data (how-

ever model problems can be constructed that show such a singular behavior). Such a situation can exist if, in the

words of Manne, selective regions can be determined in the spectra. These selective regions contain only signals of

one component and can help to extract the entire pure component spectrum of this component. The existence of se-

lective regions is a special favorable situation in experimental spectral data and appears to be unlikely in the presence

of noise, background spectra or distorted baselines.

Organization of the paper: The central second section of the paper treats the ambiguity reduction problem in

a geometrical manner by using Borgen plots (case s = 3) and its generalization to higher numbers of components

(s > 3) by using the polygons/polyhedra FIRPOL and INNPOL for the AFS construction. Some of the presented

results are similar to statements that have been gained in [29]. In Section 3 guiding principles are developed for

experimental conditions that lead to relatively small AFS-sets. In Section 4 we discuss lower bounds on the rotational

ambiguity of MCR factorizations under the assumption of fixed pure component spectra. Finally, Section 5 illustrates

the application of the theoretical results to some data sets of chemical three-component systems. If the reader is

not familiar with Borgen plots and their underlying mathematical theory, then we recommend to skip the theoretical

second section and to continue with the recommendation for an ambiguity reduction in Section 3 and their application

demonstrations in section 4.

2. Borgen plots and rotational ambiguity in AFS constructions

Borgen plots [17, 18] and their crucial polygons INNPOL and FIRPOL are the decisive tools for the analysis in

this sections; see Eq. (2), for the mathematical definition of these polygons. First, FIRPOL is the set of all points

which represent nonnegative profiles. Hence, any acceptable solution (concentration profile or spectrum) must be
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represented by a point in FIRPOL. If small negative components are acceptable, then the representing point can leave

FIRPOL but must be close to its surface. Second, the polygon INNPOL is contained in FIRPOL and is the convex

hull of all points that represent either the columns or the rows of the spectral data matrix. The polygons INNPOL and

FIRPOL are the basis for the construction of the so-called Borgen plots, see [17].

Our analysis starts with the uniqueness condition that a vertex of INNPOL is located on the boundary of FIRPOL.

Then we discuss conditions whether or not additional mixture spectra (namely a row of D) enlarges the size of the

polygon INNPOL or decreases the size of FIRPOL. Both changes result in a reduction of the rotational ambiguity since

the triangle (simplex) rotation process in the geometric Borgen plot construction works under stronger constraints

for the possible locations of the vertices of the triangles/simplices. Next we introduce the AFS and its geometric

construction by Borgen plots with the notation following [28, 30].

2.1. Borgen plots

The starting point is the spectral data matrix D and its (approximate) nonnegative factors C and S according to

(1). The truncated singular value decomposition (SVD) UΣVT = D provides by the left (resp. right) singular vectors

a basis for the representation of the factor C (resp. S ). The expansion coefficients with respect to these bases are

collected in a regular matrix T ∈ Rs×s so that the matrix factors have the forms C = UΣT−1 ≥ 0 and S T = TVT ≥ 0,

see e.g. [31, 8, 14]. 1 The rotational ambiguity expresses the fact that usually a continuum of s× s matrices T exists so

that C, S ≥ 0. MCR methods aim at determining only a single factorization and typically require additional constraints

and assumptions. There is no guarantee that the chemically correct solution can be determined. An alternative and

assumption-free approach is to compute the set of all nonnegative factorizations of D, to analyze all these solutions

and finally to try to choose the true solutions. Practically, there is no necessity to consider the set of all pairs of

nonnegative matrices (C, S ). Instead, the sets of all possible first columns of either C or S can be considered that arise

in a nonnegative factorization D = CS T . These columns can be represented in a low-dimensional way by the possible

first rows of T (in order to represent the factor S ) or the possible first columns of T−1 (to represent the factor C).

Together with a proper normalization that fixes the first column of T to the all-ones vector (see [21] for a justification

of this normalization by the Perron-Frobenius spectral theory of nonnegative matrices) we consider matrices T of the

form

T =



1 x1 · · · xs−1

1
... W
1


.

The AFS for the factor S reads with x = (x1, . . . , xs−1)T and W

MS = {x ∈ R
s−1 : exists W ∈ R(s−1)×(s−1) such that rank(T ) = s and C, S ≥ 0}.

Its pendant for C is denotedMC; cf. Eq. (5) in [28]. Various methods for the geometric construction or numerical

computation of the AFS are available, see among others [17, 18, 19, 20] or the review works [24, 25]. Here the focus is

on geometric constructions of the AFS in terms of the so-called Borgen plots [17, 18, 22]. To this end we need certain

polyhedra, namely the two polyhedra FIRPOL FS and FC (the name derives from first polygon) and the polyhedra

INNPOL IS and IC (the name derives from inner polygon as FIRPOL includes INNPOL). For the important case of

a three-component system with s = 3 the polyhedra are (planar) polygons. The polyhedra are defined as follows

FS =

{
x ∈ Rs−1 : V

(
1

x

)
≥ 0

}
, IS = convhull

(
{ai, i = 1, . . . , k}

)
,

FC =

{
y ∈ Rs−1 : UΣ

(
1

y

)
≥ 0

}
, IC = convhull

(
{b j, j = 1, . . . , n}

)
.

(2)

Therein the convhull operator generates the convex hull of either the k vectors ai or the n vectors b j. These vectors

are the normalized vectors of expansion coefficients of the rows and columns of D with respect to the bases of its left

and right singular vectors

ai =
(UΣ)T (2 : s, i)

(UΣ)T (1, i)
, i = 1, . . . , k, and b j =

(V( j, 2 : s))T

V( j, 1)
, j = 1, . . . , n, (3)

1We use the matrix T and also mark the transpose of matrix by a superscript T .
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Figure 1: Three geometric arrangements in which a vertex of INNPOL touches the boundary of FIRPOL. Left: The point of contact P is a vertex

of FIRPOL. Any Borgen triangle (a typical triangle is drawn by dashed lines) between INNPOL and FIRPOL necessarily has one of its vertices in

P. A single and unique pure component is determined. This point cannot be moved to its close neighborhood. This is illustrated by the centered

plot where an edge of the dashed triangle intersects INNPOL. Right: If the point P is located on an edge of FIRPOL and not in a vertex, then the

AFS typically has two line-shaped subsets (marked by the bold lines).
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Figure 2: Left: A vertex of IS coincides with a vertex of FS . This results in a unique spectrum or equivalently a one-point subset of the AFSMS .

