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Abstract

The signal contribution function (SCF) was introduced by Gemperline in 1999 and Tauler in 2001 in order to study

band boundaries of multivariate curve resolution (MCR) methods. In 2010 Rajkó pointed out that the extremal profiles

of the SCF reproduce the limiting profiles of the Lawton-Sylvestre plots for the case of noise-free two-component

systems.

This paper mathematically investigates two-component systems and includes a self-contained proof of the SCF-

boundary property for two-component systems. It also answers the question if a comparable behavior of the SCF still

holds for chemical systems with three components or even more components with respect to their area of feasible

solutions. A negative answer is given by presenting a noise-free three-component system for which one of the profiles

maximizing the SCF is represented by a point in the interior of the associated area of feasible solutions.

Key words: signal contribution function, multivariate curve resolution, Lawton-Sylvestre plot, Borgen plot, Area of
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1. Introduction

The following question on the solution ambiguity underlying multivariate curve resolution (MCR) methods ap-

pears to be still open:

“Is it true that the maximum and the minimum of the signal contribution function (SCF) as computed

by MCR-Bands are always attained in profiles represented by boundary points of the associated area of

feasible solutions?”

The question emerged after the proposal of Gemperline in 1999 [1] for the calculation of the range of feasible

solutions in self-modelling curve resolution by using the integrated signal of every constituent and was further devel-

oped by Tauler in 2001 [2] with the maximization and minimization of the scaled signal contribution function (SCF).

The meaning of the maximum and minimum SCF boundaries was afterwards examined in detail for two-component

systems [3, 4] for which the area of feasible solutions can be represented in the form of a Lawton-Sylvestre plot.

Simultaneously Rajkó [5] pointed out that for systems with two components, the profiles that minimize and maximize

the SCF are represented by the cone boundaries of the Lawton-Sylvestre (LS) plots [6]. This strong relationship of

LS-plots and the maximal/minimal profiles resulting from MCR-Bands, which in some sense “enclose” the solution

ambiguity of an MCR method, is the basis for the question whether a comparable property still holds for systems with

three or more chemical components. For three-component systems the LS-plots find their natural generalization in

Borgen plots or more generally the Area of Feasible Solutions (AFS) [7, 8, 9, 10, 11, 12]. Then the question is whether

the extremal profiles of MCR-Bands are represented by points on the boundary of the associated AFS. This problem

has also been discussed between participants of the CAC 2016 (Barcelona) and TIC 2017 (Newcastle) conferences

and the authors.

This paper shows that the extremal profiles of the SCF for two-component systems are represented by the boundary

lines of the associated Lawton-Sylvestre plots and that the extremal profiles for systems with three and more compo-

nents are not always represented by points on the boundary of the AFS. In some sense, the present analysis combines

the two approaches for representing the solution ambiguity of MCR methods, namely the band representation for

the feasible solutions and the singular value decomposition based representation. The latter approach represents the

ranges of feasible solutions by the expansion coefficients with respect to the spaces of left and right singular vectors.
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1.1. Overview

First, Section 2 introduces the theoretical background. Section 3 contains a proof (on the basis of the Perron-

Frobenius spectral theory of nonnegative matrices) that the SCF takes its extrema in the profiles represented by the

boundary lines of the Lawton-Sylvestre cones. Finally, Section 4 gives a negative answer to the above question by

presenting a model problem that does not fulfill the desired property.

2. Theoretical background

The spectral mixture data of an s-component chemical system is assumed to be stored in a nonnegative k × n

matrix D. The MCR problem is to determine the pure component factors of the concentration profiles C ∈ Rk×s and

the associated spectra S ∈ Rn×s according to the Lambert-Beer law that reads for the noise-free case

D = CS T . (1)

For the following analysis a crucial assumption on the matrix D has to be made, namely that DT D is an irreducible

matrix [13]. Irreducibility means that DT D cannot be transformed to a block-diagonal matrix by simultaneous and

equal permutations of the columns and rows, see Appendix A for details. From a chemical point of view, this ex-

presses that the spectral mixture data cannot be separated by reordering the measurements and the channel indices

into completely independent subsystems.