Right: A vertex of IS is located on the boundary of FS and not in a vertex of FS . Then the AFSMS has two line-shaped subsets.

see also Eqs. (6) and (7) in [28]. With these polyhedra a simple geometric construction makes it possible to construct

the AFS. For instance, the spectral AFSMS is the set of all vertices of all (s− 1)-simplices that include IS and which

are included in FS . An analogous property holds for AFSMC and the polyhedra IC and FC . In particular for s = 3

the 2-simplices are triangles which enclose INNPOL and are included in [17, 18]. A simultaneous construction of

MS andMC is possible by using certain duality relations between IC and FS and also IS and FC [28, 30].

2.2. Data-based ambiguity reduction

The analysis in this section is inspired by the selective regions as introduced by Manne [6]. Such regions are

subwindows with only one component. They can reduce the ambiguity considerably. Similarly important for our

investigations is the paper of Rajkó et al. on data-based uniqueness [29]. In this work we derive a general result in

the (somewhat technical) Theorem 2.1. Extreme cases of this theorem for special parameter settings are considered in

Lemma 2.2 and reproduce a result of [29].

In order to give a gentle introduction, we consider the geometric situation that for a three-component system

(s = 3) a vertex P of IS is located on an edge of the polygon FS . If P is also a vertex of FS , then a unique spectrum

is determined which is a direct outcome of the Borgen triangle rotation process. This is demonstrated in Figure 1 (left

subplot). The Borgen triangle is drawn by dashed lines and cannot be rotated around INNPOL without intersecting

INNPOL or FIRPOL. The bold dot marks a unique factor in the AFS plane. The centered subplot of Figure 1 shows

that the point P cannot be moved in a continuous way to a close neighborhood of the first situation as otherwise the

Borgen triangle intersects INNPOL. The situation is different if P hits a point on an edge of FIRPOL that is not a

vertex of FIRPOL. The right subplot in Figure 1 shows two Borgen triangles (by dotted lines and by dashed lines) that

indicate the existence of a line-shaped AFS subset.

The decisive point is that the existence of a zero element of the matrix D implies that a vertex of IS is on the

boundary of FS . The following theorem proves this. We illustrate this favorable situation again in Figure 2 by an AFS

computation for s = 3. The left subplot of this figure shows a one-point AFS subset in the case that a vertex of IS

equals a vertex of FS and the right plot shows two line-shaped subsets in the case that a vertex of IS hits a boundary

point of FS that is not a vertex.

4



In the remaining part of the paper we always assume that the matrix D with the rank s has at least one factorization

D = CS T with nonnegative factors of the rank s. We also assume that DT D and DDT are irreducible matrices, see

Appendix A for the definitions. These assumptions should always be met for all non-degenerate problems. Otherwise,

the AFS cannot be constructed, cf. [21].

Theorem 2.1. Let D ∈ Rk×n be a nonnegative matrix. For a number s0 ∈ {1, . . . , s − 1} let j1, . . . , js0
∈ {1, . . . , n} be

indexes of s0 spectral channels so that the spectral mixture data in the associated window has maximal rank

rank(D(:, [ j1, . . . , js0
])) = s0. (4)

Let i0 ∈ {1, . . . , k} be the index of a certain mixture spectrum so that the i0th mixture spectrum does not contribute to

the given frequency window. This means that

D(i0, [ j1, . . . , js0
]) = (0, . . . , 0) ∈ R1×s0 . (5)

Finally, let S be the intersection of the s0 affine planes Pℓ with

Pℓ = {x ∈ R
s−1 : V( jℓ, 2 : s)x = −V( jℓ, 1)}, ℓ = 1, . . . , s0. (6)

Then it holds that:

1. The set S is an (s − 1 − s0)-dimensional surface element of the polyhedron FS . Depending on its dimension it

is a vertex, an edge or a facet or an even higher dimensional surface element.

2. The vertex ai0 of IS is contained in S.

3. S contains at least one feasible solution.

In words, the theorem describes the following situation: Let a frequency window be given with the s0 channel

indexes j1, . . . , js0
. Let the series of the mixture spectra restricted to these spectral channels have the full rank s0 (this

means that the underlying s0 pure component spectra and the underlying s0 pure component concentration profiles are

linearly independent). If the i0th mixture spectrum shows absorptions only outside this frequency window, then one

vertex of IS is located on a surface element of FS . Especially single zero entries in D or partially vanishing rows of

D restrict parts of the spectral AFS to low-dimensional affine subspaces. 2 In particular, vanishing parts of rows of D

are caused by isolated peaks and partially absent components.

Proof. For each ℓ = 1, . . . , s0 the vector ai0 is contained in Pℓ since the condition in (6) is satisfied

V( jℓ, 2 : s)ai0 = aT
i0

(V( jℓ, 2 : s))T =

(
(UΣ)T (2 : s, i0)

)T

(UΣ)T (1, i0)
(V( jℓ, 2 : s))T =

UΣ(i0, 2 : s)

Ui0σ1

(V( jℓ, 2 : s))T

=
U(i0, :)Σ(:, 2 : s)VT (2 : s, jℓ)

Ui0σ1

=

=0 by (5)︷︸︸︷
Di0 jℓ −U(i0, :)Σ(:, 1)VT (1, jℓ)

Ui0σ1

= 0 − VT (1, jℓ) = −V jℓ ,1.

Therefore ai0 is an element of all affine hyperplanes Pℓ by (6). Since by (4)

s0 = rank(D(:, [ j1, . . . , js0
])) = rank(U(Σ(:, 1 : s))(V([ j1, . . . , js0

], 1 : s))T )

the last matrix factor must have full rank, i.e. rank(V( j1, . . . , js0
, 1 : s)T ) = s0. This proves the linear independence

of its row vectors. Therefore the affine hyperplanes Pℓ (that are defined just by the row vectors of the latter matrix)

do not show a linear dependence either. The intersection of the s0 affine planes in the (s − 1)-dimensional space is

(s − 1 − s0)-dimensional. Our general assumption on the existence of at least a single nonnegative factorization of D

guarantees thatMS is not empty. Thus the simplex construction around IS and in FS is possible. Thus at least one

point of S, namely either ai0 (cf. the situation in the left subplot of Fig. 1) or another points of S (cf. the situation in

the right subplot of Fig. 1) represents a feasible solution.

The special cases s0 = 1 and s0 = s − 1 of Thm. 2.1 are summarized in explicit form in the following Result 2.2.

For s0 = s − 1 a vertex of FS coincides with a vertex of IS and one isolated feasible solution is found; this result is

not new, but has been described in [29] for three-component systems (s = 3).

Result 2.2. Theorem 2.1 covers the following cases:

2An affine space is a linear subspace that is shifted away from the origin by some translation vector.
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1. If s0 = 1, then the rank condition (4) says that the j1th column is not an all-zero vector and the zero-pattern-

condition (5) shows that the j1th column has a zero element in the i0th row. Then the vertex ai0 of IS is located

on the boundary of FS since V( j1, 2 : s)ai0 = −V( j1, 1). In other words, a single zero element of D implies that

INNPOL touches FIRPOL.