A possible first step in solving the factorization problem (1) is to compute a singular value decomposition (SVD)

D = UΣVT of D with the k × k matrix U of the left singular vectors, the k × n diagonal matrix Σ of the singular values

and the n × n matrix V of the right singular vectors. Any factorization (1) of D can be represented on the basis of the

SVD by means of a regular 2-by-2 block matrix T ∈ Rs×s so that C = UΣT−1 and S T = TVT . Therein, T has the form

T =

(
1 x

1 W

)
(2)

with the row vector x = (x1, . . . , xs−1) and the all-ones column vector 1 = (1, . . . , 1)T ∈ R
s−1, see [7, 4, 9, 14]. The

first column of T needs a justification as S T = TVT implies that any spectral profile has a contribution from the first

right singular vector. This has been shown in Thm. 2.2 of [14] by using, again, the irreducibility of DT D and the

Perron-Frobenius theorem on nonnegative matrices, cf. Appendix A.

A low-dimensional representation of all feasible spectral profiles is the Borgen plot [7, 4] in the case of a three-

component system. In the general case of s-component systems this low-dimensional representation is a subset of the

(s − 1)-dimensional space and is called the Area of Feasible Solution (AFS)

MS =
{
x ∈ Rs−1 : W ∈ R(s−1)×(s−1) exists in (2) such that T is regular and C, S ≥ 0

}
.

Nonnegativity is the decisive constraint on C and S . Similarly, the corresponding representation of the set of feasible

concentration profiles reads

MC =
{
y ∈ Rs−1 : a regular matrix T ∈ Rs×s exists with (T−1)(:, 1) = (1, yT )T and C, S ≥ 0

}
.

The sets MS and MC can be constructed geometrically (Borgen plots) [7, 8, 15, 16] or can be approximated nu-

merically by the grid-search method [17, 3], the triangle enclosure method [9, 18], the polygon inflation algorithms

[10, 14] or by the ray-casting approach [19]. See [11, 12, 20] for further details.

2.1. The signal contribution function

Gemperline [1] and Tauler [2] have suggested approaches for determining feasible profiles with a minimal and

maximal integrated signal or relative signal contribution. The signal contribution function (SCF) has the form

‖cis
T
i
‖F/‖CS T ‖F where ci and si are the concentration profile and the spectrum of the ith component. In the case

of noise-free data with rank(D) = s, the concentration profile ci can be written as a linear combination of the left

singular vectors (in scaled form this is a linear combination of the columns of UΣ) and the associated spectrum si,

which is a linear combination of the right singular vectors. Then the SCF can be written as

gi(T ) =

∥∥∥UΣ(T−1(:, i))(T (i, :))VT
∥∥∥2

F∥∥∥CS T
∥∥∥2

F

(3)

for i ∈ {1, . . . , s} and with T ∈ R
s×s. Therein ‖ · ‖2

F
is the squared Frobenius norm, i.e., the sum of squares of

all matrix elements. For a chemical system with s components, the functions gi are minimized and maximized
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for i = 1, . . . , s under the nonnegativity constraints that UΣT−1 ≥ 0 and TVT ≥ 0. This results in 2s extremal

concentration profiles (each s for the minima and s for the maxima) and analogously 2s extremal spectral profiles.

The constrained minimization/maximization is implemented in the MCR-Bands software [21] and works with the

MatLab optimization routine fmincon.

The resulting extremal profiles can be represented in a low-dimensional way in the AFS. Let ci ∈ R
k, i = 1, . . . , 2s,

be the extremal concentration profiles and si ∈ R
n, i = 1, . . . , 2s, be the associated spectral profiles. Their low-

dimensional representatives [15, 16] in the AFS are

x(i) =
(V(:, 2 : s))T si

(V(:, 1))T si

, y(i) =
U(Σ(:, 2 : s))ci

U(Σ(:, 1))ci

, i = 1, . . . , 2s. (4)

One typically observes that the profile representing vectors x(i) and y(i) are located on the boundary of the AFS. For

two-component systems this is examined numerically in [3] and systematically analyzed in [5].

3. The SCF for two-component systems

3.1. The SCF

For C = UΣT−1 and S T = TVT and

T =

(
1 α

1 β

)
, T−1 =

1

β − α

(
β −α

−1 1

)
(5)

with α , β, which guarantees regularity of T , we get C ∈ Rk×2 and S ∈ Rn×2

C = (c1, c2) = UΣT−1 =
1

β − α
(βσ1u1 − σ2u2,−ασ1u1 + σ2u2) ,

S T =

(
sT

1

sT
2

)
= TVT =

(
1 α

1 β

) (
3

T
1

3
T
2

)
=

(
3

T
1
+ α3T

2

3
T
1
+ β3T

2

)
.