2. If s0 = s − 1, then the surface element S of FS has the dimension s − 1 − s0 = 0. A 0-dimensional surface

element is a vertex of FS . Hence, ai0 is an isolated feasible solution and its associated pure component spectrum

is uniquely determined (except from scaling).

An analogous form of Thm. 2.1 and Result 2.2 can also be derived for the concentrational AFS. This reads as

follows:

Theorem 2.3. On the given assumptions on D ∈ R
k×n let a number s0 ∈ {1, . . . , s − 1} be given so that with the s0

spectra indexes i1, . . . , is0
∈ {1, . . . , k} the associated spectra submatrix attains its maximal rank

rank(D([i1, . . . , is0
], :)) = s0.

Further let j0 ∈ {1, . . . , n} be a certain frequency channel index so that D has the following zero pattern

D([i1, . . . , is0
], j0) = (0, . . . , 0)T ∈ Rs0 .

Finally let S be the intersection of the affine planes Qℓ with

Qℓ = {y ∈ R
s−1 : (UΣ)(iℓ, 2 : s)y = −(UΣ)(iℓ, 1)}, ℓ = 1, . . . , s0.

Then it holds that:

1. The set S is an (s − 1 − s0)-dimensional surface element of the polyhedron FC . Depending on its dimension it

is a vertex, an edge or a facet or an even higher dimensional surface element.

2. The vertex b j0 of IC is contained in S.

3. S contains at least one feasible solution (a concentration profile).

The proof entirely follows the lines of that of Thm. 2.1. The singular values have only a scaling effect. Alterna-

tively, the result follows by applying Thm. 2.1 to the transposed matrix DT = S CT as the factors C and S change their

positions by the transposition.

The statement of Thm. 2.1 is illustrated by the following examples.

Example 2.4. 1. We consider the consecutive reaction X → Y → Z with concentration profiles and spectra as

shown in Fig. 3. The spectra of Y and Z are single peaks with a different peak position and these two spectra

are linearly independent in the upper frequency region. Hence Thm. 2.1 can be applied. Taking s0 = 2 and

jn−1, jn as frequency channel indexes, then D(:, n − 1 : n) has the full rank 2 and D(1, n − 1 : n) ≈ (0, 0) so

that the vertex a1 of IS equals one vertex of FS . So the associated pure component spectrum of X is uniquely

determined, cf. Fig. 3.

2. Fig. 4 shows for reaction X → Y GGGBF GGG Z another set of pure component concentration profiles and spectra.

The peak of the pure component spectrum of X is partially located outside the frequency windows of Y and

Z. Further, the component X is absent in the final stage of the reaction. Then the conditions of Thm. 2.3 are

fulfilled, e.g., for i0 = k, s0 = 1 j1 = 1. So the vertex ak of IC is located on an edge of FC since S is an

(s − 1 − s0) = 1-dimensional surface element of FC.

As a rule of thumb, many zero-entries of D (zero-columns or zero-rows are not acceptable however) result in a

low rotational ambiguity. Then the AFS of a three-component system includes unique solutions (one-point subset) of

a line-shaped AFS subset. The following example shows that this condition is not necessary in the sense that a matrix

without any zero entries can have a unique factorization.

Example 2.5 (Compare to [32]). Let

CT = S T =


4 4 1 0 0 1

0 1 4 4 1 0

1 0 0 1 4 4

 .

The matrix D = CS T is strictly positive (with its smallest matrix entry equal to 1). No vertex of IS is located on the

boundary of FS . Nevertheless, D has the unique nonnegative factorization D = CS T (aside from permutations and

scaling). Figure 5 shows FS , IS andMS .
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Figure 3: Analysis of first model problem presented in Example 2.4. The color code for the reaction X → Y → Z is X (blue), Y (green) and Z (red).

The green and the red components do not contribute to the first spectrum and both spectra show absorptions outside the frequency window of the

blue component. Thm. 2.1 proves that one vertex of IS (all vertices are marked by crosses × and are connected by a dash-dotted black line in

order to form the boundary of INNPOL) coincides with one vertex of FS (its boundary is drawn by gray lines). This results in the isolated feasible

solution (◦◦◦ inMS ) and the blue spectrum is uniquely determined.
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Figure 4: Analysis of the second model problem presented in Example 2.4. The color code for the reaction X → Y → Z is X (blue), Y (green) and

Z (red). Only the component X (blue) shows absorbance at small frequencies. In the second half of the time-interval the blue component is (nearly)

absent, but the concentration profiles of Y and Z do not vanish there. The conditions of Thm. 2.1 are fulfilled with s0 = 1, i0 = k and j1 = 1. Hence

(at least) one vertex of IS (all vertices are marked by crosses × and are connected by a dash-dotted black line in order to form the boundary of

INNPOL) is located on an edge of FS (its boundary is drawn by gray lines). This results in an (s − 1 − s0) = 1-dimensional surface element S of

M. The two line-shaped subsets of the AFS are located on S.

2.3. Relevant and irrelevant spectra: Importance of proper concentration-combinations

The form and the size of the polyhedra INNPOL and FIRPOL determines the rotational ambiguity of the factoriza-

tion problem - an obvious fact by the triangle/simplex rotation process of the Borgen plot construction. Hence let us

discuss some geometric properties of these polyhedra. The numbers of facets of FS and FC as well as the numbers of

vertices of IS and IC are limited by the dimensions k and n of D. Due to the duality relations [26, 33, 28] the number

of facets of FS equals the number of vertices of IC and is smaller than or equal to n. Analogically, the number of

facets of FC equals the number of vertices of IS and is smaller than or equal to k. Typically, the number k of spectra

in D is higher than the number of vertices of IS (as some the vectors ai or bi (3) are located in the interior of IS ) and

the number n of frequencies is higher than the number of vertices of IC (as not each of the bounding half-spaces of

the nonnegativity constraint must contribute to the boundary of FS ).

Our goal is to design conditions for an experimental setup so that the rotational ambiguity of the associated

nonnegative matrix factorization problem is as small as possible. Later in Def. 2.9 we introduce to this end the

notion of relevant and irrelevant spectra/frequencies in D. Next, in a preparatory step, we analyze conditions under

which a certain spectrum (a row of D) has a restrictive (volume decreasing) impact on FC and an increasing (volume

increasing) impact on IS . Analogically, we need to know whether a certain frequency (a column of D) has an impact

on FS and IC or not. Theorem 2.6 and later Lemma 2.8 provide geometrically interpretable conditions (which,

however, must be underpinned by a formal proof).

Theorem 2.6. Let D ∈ R
k×n be a nonnegative matrix satisfying our general assumptions, cf. the lines preceding

Thm. 2.1. Let i0 ∈ {1, . . . , k} be the index of a certain row of D (the i0th measured spectrum).

Then ai0 by (3) is a vertex of IS if and only if no β ∈ Rk
+ exists with

D(i0, :) =

k∑

ℓ=1,ℓ,i0

βℓD(ℓ, :). (7)

(This means that the i0th measured spectrum cannot be represented as a linear combination with nonnegative coeffi-

cients of the other spectra, namely the rows of D.)
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Figure 5: For the Example 2.5 the AFSMS consists of the three isolated points drawn in blue, green and red. The polygon IS of the 6×6 matrix D

is plotted by the dash-dotted line. The boundary of FS is limited by the gray lines that mark the bounding half-spaces according to the nonnegativity

constraint. No vertex of IS is on the boundary of FS . Nevertheless, a unique solution exists. Remark: Since σ2 = σ3 the SVD and the orientation

ofMS , IS and FS are not uniquely determined.

Proof. It is more convenient to prove the assertion in the following equivalent form: ai0 is not a vertex of IS if and

only if a nonnegative vector β ∈ Rk exists so that (7) holds.

In order to prove this, we introduce the vectors

â j =

(
1

a j

)
∈ Rs for j = 1, . . . , k.

By the definition of the convex polyhedron IS , ai0 is not one of its vertices if it is a true convex combination of the

aℓ with ℓ , i0. Equivalently, this condition holds for the extended vectors â j. Thus ai0 is not a vertex if a nonnegative

vector α ∈ Rk with at least two nonzero components exists with

âi0 =

k∑

ℓ=1,ℓ,i0

αℓâℓ,

k∑

ℓ=1,ℓ,i0

αℓ = 1. (8)

By (3) together with D = UΣVT and VT V = I we get

ai =
(UΣ)T (2 : s, i)

(UΣ)T (1, i)
=

(UΣ)(i, 2 : s)

(UΣ)(i, 1)
=

(UΣVT V)(i, 2 : s)

(UΣVT V)(i, 1)
=

(DV)(i, 2 : s)

(DV)(i, 1)
=

D(i, :)V(:, 2 : s)

(DV)(i, 1)
.

Thus the extended vectors âi can be written as

âi =
(UΣ)T (:, i)

(UΣ)T (1, i)
=

D(i, :)V

(DV)(i, 1)
.

We start the proof with inserting the âi in (8) which yields

D(i0, :)V

(DV)(i0, 1)
=

k∑

ℓ=1,ℓ,i0

αℓ
D(ℓ, :)V

(DV)(ℓ, 1)
and

k∑

ℓ=1,ℓ,i0

αℓ = 1

or equivalently D(i0, :) −

k∑

ℓ=1,ℓ,i0

αℓ
(DV)(i0, 1)

(DV)(ℓ, 1)
D(ℓ, :)

V = 0 and

k∑

ℓ=1,ℓ,i0

αℓ = 1.

As the row spaces of D and V coincide, the orthogonality to V is equivalent to

D(i0, :) −

k∑

ℓ=1,ℓ,i0

αℓ
(DV)(i0, 1)

(DV)(ℓ, 1)︸           ︷︷           ︸
βℓ

D(ℓ, :) = 0 and

k∑

ℓ=1,ℓ,i0

αℓ = 1.

8



Thus the existence of a vector β with the components βℓ given above and further satisfying (7) has been shown. For

completeness we still have to show that the βℓ are nonnegative. First, αℓ ≥ 0. Second, the Perron-Frobenius condition

on the first left singular vector, namely that U(:, 1) > 0 or U(:, 1) < 0, proves that

(DV)(i0, 1)

(DV)(ℓ, 1)
=

(UΣVT V)(i0, 1)

(UΣVT V)(ℓ, 1)
=

U(i0, :)e1σ1

U(ℓ, :)e1σ1

=
U(i0, 1)

U(ℓ, 1)
> 0.

In order to complete the reverse direction of the assertion we finally have to show that βℓ rewritten as

αℓ = βℓ
(DV)(ℓ, 1)

(DV)(i0, 1)

satisfies the equation
∑k
ℓ=1,ℓ,i0

αℓ = 1. This is proved by

k∑

ℓ=1,ℓ,i0

αℓ =
1

(DV)(i0, 1)


k∑

ℓ=1,ℓ,i0

βℓ(DV)(ℓ, 1)


︸                     ︷︷                     ︸

=D(i0 ,:) by (7)

V(:, 1) =
D(i0, :)V(:, 1)

(DV)(i0, 1)
= 1.

Thm. 2.6 can be interpreted as follows: A mixture spectrum, namely a row of D, enlargesIS and thus restrictsMS

if and only if it is not a linear combination with nonnegative coefficients of the remaining spectra in D. The relation to

the (original pure component) factor C is treated in the following Lemma 2.7. Simultaneously,MC is decreased due

to a decreasing size of FC .

Lemma 2.7. On the assumptions of Thm. 2.6 let CS T be a nonnegative matrix factorization of D.

The i0th measured spectrum D(i0, :) is a linear combination with nonnegative coefficients of the remaining spectra

(rows of D) if and only if C(i0, :) is a linear combination with nonnegative coefficients of the remaining rows of C.

Proof. It holds for the nonnegative vector β ∈ Rk

D(i0, :) =

k∑

ℓ=1,ℓ,i0

βℓD(ℓ, :) ⇔

C(i0, :) −

k∑

ℓ=1,ℓ,i0

βℓC(ℓ, :)

 S T = 0 ⇔ C(i0, :) =

k∑

ℓ=1,ℓ,i0

βℓC(ℓ, :).

The last equivalence holds since S ∈ Rn×s
+ has the rank s so that a linear combination of the columns of D is the null

vector if and only if all expansion coefficients are zero.

A numerical test of the linear combination conditions of Thm. 2.6 and Lemma 2.7 in the form of an a posteriori

analysis requires a practically executable test. For a proper tolerance parameter ε it has to be tested for each i0 whether

or not a nonnegative β exists such that the condition

∥∥∥∥∥∥∥
C(i0, :) −

k∑

ℓ=1,ℓ,i0

βℓC(ℓ, :)

∥∥∥∥∥∥∥

2

2

< ε

is fulfilled. The tolerance parameter ε must be sufficiently small. For example in the (usual) model problem from

Example 2.4, cf. Fig. 4, a number of 22 indexes i0 of the k = 50 rows of C result in a residuum smaller than ε = 10−10.