(6)

The numerator of the signal contribution function (3) can be simplified as for any column-vectors a ∈ Rk and b ∈ Rn

it is true that ‖abT‖F = ‖a‖2 ‖b‖2. Thus we get

‖c1sT
1 ‖

2
F = ‖c1‖

2
2 ‖s1‖

2
2 =

(β2σ2
1
+ σ2

2
)(1 + α2)

(β − α)2
=: g̃1(α, β),

‖c2sT
2 ‖

2
F = ‖c2‖

2
2 ‖s2‖

2
2 =

(α2σ2
1
+ σ2

2
)(1 + β2)

(β − α)2
=: g̃2(α, β).

(7)

In order to study the SCF (3), we can omit the T -independent (and therefore constant) denominator ‖CS T ‖2
F
= ‖D‖2

F

since extrema of gi(T ) are attained in the same (α, β) as extrema of g̃i(α, β) by (7). Further the symmetry property

g̃1(α, β) = g̃2(β, α)

provides the justification to restrict the analysis only on finding extrema of

h(α, β) :=
∥∥∥UΣ(T−1(:, 1))(T (1, :))VT

∥∥∥2

F
= ‖c1 sT

1 ‖
2
F = ‖c1‖

2
2 ‖s1‖

2
2 (8)

since any extremal point of h(α, β) is an extremal point of g̃2(β, α) and vice versa, see also [3].

3.2. Extrema of the SCF are attained on the boundary of the feasible-solutions-rectangle

The nonnegativity constraints C ≥ 0 and S ≥ 0 imply strong restrictions on (α, β). These restriction have the form

(α, β) ∈ [a, b] × [c, d] or (β, α) ∈ [a, b] × [c, d],

see, e.g., Sec. 3.6 in [14], with

a = − min
Vi2>0

i=1,...,n

Vi1

Vi2

, b = min
i=1,...,k

Ui2σ2

Ui1σ1

< 0, c = max
i=1,...,k

Ui2σ2

Ui1σ1

> 0, d = −max
Vi2<0

i=1,...,n

Vi1

Vi2

. (9)
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Our aim is to show that extrema of h(α, β) by (8) cannot be attained in the interior of the rectangle [a, b]× [c, d] but

on its boundary. To prove this, we assume that an extremum is attained in an interior point and derive a contradiction.

A necessary condition for an extremum in an interior point is a vanishing gradient vector, namely

∇h =


∂h
∂α

∂h
∂β

 =
2

(α − β)3

(
−(β2σ2

1
+ σ2

2
)(αβ + 1)

(αβσ2
1
+ σ2

2
)(1 + α2)

)
= 0. (10)

The factor (β2σ2
1
+ σ2

2
) ≥ σ2

2
in the first component is strictly positive so that

αβ = −1. (11)

In the second component, (1+α2) > 0 implies that the first factor must be zero. Hence with (11) we get that σ2
1
= σ2

2
.

This contradicts the Perron-Frobenius theorem, see Appendix A, as the largest eigenvalueσ1 of the irreducible matrix

DT D is a simple (non-degenerate) eigenvalue. Thus no local extremum can be attained in the interior of [a, b]× [c, d].

3.3. The maximum and minimum of the SCF are attained in the vertices of the feasible-solutions-rectangle

So far, we know that extrema (ξ, η) of the SCF are attained on the boundary of the rectangle [a, b] × [c, d] so that

(ξ, η) have the forms

(a, η) or (b, η) with c ≤ η ≤ d, (left and right vertical edges),

or alternatively (ξ, c) or (ξ, d) with a ≤ ξ ≤ b, (upper and lower horizontal edges).

However, if an extremum were attained in an edge-point that is not a vertex, then the SCF extremal profile would not

include the associated band of feasible solutions.

Next we show that the minimum and the maximum of the SCF are attained in two vertices of the rectangle

[a, b]× [c, d]. To this end, the partial derivatives ∂h/∂α and ∂h/∂β are proved to be strictly monotone functions on the

edges of the rectangle [a, b] × [c, d]. By (10) we get that

∂h

∂α
=

2

(β − α)3
(β2σ2

1 + σ
2
2)(1 + αβ),

∂h

∂β
= −

2

(β − α)3
(αβσ2

1 + σ
2
2)(1 + α2).

If these derivatives do not have a zero on the boundary of [a, b] × [c, d], then each of the restrictions of h to the

edges of the rectangle is a monotone function. A zero in a vertex is possible as this does not interfere with the strict

monotonicity. Since

β − α > 0 by α ≤ b < 0 < c ≤ β, β2σ2
1 + σ

2
2 > σ

2
2 > 0 and 1 + α2 > 1 > 0

it remains to show that

1 + αβ , 0 and αβσ2
1 + σ

2
2 , 0 (12)

on the boundary of the rectangle (apart form the endpoints). These two inequalities are proved in the following. For

the mathematical analysis, we need the next properties of the columns of U and V .

Property 3.1. Let 31 and 32 be the column vectors of V. Applying the Perron-Frobenius theorem, see Theorem A.2, to

the matrix A = DT D the vector 31 is a component-wise positive vector (use −31 if the SVD yields a component-wise

negative vector). Then the orthogonality property 3T
1
32 = 0 implies that the vector 32 has positive and also negative

components (as otherwise the sum of the inner product would be nonzero). The same properties hold for the columns

u1 and u2 of U by Theorem A.2 if applied to A = DDT .

Proof that αβ > −1 on the rectangle [a, b] × [c, d] (apart from the vertices): Fig. 1 shows the limit curve αβ = −1,

namely β = −1/α, in the (α, β)-plane as the lower boundary of the blue area. If we can show that

ad ≥ −1, (13)

where (a, d) are the coordinates of the left upper vertex of the rectangle, then the rectangle [a, b] × [c, d] is located

below the limit curve αβ = −1 and at the most its vertex (a, d) can lie on this curve. After insertion of (9) in (13) we

have to prove that

min
Vi2>0

i=1,...,n

Vi1

Vi2

· max
Vi2<0

i=1,...,n

Vi1

Vi2

≥ −1.
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a b

c

d

α

β

A
∂h
∂α
< 0 ∂h

∂α
> 0

∂h
∂β
> 0∂h

∂β
< 0

B C

Figure 1: The rectangle [a, b] × [c, d] of nonnegative profiles together with the limit curves β = −1/α (lower boundary of the blue area A) together

with the limit curve β = −(σ2/σ1)2/α (upper boundary of the red area C). The white area B includes the rectangle [a, b] × [c, d]. There ∂h/∂α > 0

and ∂h/∂β < 0 are true.

For the following transformation of this inequality we use Property 3.1, namely that Vi1 > 0 for all i and that the second

column of V has positive and also negative entries. Therefore the first factor on the left side of the last inequality is

positive and the second factor is negative. Thus we get

1 ≤
1

min Vi2>0

i=1,...,n

Vi1

Vi2

·
−1

max Vi2<0

i=1,...,n

Vi1

Vi2

.

A reformulation of the two quotients yields

1 ≤ max
Vi2>0

i=1,...,n

Vi2

Vi1

· (−1) · min
Vi2<0

i=1,...,n

Vi2

Vi1

and further

max
Vi2>0

i=1,...,n

Vi2

Vi1

· max
Vi2<0

i=1,...,n

−Vi2

Vi1

≥ 1.

In this form the assumptions on the Vi2 can be skipped without changing the maxima. Hence it remains to prove

max
i=1,...,n

Vi2

Vi1

· max
i=1,...,n

−Vi2

Vi1

≥ 1. (14)

See Appendix B for the proof of this inequality.

We conclude that
∂h

∂α
=

2

(β − α)3
(β2σ2

1 + σ
2
2)(1 + αβ) > 0

holds below the limit curve αβ = −1 where the rectangle [a, b] × [c, d] is located. This area is marked by B in Figure

1. In addition, we get that ∂h/∂α < 0 in the area marked by A in Figure 1.

Next we prove the second inequality in (12) in a similar way.

Proof that αβσ2
1
+ σ2

2
, 0 on the rectangle [a, b] × [c, d] (apart from the vertices): Fig. 1 illustrates the limit curve

β = −

(
σ2

σ1

)2
1

α
(15)

as the upper boundary curve of the red area. In order to prove the desired property it suffices to prove that

c ≥ −

(
σ2

σ1

)2
1

b

where (b, c) are the coordinates of the right lower vertex of the rectangle. The limit case of equality can be accepted

since a zero of the partial derivative in the vertex (b, c) does not contradict the assertion. With (9) we have to prove

that (with b < 0)

min
i=1,...,k

Ui2σ2

Ui1σ1

max
i=1,...,k

Ui2σ2

Ui1σ1

≤ −

(
σ2

σ1

)2
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α

β

h(α, β)

(a, d)

(b, c)
∂h
∂α
> 0

∂h
∂β
< 0

Figure 2: The minimum of the SCF on the rectangle [a, b] × [c, d] is taken in the point (a, b) and the maximum is taken in the point (b, c).

or equivalently (with Property 3.1)

min
i=1,...,k

Ui2

Ui1︸     ︷︷     ︸
<0

· max
i=1,...,k

Ui2

Ui1︸     ︷︷     ︸
>0

≤ −1.