However, for the model data each D(i0, :) has an impact on IS . This shows that this criterion is difficult to evaluate

even for model data. Furthermore, preprocessed spectral data can contain negative data elements close to zero and

also comparable small negative matrix elements of C and S should sometimes be accepted. In order to overcome

these problems we present in Sec. 2.4 a possible and stable strategy to deal with such data.

The combination of Lemma 2.7 with Thm. 2.6 yields the result that a spectrum D(i0, :) enlarges IS and restricts

FC if and only if the associated (true) concentration C(i0, :) is not a linear combination of the remaining concentration

profiles. Analogically, Thm. 2.6 can be reformulated for the spectral factor.

Lemma 2.8. Let the assumptions of Thm. 2.6 be fulfilled. Then bi0 is a (true) vertex of IC and its dual affine hyper-

plane is a (true) facet of FS if and only if there is no nonnegative vector β ∈ Rk with

D(:, i0) =

n∑

ℓ=1,ℓ,i0

βℓD(:, ℓ).
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All these results allow us to make a distinction between relevant and irrelevant spectra/frequencies as follows:

Definition 2.9. Let D have non-empty AFS-setsMC andMS of feasible solutions. A mixed spectrum D(i0, :) is called

relevant if it has an impact on FC (and thus also on IS ) and irrelevant otherwise. Let k∗ be the number of all relevant

spectra of D.

In an analogous way a frequency is called relevant if D(:, j0) has an impact on FS (and thus also on the dual

polyhedron IC) and irrelevant otherwise. Let n∗ be the number of all relevant frequencies of D.

The notion of relevant and irrelevant spectra/frequencies is related to the popular window factor analysis (WFA,

[34]) and also to the evolving factor analysis (EFA, [35]). WFA is applied to analyze subwindows along the frequency

indexes of D. Typically only some of the chemical components show an absorption in these windows which makes

a subsystem analysis possible. Since only extremal absorptivity-relations restrict FS , we conclude that only few

components contribute to the relevant frequency channels. Figs. 10 and 11 (which will be introduced later) illustrate

that these regions (of relevant frequency channels) are related to proper frequency subwindows of a WFA.

Similarly, EFA supports the analysis in the time direction, namely if certain components arise or participate to the

reaction. Since only extremal concentration-relations expand IS , we conclude that only few components contribute

to the relevant spectra. This is also demonstrated in Fig. 12.

2.4. A posteriori analysis in terms of relevant and irrelevant frequencies/spectra for model and perturbed data

Theorem 2.6 allows us to subdivide the index set {1, . . . , k} into sets of relevant and irrelevant spectra for the ide-

alized case of model data. Analogically, Lemma 2.8 enables a similar distinction for relevant and irrelevant frequency

channels. Next we demonstrate how these distinctions can be made for perturbed or noisy data.

The starting point is the polyhedron FS . Then D is changed in the way that single columns are removed, which

means that single frequency channels are dropped from the series of spectra. If the ℓth column is removed, then the

column-dropped matrix is

D̃(ℓ) = D(:, [1 : ℓ − 1, ℓ + 1 : n]) ∈ Rk×n−1 for ℓ = 1, . . . , n.

Then we compute the associated polyhedron FIRPOL, denoted by F̃
(ℓ)

S
, for D̃(ℓ). For this computation the right

singular vectors of D are used (of course V(ℓ, :) is removed). The channel that belongs to the index ℓ is said to be

relevant if F̃
(ℓ)

S
differs from FS . To this end the two approximating polygons are first compared with respect to their

numbers of vertices and in the case of the same number of vertices with respect to the positions of the vertices.

A similar procedure is applied to the rows of D. The removal of the νth mixture spectrum results in the row-

dropped matrix

D̂(ν) = D([1 : ν − 1, ν + 1 : k], :) ∈ Rk−1×n for ν = 1, . . . , k.

In this case, FIRPOL F̂
(ν)

C
is computed for the concentration factor. The resulting polyhedron is compared with the

reference solution FC. For s = 3 the polyhedra are (planar) polygons and are computed by the polygon inflation

procedure [20, 21, 30]. Hence the computations are stable even for noisy data.

2.5. Matrix augmentation

It is commonly believed that the combination of multiple spectral measurements in the form of a matrix augmen-

tation is a proper way in order to reduce the rotational ambiguity. Often a combination of two data sets for the same

chemical reaction system (with the same pure component spectra but with modified concentration profiles, which

might result from changed reaction conditions) shows an ambiguity reduction only for one of the data sets. The

following example illustrates a case in which each of the data sets profit in a reduction of the ambiguity by matrix

augmentation.

Example 2.10. We consider the consecutive model reaction X
k1

−→ Y
k2

−→ Z with the reaction rate constants k1 and k2.

Two sets of reaction rate constants are used, namely K(1) = (k
(1)

1
, k

(1)

2
) = (1, 0.5) and K(2) = (k

(2)

1
, k

(2)

2
) = (1, 4). The

associated concentration profiles are computed for the time interval t ∈ [0, 5] with k = 50 equidistant grid points.

The concentration profiles as well as the pure component spectra of X, Y and Z are plotted in the first row of Fig. 6.

Let D(1) be the spectral data matrix for the reaction rate constants K(1) and let D(2) be the matrix K(2). Furthermore,

let D(3) = [D(1),D(2)] be the augmented spectral data matrix that combines the first two data sets.

Next the spectral AFS sets for D(i), i = 1, 2, 3, are computed. As the singular vector column spaces of the aug-

mented matrix D(3) contain the corresponding spaces of D(1) and D(2) all results are transformed to the joint singular

vector bases of D(3). This provides the basis for a comparison of the AFS sets that are plotted in the second row of
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Figure 6: Matrix augmentation and the reduction of rotational ambiguity as explained in Example 2.10. Upper row: The two sets of concentration

profiles and the joint pure component spectra. Lower row: The three spectral AFS sets. The vectors ai by (3) are plotted by × symbols for D(1) and

by ◦ symbols for D(2). The spectral AFS-sets of D(1) (dotted lines) and of D(2) (dash-dotted lines) are added to the spectral AFS for D(3). Therein

the complementing effect of the ai for different settings is obvious. Both spectral data matrices contribute with relevant spectra to the augmented

data. All AFS-sets are presented with respect to the joint SVD basis of the augmented matrix D(3) in order to make a direct comparison possible.