By multiplication with −1 together with Ui1 > 0 for all i and min Ui2 < 0 by Property 3.1 this yields the following

inequality

max
i=1,...,k

−
Ui2

Ui1

· max
i=1,...,k

Ui2

Ui1

≥ 1. (16)

This inequality is of the same form as inequality (14); see Appendix B.

We conclude that
∂h

∂β
= −

2

(β − α)3
(αβσ2

1 + σ
2
2)(1 + α2) < 0

above the limit curve (15) where the rectangle [a, b] × [c, d] is located. This area is marked by B in Figure 1. Further,

we get that ∂h/∂β > 0 in the area C in Figure 1.

3.4. Bounding profiles

On the basis of the strict monotonicity of the SCF on the four edges of the rectangle [a, b] × [c, d] as proved in

Section 3.3 we conclude that the SCF attains its minimum in (a, d) and its maximum in (b, c). These relations are

illustrated in Figure 2.

For the representation of the bounding profiles we still have to implement a scaling for the concentration factor so

that the first row of the modified matrix of expansion coefficients equals the all-ones vector. By multiplying T−1 in (5)

with the matrix

∆ = (β − α)

(
1/β 0

0 −1/α

)

we get

T̃−1 := T−1∆ =

(
β −α

−1 1

) (
1/β 0

0 −1/α

)
=

(
1 1

−1/β −1/α

)
.

Then the feasible profiles are represented as C = UΣT̃−1 and S = VT T according to (6). For (α, β) = (a, d) we get the

SCF-minimizing bounds C and S as

C = (c
1
, c

2
) = (σ1u1 − σ2u2/d, σ1u1 − σ2u2/a) ,

S = (s
1
, s

2
) = (31 + a32, 31 + d32).

Similarly, the SCF-maximizing bounds C and S are for (α, β) = (b, c)

C = (c1, c2) = (σ1u1 − σ2u2/c, σ1u1 − σ2u2/b) ,

S = (s1, s2) = (31 + b32, 31 + c32).
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The associated series of bands are as follows: The bands of spectra are represented as

s1(α) = 31 + α32, α ∈ [a, b],

s2(β) = 31 + β32, β ∈ [c, d]
(17)

and the bands of concentration profiles by

c1(β) = σ1u1 − σ2u2/β, β ∈ [c, d],

c2(α) = σ1u1 − σ2u2/α, α ∈ [a, b].
(18)

An SCF-minimizing profile is not automatically a lower bound for the band of profiles (the same holds for the SCF-

maximizing profiles) since in an isosbestic point the relations may change. Therefore the band inclusions read as

follows:

min(s
1
, s1) ≤s1(α) ≤ max(s

1
, s1),

min(s
2
, s2) ≤s2(β) ≤ max(s

2
, s2),

min(c1, c1) ≤c1(β) ≤ max(c1, c1),

min(c
2
, c2) ≤c2(α) ≤ max(c

2
, c2).

For an illustration see Figure 3. There we consider a two-component model problem with the concentration profile

c1(t) = exp(−t) and c2 = 1 − c1(t). The two spectra are s1(λ) = exp(((λ − 60)/15)2) and s2(λ) = exp(((λ − 20)/35)2).

The mixture data matrix is formed as an 100 × 100 matrix and the SCF analysis is applied. Ten profiles are drawn in

each of the bands. The bounding profiles are drawn in red and green.

Additionally, the band representations (17) and (18) have the important property that the profiles can only intersect

within isosbestic points. In other words, this means that the series of profiles both as a function of α or β is a monotone

function with a growth behavior determined by

ds1(α)

dα
= 32 and

ds2(β)

dβ
= 32.

If V(i, 2) > 0 the s1(α) strictly monotone increases as a function of α or it decreases if V(i, 2) < 0. A similar property

holds for the concentration profiles c1(β) and c2(α). See Figure 3 for an illustration.

For three-component systems the situation is different. The profiles of a band can also intersect outside the

isosbestic points. In anticipation of the example problem that is introduced in Section 4 this can be seen for instance

in Figure 8.