Fig. 6. A reduction of the rotational ambiguity can be stated especially from D(2) to D(3). The effect is caused by dif-

ferent combinations of concentrations as described in Lemma 2.7 and Thm. 2.6. The set FS is the same for i = 1, 2, 3

as the right singular vectors must always be the same since the pure component spectra are not changed. Further,

IS for i = 3 is the convex closure of the union of the sets IS for i = 1 and i = 2. Hence the AFS for the augmented

data D(3) must be the smallest one. The spectra of D(1) together with the last spectrum of D(2) contribute exclusive

restrictions due to extremal concentration relations. According to Definition 2.9 each of the matrices D(i), i = 1, 2,

provides relevant spectra for the augmented data.

If a much wider time interval [0, 15] is used, then we observe that IS for i = 2 is contained in IS for i = 1. As FS

is unchanged the first case cannot profit from data augmentation by the second system. However, the matrix of D(2)

by D(1) has a restrictive effect since IS of the augmented matrix is that of D(1). The reason for this is that the product

component Z at t = 15 also solely occurs for i = 1 since C(1)(k, :) ≈ (3 · 10−7, 1 · 10−3, 1).

3. How to reduce the rotational ambiguity by designing the chemical experiment

As shown so far, the size and the form of the polyhedra INNPOL and FIRPOL determine the extent of the rotational

ambiguity. The crucial question is how a chemical experiment should be designed so that the rotational ambiguity

underlying its associated pure component factorization problem is as small as possible. In the following we summarize

some general conditions to achieve this goal. We distinguish the frequency axis and the time axis. First, the conditions

along the frequency axis concern properties of the pure component spectra. Typically, the chemical components of

the reaction are fixed and hence the pure component spectra cannot be changed. However, changing the spectral

method (e.g. from UV/Vis to IR or Raman) may result in other spectral properties. Second, the conditions along the

time axis concern the form of the concentration profiles. The concentration profiles can be varied by changes of the

experimental conditions (reaction time, temperature, pressure, solvent etc.).

Recommendations 1 (Frequency axis/Properties of the pure component spectra). The following conditions should be

fulfilled in order to support a small rotational ambiguity:

1. Isolated peaks or spectral intervals containing only few absorbing chemical components are preferred, see

Thm. 2.1.

2. By selecting proper frequency intervals spectral contributions of non-interesting chemical components (e.g. from

the solvent) should be excluded. Otherwise the number s of chemical components increases together with the

complexity of the pure component factorization problem and the extent of the rotational ambiguity.
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3. If some of the pure component spectra contribute to separated frequency windows, then try to analyze the

subsystems step-by-step.

4. If a certain pure component spectrum a ∈ R
n is known and for some reason equality constraints cannot be

applied, then extend D as

D̃ =

(
D

γaT

)
∈ R(k+1)×n. (9)

Therein, the scaling parameter γ is important for limiting the impact of noise and perturbations on a. A useful

choice is γ = 0.1 max(D)/max(a). Thm. 2.6 applies to this situation since C(k+1, :) with the chemically correct

factor C has exactly one non-zero entry.

Recommendations 2 (Time axis/Properties of the pure component concentration profiles). The following conditions

should be fulfilled in order to support a small rotational ambiguity:

1. Localized concentration profiles, i.e. not all chemical components are always present, are preferred, see Thm. 2.3.

2. Spectra are to be measured over a long time since for finished chemical (non-equilibrium) reactions the first

point should be fulfilled.

3. If a certain concentration profile c ∈ Rk is known and if equality constraints cannot be used, then extend D as

D̃ = (D, γc) ∈ Rk×(n+1). (10)

Therein the scaling parameter γ is important for limiting the impact of noise and perturbations on c. A useful

choice is γ = 0.1 max(D)/max(c). Lemma 2.8 applies to this situation, since S (n + 1, :) with the chemically

correct factor S has exactly one non-zero entry.

Let us remark that the influence of additionally taken mixture spectra or additionally taken spectral channels

(e.g. by using another frequency range by a different spectral method) is as follows:

• An additionally measured mixed spectrum reduces FC and enlarges IS if and only if the underlying concentra-

tion profile is not a nonnegative linear combination of the previous concentration profiles. See Thm. 2.6 and

Lemma 2.7.

• An additionally taken spectral channel reduces FS and enlarges IC if and only if the underlying spectrum is not

a nonnegative linear combination of the previous spectra. See Thm. 2.6 and Lemma 2.8.

4. Intrinsic or base level rotational ambiguity

Realistically, one cannot expect that changes of the reaction conditions of a fixed chemical reaction can transform

the mixture data matrix D in a way that a unique pure component decomposition can be determined. Possible changes

of the reaction conditions concern the pressure, the temperature or the solvent. Moreover, further mixture spectra can

be added to the spectral data matrix D and also new frequency ranges can be used for the spectral measurements.

However, one typically observes a non-reducible remaining base level of rotational ambiguity. This base level of

ambiguity depends on the pure component spectra that cannot be changed without changing the reaction system.

For instance, if the pure component spectra are highly overlapping, then even completely separated concentration

profiles (aside from the fact that the mass balance would not allow such profiles) would not result in mixture data

with a unique pure component factorization. Instead, one observes that such systems show some intrinsic rotational

ambiguity whose minimal extent is determined by the degree of overlap of the pure component spectra. The intrinsic

base level of ambiguity can be made accessible by combinations of concentration profiles which show some extremal

behavior.

A challenge for future research is a systematic analysis of this intrinsic base level ambiguity. Once again, the key

for an understanding of these relations is the geometric point of view. The point is that FS is completely determined

by the pure component spectra. Further, any increase of IS can decreaseMS . There is an extremal (largest) simplex

INNPOL, which contains all the data representatives ai for all possible linear combinations of the concentration

profiles. This largest polygon IS determines the smallest AFSMS , namely the base level ambiguity.

5. Application to experimental spectral data

Three non-model data sets from catalytic reaction systems are taken for a demonstration and discussion of the

results achieved so far. Reductions of the rotational ambiguity are proved. We do not claim to present an ultimate

answer by means of our a posteriori analysis. Instead, we intend to foster a future discussion of DoE principles on

the ambiguity reduction in MCR factorizations. Our discussion is based on the following FT-IR and UV/Vis spectral

data sets. For some of these reaction systems we assume a kinetic model, but there is no necessity to presuppose the
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Figure 7: Data set 1: The mixture spectra are plotted in the upper row (left). Only every 40th spectrum is shown. The non-scaled kinetic hard-model

based decomposition is plotted in the same row. The AFS-setsMS and MC are computed by the polygon inflation algorithm and are shown in

the lower row. The generalized polygons FIRPOL (solid black line) and INNPOL (dash-dotted black line) are also plotted in the AFS, see [30] for

their computation.

availability of such a model in general. However, in the context of our analysis it is often convenient to assume a

kinetic model in order to demonstrate that the ambiguity reducing techniques do not overshoot the mark in the sense

that the true solution is finally excluded.

Data set 1. The FT-IR data set concerns a subsystem of the rhodium-catalyzed hydroformylation process, namely

the process of the catalyst formation, see [36]. The data set contains k = 850 spectra taken in the time interval

[4.72, 883.61]min. A number of n = 645 frequency channels is used in the wavenumber interval [1962.3, 2117.6]cm−1.

After a background-subtraction only three chemical components show a main contribution to these spectra, namely

the olefin, the hydrido complex and the acyl complex. Fig. 7 shows the series of mixture spectra, the pure component

spectra and the associated concentration profiles (as gained by an MCR analysis that includes a kinetic hard model)

and the two AFS-sets for the concentration factor and the spectral factor.

Data set 2. The UV/Vis spectra of this data set are taken from [37, 38]. The reaction is on the formation of linear

α-olefines from ethylene with a hafnium complex as catalyst. A number of n = 381 spectral channels is taken in

the wavelength interval [420.3, 800.3]nm. The first non-reliable spectrum has been removed from the data set so

that k = 499 spectra remain in the time interval [0.005, 2.49]s. The singular values reveal s = 3 major absorbing

components. See Fig. 8 for the series of mixture spectra, the hard-model based solution (using the underlying kinetic

model X → Y → Z) and the AFS-sets for the pure component spectra and concentration profiles.

Data set 3. The series of FT-IR spectra is on the formation of Rh(0) carbonyls resulting from an “unwanted´´ side re-

action during the generation of a catalytically active rhodium hydrido carbonyl complex from Rh(acac)(CO)2. The ex-

periment was run at 303K and 20bar synthesis gas pressure (CO:H2=1:1). The initial concentration of Rh(acac)(CO)2

was 6.6 · 10−4mol/L in the solvent cyclohexane. The major absorbances are from the ”unwanted” rhodium carbonyl

clusters Rh4(CO)12 and Rh6(CO)16 as well as from the Rh(acac)(CO)2. By a background subtraction the spectrum of

cyclohexane has been mostly removed. The number of spectra is k = 290, each spectrum contains n = 2739 spec-

tral channels. See [39] for a complete chemometric analysis of this data set. Fig. 9 shows the mixture spectra, the

extracted “true” pure component decomposition and the associated AFS-sets.
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Figure 8: Data set 2: The mixture spectra are plotted in the upper row (left). The first 10 spectra are completely plotted and then only every 20th

spectrum. The non-scaled kinetic hard-model based decomposition is also shown in the upper row. The AFS-setsMS andMC are plotted in the

lower row.

5.1. Analysis of data-based ambiguity criteria

Next we discuss the restrictive effect of isolated peaks or partially non-absorbing components (cf. Sec. 2.2) for the

three data sets. As the experimental spectral data contains noise and perturbations, the classical Borgen plots must

be substituted by dual Borgen plots or polygon inflation. Thus the uniqueness criteria are softened and hold in an

approximate sense.

Data set 1: Thm. 2.1 can only be applied in an approximate way (with s0 = 2). Fig. 7 indicates that the green

component shows relatively small absorptions in the wavenumber interval [1962, 2000]cm−1 whereas the two other

components show strong linearly independent absorbtions. Hence the rank condition (4) is fulfilled. Since in the final

stage of the reaction only the green component is present (thus (5) is approximately satisfied), the green subset of

the spectral AFS is relatively small. Unfortunately the noise level in the data is so large that none of the blue or red

subsets of the concentrational AFS are degenerated to line-shaped or thin-band shaped subsets of the AFS. However,

for model-data or data with a low noise level the duality theory predicts that a point-shaped AFS subset is dual to the

line-shaped AFS subset of the dual factor.

Data set 2: Since all pure component spectra have significant absorptions in the complete frequency interval, no

isolated or small AFS subsets exist. And in fact, the two AFS-sets are topologically connected sets each including a

hole around the origin. Such a behavior is typically observed for the UV/Vis spectroscopy with its broad peaks.

Data set 3: Each of the three pure component spectra has nearly isolated peaks. This can be expected by inspecting

the series of mixture spectra. At the beginning of the reaction only the blue component is present. Hence we can apply

Thm. 2.1 with s0 = 2. This results in an isolated solution; due to noise we get a small blue subset in the spectral AFS.

Furthermore, since the blue component is nearly absent in the second half of the reaction, we can apply Thm. 2.1 a

second time with s0 = 1. Due to the isolated peak in the blue pure component spectrum this leads to the situation

where several points ai, i ≥ 175 are very close to the boundary of FS . Consequently the green and the red subset of

the spectral AFS must be narrow stripes.

5.2. A posteriori redundancy-analysis of the spectral data

The spectral data matrix D usually contains a lot of redundant information. Only few of its rows and columns

determine the geometric structure of the polyhedra INNPOL and FIRPOL and the resulting AFS. In order to distin-

guish relevant (i.e. structure determining parts of the series of spectra) and irrelevant (i.e. redundant information) rows

and columns of D we have introduced in Sec. 2.3 the notion of relevant and irrelevant rows and columns. Next we

apply this redundancy analysis to our three experimental spectral data sets. The irrelevant spectral channels and the
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Figure 9: Data set 3: The mixture spectra are plotted in the upper row (left). Only every 10th spectrum is shown. The non-scaled kinetic hard-model

based decomposition is also shown in the upper row. The AFS-sets MS and MC are plotted in the lower row. (bottom). The boundary of the

generalized polygon FIRPOL is drawn by a solid black line and the boundary of INNPOL by a dash-dotted black line.

irrelevant spectra have no impact on the AFS-sets. We start with the analysis of the data set 3 since all effects can be

explained for this data set in the best way.

We get the surprising result that only few parts of the spectral mixture data are responsible for the ambiguity of

the pure component factors; the results are illustrated by the three figures 10–12. In these figures the color cyan is

used to mark the relevant, non-redundant parts of the mixture spectra and the pure component profiles. The results can

potentially be used in order to reduce the spectral observation only to some decisive spectral regions and to some time

intervals. Practically, this can be exploited in the case of a repeated and refined spectral investigation of the chemical

reaction system. These results essentially reproduce Manne’s theorems, however for the case of noisy data and with

respect to an AFS representation of the ambiguity.