4. Study of a three-component model system

In 2010 Rajkó [5] pointed out that “for three- or more component systems the situation is much more complex

and the outcome obtained for two-component systems cannot be straightforwardly generalized”. In fact, the extremal

behavior of the SCF as proved in Section 3 cannot be generalized to systems with more than two components. One

important difference is that the two profiles that minimize and maximize the SCF do not always enclose the range of

all feasible solutions as already pointed out in [22]. Furthermore, the property of two-component systems, namely

that the profiles that make the SCF extremal are represented by points on the boundary of the AFS is not always true

for three-component systems - even though such a behavior has often been assumed so far. It is a remarkable fact that

for three-component systems the extremality of the SCF in a certain profile is not necessarily reflected in an extremal

(boundary) position of the AFS-representing point. It took us some effort to construct a model system in which one

SCF-maximizing profile is represented by a point in the interior of the AFS and to verify that this finding is not an

artifact of a failed numerical optimization.

The model data matrix is constructed for the consecutive equilibrium reactions X
κ1
−−⇀↽−−
κ−1

Y
κ2
−−⇀↽−−
κ−2

Z with κ1 = 1,

κ−1 = 0.25, κ2 = 1 and κ−2 = 0.1. The initial concentrations are cX(0) = 1, cY (0) = 0 and cZ(0) = 0. The concentration
profiles are computed for k = 101 equidistant nodes in t ∈ [0, 10] by using the MatLab ode45 routine with the control
parameters RelTol= 10−10 and AbsTol= 10−10. The spectral profiles are sums of Gaussians

sX(λ) = 0.5g(λ, 25, 100) + g(λ, 75, 250), sY(λ) = 0.4g(λ, 20, 50) + g(λ, 65, 150), sZ(λ) = 0.6g(λ, 30, 25) + g(λ, 70, 25)

with g(λ, a, b) = exp(−(λ − a)2/b). These functions are evaluated for n = 500 equidistant nodes in [1, 100] in order

to form S i1 = sX(λi), S i2 = sY (λi) and S i3 = sZ(λi) for i = 1, . . . , n. Hence D = CS T ∈ R101×500. Figure 4 shows all

profiles and the mixture data.
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Figure 3: The bands of spectra and concentration profiles for the two-component model problem. The profiles within a band of solutions can only

intersect within an isosbestic point due to their monotone increasing or decreasing character. The band boundaries, which are determined by the

minimum and maximum of the SCF, are drawn in green and red.

4.1. The AFS and MCR-Bands profiles

The two AFS sets for the given spectral data matrix are computed by the dual Borgen plot procedure [16, 23], see

also the FACPACK software [24]. The result is shown in Figure 5. The representatives of the 12 extremal profiles of

the SCF (3), namely a minimum and a maximum for each of three pure component spectra and each of the associated

concentration profiles, are marked in Figure 5. Points that belong to a maximum of the SCF are marked by a cross

and minimum points are marked by a circle. The spectral profile that maximizes the SCF for the component Y is not

located on the boundary ofMS . In order to rule out the option of a failed optimization, we analyze the behavior of

the SCF below.

4.2. Analysis of the SCF

In order to confirm that the maximum of the spectral SCF for the component Y is attained in the interior of the

AFS, we investigate the local behavior of the SCF (3). To this end we cover the ith subset of each of the two AFS sets

by Ni uniformly distributed grid points and fix the ith row of T by the row vector (1, x
(i)

j
), j = 1, . . . ,Ni. Therein, x

(i)

j

are the coordinates of the jth grid point for the ith component in row vector form. Then for each grid point the SCF is

maximized and also minimized. The resulting function values are stored as

w
(i)

j
= max

T, C≥0, S≥0
gi(T ) with T (i, :) = (1, x

(i)

j
), 3

(i)

j
= min

T, C≥0, S≥0
gi(T ) with T (i, :) = (1, x

(i)

j
).

The MatLab optimization by fmincon is used; MCR-Bands works with the same routine. In order to support and

stabilize the optimizations we use smart initial guesses on the basis of feasible solutions from the geometric, triangle-

based Borgen plot construction. Furthermore, fmincon is started several times with different options (e.g. the interior-

point-algorithm and active-set-algorithm are used each with TolX=1.E-8). The results are evaluated and the optimal

results are selected. About 3% of the optimizations fail and are not plotted. The computational costs are high as 16

optimizations are started for each node.
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Figure 4: The concentration profiles (left), the pure component spectra (center) and the mixture spectra (right, only every 5th spectrum is plotted)

for the three-component model problem. Blue: X, red: Y , yellow: Z.
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Figure 5: AFS plots for the model problem with colors being consistent to Figure 4. The MCR-Bands extremal profiles maximizing (× symbol) or

minimizing (◦ symbol) the SCF are marked by their representatives (4). The point representing the maximum of the AFS for the component Y is

not located on the boundary of the AFS.

The results of these computations are plotted as two-dimensional functions
(
P

(i)
max

)
j
=

(
x

(i)

j
, w

(i)

j

)
,

(
P

(i)

min

)
j
=

(
x

(i)

j
, 3

(i)

j

)
(19)

for each of the three components, i = 1, 2, 3, and j = 1, . . . ,Ni. Figure 6 shows the results with N1 = 394, N2 = 745

and N3 = 489. The minima and maxima are marked by ◦ respectively ×. Close to the extremal solutions no outliers

can be seen. This confirms the correctness of the results. The maximum point for component Y is not located

on the boundary. This verifies the results from Figure 5. These results are supported by contour plots of P
(i)
max

and P
(i)

min
as shown in Figure 7. Finally, Fig. 8 shows the bands of feasible solutions together with the profiles that

maximize/minimize the SCF. The coordinates of the points in the AFS that minimize or maximize the SCF and the

associated values of the SCF (3) are listed in Table 1.

5. Conclusion

For two-component systems the SCF has the by no means obvious characteristic that its minimum and maximum

supply the profiles that enclose the bands of all possible profiles under the nonnegativity constraint. This property of

the SCF is quite surprising for the (globally) non-convex SCF function.

For systems with three or more chemical components we are not aware of publications in which SCF-maximizing

or -minimizing profiles are reported to be represented by points in the AFS that are not on its boundary. Instead, these

points have always been observed to be located on the boundary in a way that is known from two-component systems.

At the moment, no general analysis is known that provides conditions on the form of the spectral and concentration

profiles so that the SCF attains its extrema in the interior of the AFS. However, the model problem in Section 4 together

with its numerical analysis shows that the SCF for three-component systems can attain its maximum in an interior

point of the AFS. We expect that our counterexample of a three-component system can be extended to systems with

more chemical components in a way that the SCF-extremality on the boundary is still broken.

Summarizing, it remains to be noted that the SCF and MCR-Bands are valuable and computationally inexpensive

tools for estimating the extent of rotational ambiguity underlying a chemical reaction system. The SCF provides

exact bounds for the rotational ambiguity and for the bands of feasible solutions for two-component systems. For

systems with three and more components the experiences, as reported in chemometric publications so far, show that

the SCF-minimizing and -maximizing profiles often provide useful approximations in order to estimate the under-

lying rotational ambiguity even if no feasible lower and upper feasible profiles exist that bound the full range of all
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Figure 6: Mesh plots to P
(i)
max and P

(i)

min
by (19). Especially, the maximization of the SCF is not always successful (see the outliers). The MCR-Bands

maxima are marked by × symbols, and the minima are marked by ◦ symbols.

0.5 1 1.5

-1

-0.8

-0.6

-0.4

x1

x
2

P
(1)

min
(min. comp. X)

0.2 0.4 0.6

0.2

0.3

0.4

0.5

0.6

x1

x
2

P
(2)

min
(min. comp. Y)

-0.3 -0.25 -0.2

-0.1

-0.08

-0.06

-0.04

-0.02

x1

x
2

P
(3)

min
(min. comp. Z)

0.5 1 1.5

-1

-0.8

-0.6

-0.4

x1

x
2

P
(1)
max (max. comp. X)

0.2 0.4 0.6

0.2

0.3

0.4

0.5

0.6

x1

x
2

P
(2)
max (max. comp. Y)

-0.3 -0.25 -0.2

-0.1

-0.08

-0.06

-0.04

-0.02

x1

x
2

P
(3)
max (max. comp. Z)

Figure 7: Contour plots for the surfaces P
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min
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(i)
max (bottom). The maxima and minima are marked by × respectively ◦. The contour lines

of P
(2)
max clearly indicate that the maximum is attained in the interior of the respective subset of the AFS.
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Component X Component Y Component Z

x1 x2 SCF x1 x2 SCF x1 x2 SCF

Min. SCF 1.667 -1.081 0.01715 0.4214 0.6033 0.03003 -0.2851 -0.1079 0.3217

Max. SCF 0.5538 -0.2145 0.1432 0.1853 0.2279 0.24402 -0.2098 -0.02620 0.6728

Table 1: The table contains the positions and function values of the SCF extrema (minimum points ◦ and maximum points ×) for the factor S as

shown in Fig. 5.
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Figure 8: Bands of feasible solutions for the AFS shown in Figure 5. Upper row: feasible concentration profiles. Lower row: feasible spectral

profiles. The profiles that maximize/minimize the SCF are drawn in black. The spectrum of Y that maximizes the SCF and that is not located on

the boundary of the AFS is drawn by a black broken line. The associated concentration profile is also marked by a black broken line.

feasible profiles. Nevertheless, the information that can be extracted from the theoretically deeper AFS concept can

be approximated to some extent by the extrema of the SCF.