Data set 3: The polygons FC and FS are computed by the polygon inflation method [20, 21, 30]. The control

parameters for these computations are ε = 0.015 (acceptance level on small negative entries in C and S ), εb = 10−7

(boundary precision) and δ = 10−6 (stopping criteria). See [20, 21, 30] for details on these control parameters. In [30]

the two parameters εC , εS are used instead of the single parameter ε. For the data set 3 the a posteriori analysis leads to

small numbers of n∗ = 25 relevant frequency channels and k∗ = 73 relevant spectra. All other frequency channels can

be considered to be redundant. The reduced matrix D̂ ∈ R73×25 which is formed from the relevant frequency channels

and the relevant spectra has the same AFS-sets as the full non-reduced matrix D ∈ R290×2739. The relevant frequency

channels are marked by the color cyan in the left and the centered subplots of Fig. 10. An interesting observation

is that all the relevant frequency channels are at peak centers or close to the peak centers. All the other frequency

channels do not determine the structure of INNPOL and FIRPOL - they contain only redundant information. In the

right plot of Fig. 10 the relevant points along the time axis (or equivalently the relevant mixture spectra) are marked

along the time axis by vertical lines in cyan. The ratio k∗/k of relevant mixture spectra is significantly higher than the

ratio n∗/n of relevant frequency channels. In other words, many of the mixture spectra contribute to the boundary of

the representing polygon.

Data sets 1 and 2: The results of the analogous redundancy analysis for the data set 1 with ε = 7 · 10−3 results

in a number of n∗ = 118 relevant frequency channels and a number of k∗ = 38 relevant spectra. The graphical

representation is shown in Fig. 11. For data set 2 and with ε = 2.5 ·10−3 the number of relevant frequencies is n∗ = 71

and the number of relevant spectra is k∗ = 25. The results are plotted in Fig. 12.

5.3. Lower bounds on the rotational ambiguity for data set 1

Next the lower bounds on the rotational ambiguity as explained in Sec. 4 are explicitly determined for the data set

1. As we do not intend to change the chemical reaction (the pure component spectra are fixed but we allow changes
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Figure 10: A posteriori redundancy analysis for the data set 3. Left: Relevant parts of the mixture spectra are marked by the color cyan. Center:

Vertical lines mark the n∗ = 25 frequency channels that determine the shape of FS and IC . Right: Cyan vertical lines mark the k∗ = 73 points in

time (times of measurement of the mixture spectra) that have an impact on the sets FC and IS .
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Figure 11: A posteriori redundancy analysis for the data set 1. Only n∗ = 118 frequency channels (cyan lines/areas) that have an impact on the

polygons FS and IC . Further, only k∗ = 38 mixture spectra (the times of their measurements are marked by vertical lines in cyan) have an impact

on the polygons FC and IS . The control parameter on the acceptance of small negative entries of C and S is ε = 7 · 10−3. In the left plot only every

8th irrelevant spectrum is plotted (black lines) but all relevant spectra (cyan lines) are plotted.

of the reaction conditions and of the spectral measurements) a certain base level of ambiguity must be accepted. The

lower bounds on the ambiguity are computed in an a posteriori process. To this end we augment the spectral data

matrix D by the pure component spectra. Then the true, chemically correct factorization of the augmented matrix

includes the associated extremal concentration values in terms of a diagonal submatrix.

The data augmentation for data set 1 is done in a way similar to (9) by adding the pure component spectra of the

olefin (blue) and acyl complex (red) in a joint, single step. The parameter γ is taken as γ = 0.01 max(D)/max(a).

Hence D̃ ∈ R
852×645. There is no need to add the pure component spectrum of the hydrido complex as well, since

this complex is solely present in the final stage of the reaction. The resulting lower bounds of the AFS subsets are

presented in Fig. 13. Obviously a certain level of rotational ambiguity must be stated. As this experimental spectral

data set contains noise, not all of the representatives of the pure component spectra are located on the boundary of IS .

(This would be the case of noise-free model data.) For this augmented spectral data set the number of relevant spectra

is k∗ = 15 instead of k∗ = 38 for the original spectral data. In particular the augmented pure component spectra belong

to the relevant ones. The resulting message is that even an optimal design of the experiments cannot force a unique

decomposition for this system.

5.4. Augmentation of the spectral data matrix by a concentration profile for data set 2

Finally, we analyze how the AFS-sets change for data set 2 if D is augmented by the pure concentration profile of

the intermediate component of the chemical reaction (drawn in green in Fig. 8). The data augmentation is done as in

(10) with γ = 0.1 max(D)/max(c). The additional column of D leads to an additional constraint for FS . The modified

polygonFS is now the intersection of n+ 1 affine half-spaces instead of only n ones. In fact, this additional constraint

has a significant, size-decreasing impact on FS . The results are presented in Fig. 14. Now the two AFS-sets each have

three separated subsets. Further, two subsets of the spectral AFS are line-shaped due to the additional restriction on

FS . This result is consistent with the underlying duality relations [40, 26, 27]. Only n∗ = 12 frequency channels are

relevant for the augmented data instead of n∗ = 71 for the original data.

6. Conclusion

The intrinsic uncertainty of the pure component factors of MCR decompositions is a major obstacle in the chemo-

metric analysis of spectroscopic data. The data-based ambiguity [6, 29] locates the reason of this ambiguity in the
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larger. The intrinsic rotational ambiguity of the factorization is small but does not completely vanish. The remaining base level of ambiguity is

caused by the fixed pure component spectra.

pure component factors. Hence a possible strategy for an ambiguity reduction is to modify the factor C of pure com-

ponent concentration profiles in a proper way. The factor S is not often subject to change. The key elements of the

theoretical analysis are of geometric nature, namely the polyhedra INNPOL and FIRPOL together with the simplex

rotation algorithm. This algorithm rotates simplices in FIRPOL and around INNPOL in order to construct the set of

feasible solutions.

Our main findings are that only some parts of the mixture spectra, namely primarily extremal points, have an

impact on the AFS. This insight allows to formulate (loose) rules on how chemical experiments should be designed

so that from spectral measurements reliable pure component information can be extracted. At the same time, some

intrinsic base level of ambiguity appears to be unavoidable.

We hope that our analysis allows a deeper understanding of how MCR methods work and how to design a chemical

experiment if an MCR analysis is intended. Spectral measurements taken in an appropriate manner can considerably

influence the reliability of the results of chemometric analyses.

A. Mathematical background

The terms of reducibility/irreducibility of a symmetric matrix describe the zero pattern of a matrix [41]. The matrix

elements of a reducible matrix can be permuted in a way that the permuted matrix has a block structure. For spectral

data matrices reducibility can be often be interpreted in a way that the mixture data can be separated to independent

chemical subsystems.

Definition A.1. An ℓ × ℓ symmetric matrix A with ℓ ≥ 2 is called reducible, if an ℓ × ℓ permutation matrix P exists so

that

PAPT =

(
A1,1 0

0 A2,2

)
.

Therein A1,1 is an m × m submatrix and A1,2 is an m × (ℓ − m) submatrix with 1 ≤ m < ℓ. Otherwise, A is called an

irreducible matrix.
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