A. Mathematical background

The reducibility/irreducibility of a square matrix is defined as follows [13].

Definition A.1. An ℓ × ℓ matrix A with ℓ ≥ 2 is called reducible, if an ℓ × ℓ permutation matrix P exists so that

PAPT =

(
A1,1 A1,2

0 A2,2

)
.

Therein A1,1 is an m×m submatrix and A1,2 is an m× (ℓ −m) submatrix with 1 ≤ m < ℓ. If such a permutation matrix

does not exist, then A is called an irreducible matrix. If A is a symmetric matrix, then A2,1 = 0 implies that A1,2 = 0

due to the symmetry of PAPT .

Irreducibility of a matrix is an important assumption of the Perron-Frobenius spectral theorem of nonnegative

matrices [13].

Theorem A.2. Let A ∈ Rℓ×ℓ be an irreducible, nonnegative matrix. Then it holds that

1. The spectral radius ρ(A), i.e., the maximum of the absolute values of the eigenvalues of A, is an eigenvalue of

A.

2. For the eigenvalue ρ(A) a componentwise strictly positive eigenvector exists.

3. The eigenvalue ρ(A) is simple (i.e., has the multiplicity 1).
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B. Proof of the inequalities from (14) and (16)

The inequalities (14) and (16) are equivalent. We have to prove for any column vectors u, 3 ∈ R
n with ‖u‖2 =

‖3‖2 = 1, uT
3 = 0 and component-wise u > 0 that

max
i=1,...,n

−
3i

ui

· max
j=1,...,n

3 j

u j

≥ 1. (20)

A proper re-indexing of 3 and u allows us to assume that the negative components of 3 appear in the first m components

of 3. Then let

ai = −3i, i = 1, . . . ,m, and bi = 3i+m, i = 1, . . . , ℓ

with ℓ = n − m. The last ℓ components of u are taken to form the vector w

wi = ui+m, i = 1, . . . , ℓ.

Thus we can write the assumptions completely in nonnegative numbers, namely the orthogonality relation as

m∑

i=1

uiai =

ℓ∑

j=1

w jb j

and the normalizations as
m∑

i=1

a2
i +

ℓ∑

j=1

b2
j = 1,

m∑

i=1

u2
i +

ℓ∑

j=1

w2
j = 1.

We have to prove that

max
i=1,...,m

ai

ui

· max
j=1,...,ℓ

b j

w j

≥ 1.

Proof: Let

α := max
i=1,...,m

ai

ui

and β := max
j=1,...,ℓ

b j

w j

.

Then it holds

m∑

i=1

uiai =

m∑

i=1

u2
i

ai

ui

≤ α

m∑

i=1

u2
i and

ℓ∑

j=1

w jb j =

ℓ∑

j=1

w2
j

b j

w j

≤ β

ℓ∑

j=1

w2
j .

Thus,

αβ = αβ


ℓ∑

j=1

w2
j +

m∑

i=1

u2
i

 = α
β

ℓ∑

j=1

w2
j

 + β
α

m∑

i=1

u2
i



≥ α


ℓ∑

j=1

w jb j

 + β


m∑

i=1

uiai

 = α


m∑

i=1

uiai

 + β

ℓ∑

j=1

w jb j



≥

m∑

i=1

a2
i +

ℓ∑

j=1

b2
j = 1. 2
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[20] M. Sawall, H. Schröder, D. Meinhardt, and K. Neymeyr. On the ambiguity underlying multivariate curve resolution methods. In R. Tauler,

editor, Comprehensive Chemometrics, 2nd edition, page To be published. Elsevier, 2019.

[21] J. Jaumot and R. Tauler. MCR-BANDS: A user friendly MATLAB program for the evaluation of rotation ambiguities in multivariate curve

resolution. Chemom. Intell. Lab. Syst., 103(2):96–107, 2010.
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