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Abstract

The results of multivariate curve resolution (MCR) methotisrly depend on the chosen MCR approach. We com-
pare three MCR tools that support kinetic modeling in ordénvestigate the significant influence on the determined
solutions. These methods are the Hard-Soft-Multivariatev€ Resolution, the Multivariate Curve Resolution-Net
Analyte Signal and as a common roof the general approachebgaimputation of the set of feasible rate constants as
implemented in the FACPACK kinetic hard-modeling softwarhe focus is on the determination of the reaction rate
constants and the occurrence of corresponding solutiongaitibs.

Three spectroscopic data sets are considered in this skidst, an alkaline hydrolysis (UWis) with a two-
step consecutive first order mechanism. Since no slowafaftiguity is observed, the three MCR methods give
comparable, consistent results. The two remaining dataceetcern a formation of iridium catalysts (FTIR) based
on a two-component reversible mechanism and the reacti@obiorophenylhydrazonopropane dinitrile with 2-
mercaptoethanol (UWis) based on a three-component partially reversible masha Even though the rate constants
for these reactions can show some significant deviatioag,dhresponding error indicators are on an equally low level
The sets of feasible rate constants as computed by the cubmsere algorithm enclose the particular solutions as
computed by the other methods.

Keywords: factor analysis, multivariate curve resolution, ambiguitonnegative matrix factorization, net analyte
signal, area of feasible solutions

1. Introduction

Multivariate curve resolution methods are key tools forélgaction of pure component information from spec-
troscopic data sets. In its simplest form, such a data seaitmone time-resolved series of spectra, which can be
stored row-wise in a nonnegative matiixe R™", Thenmis the number of spectra andhe number of data channels
in each spectrum.

For ans-component reaction system, the matixve are interested in is an approximate factorization of tinenf

D=CS'+E (1)

with the nonnegative matric&s € R™S, S € R™S and an error matribE € R™" with matrix entries close to zero.
The goal is to assign the columns@fandS to the concentration profiles and spectra of the pure compsii, 2, 3].
The matrixE comprises the residuals due to deviations from a striatdsli decomposition model. Its absolute matrix
entries should be small compared to the maximal entri€. of

The occurrence of multiple solutions of the factorizatisolgem (1) is well known under the keyword rotational
ambiguity. The rotational ambiguity is the main challengeMICR methods [4, 5]. Usually, additional constraints are
introduced for the factors based on prior knowledge of tistesy in order to obtain a chemically interpretable solution
The unimodality constraint and the closure constraint arg gommon [6, 7]. Here we focus on the implementation
of kinetic models as a chemical constraint in the resolypiatess [8, 9]. In this manner, the concentration profiles of
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the components involved in a kinetic process are shapeddingdo the law of mass action in terms of an initial value
problem for a system of ordinaryférential equations. Such a kinetic modeling can decreassnitberlying rotational
ambiguity drastically. In addition, the parameters of thekic model, namely the reaction rate constants, aremdxai

as well. They are of particular physicochemical and anedytinterest in research problems, industrial design and
process analytical chemistry [10]. It is important to reknidwat the application of a kinetic model (especially thoke o
first order or pseudo-first order) does not always guarantegcae solution. A systematic analysis of the remaining
ambiguities leads to sets of feasible reaction rate cotsstaee [11].

In this study three dierent MCR methods supporting kinetic modeling are investid: Hard-Soft-Multivariate
Curve Resolution (HS-MCR) [12, 13], Multivariate Curve Rkgion-Net Analyte Signal (MCR-NAS) [14, 15, 16]
and FACPACK Kinetic Modeling (FKM) [11, 17]. The fierent methods favor slightly fiérent solutions to the
factorization problem (1) due to their theoretical basid anplementations. It is shown that the consideration of
reaction rate ambiguities [17] can help to overcome the bfafiese methods. Three spectroscopic data sets are
studied in this context: 1. alkaline hydrolysis of dimetpithalate, 2. partial equilibrium of iridium catalysts ahd
reaction of 3-chlorophenylhydrazonopropane dinitriléhv@-mercaptoethanol.

1.1. Organization of the paper

Section 2 introduces the three MCR methods HS-MCR, MCR-NAGFEKM. A short overview on the theory of
reaction rate ambiguities is given in section 3. The studpttroscopic data sets are described in Section 4, fallowe
by their analysis in Section 5. A conclusion is given in Satt.

1.2. Notation

All variables and mathematical operators are written ilicéa Matrices are denoted by capital letters. Lowercase
letters are used for scalars and vectors.

2. MCR approacheswith kinetic modeling

Kinetic modeling in the context of MCR problems is shortlyroduced in this section. Three implementations
are presented in the Section 2.1.

The general idea of kinetic modeling for MCR methods is gsiteilar: optimal reaction rate constants are to be
determined under the constraints that the two (almost) egative factor€ andS satisfy Equation (1) and that the
concentration profiles, as described by the columnS,adre consistent with the kinetic model that is based on the
current reaction rate constants. Next the notiocaisistencys explained. To this end, we start with a first-order
kinetic model in terms of the initial value problem

¢(t) = M(K)c()),  cfta) = co. (@)

Therein, the matriM(k) € R¥* depends on the vectére RY of reaction rate constants. The vectoggepresents
the initial concentrations. The initial value problem isv&al on the time gridy, . . ., t,, predetermined by the data set.
A column-wise representation of the results in matrix foondns-component system is given by

Ci(ty) -+ cs(ty)
CoK) =| Do |eR™S,
Citm) -+ Cs(tm)

Then the link between the initial value problem (2) and thetdezation problem (1) is established by the kinetic fit
error,

IC - CO%(K)IF - ©)

In the following, we use the relative error teff@ — C°%(k)||=/IICllr due to its better mutual comparability of the
results for the dierent data sets. If the relative error (3) equals 0 or if igty a small positive threshold value, then
the corresponding factorizati@®S' is called to be consistent with the kinetic model.
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2.1. MCR methods

On the basis of the introductory part of this section, thre@Rvimethods for solving the factorization problem 1
are introduced:

2.1.1. Hard-soft multivariate curve resolution
MCR-ALS is a very popular iterative curve resolution algiom. Here the so-called lack-of-fit (lof)

lIEllr

lof = 100
IDIlF

is minimized by alternating modifications of the matricesrd &.

Soft-modeling MCR-ALS uses additional constraints as wdality or selectivity in the optimization process.
Such a regularization can result in chemically meaningfmoentration profiles and spectra [18].

Hard-soft multivariate curve resolution (HS-MCR) is a nfamition of MCR-ALS that implements kinetic models
as a constraint. In each modification step of the faCtca parameter vectdris determined such that (3) is minimal.
All those columns of the factd® predicted by the model are then replaced®¥4Kk). The remaining columns are
modified according to the basic MCR-ALS approach. The omi#uiimodel parametekS8P! (often these are the rate
constants of the kinetic model) are an additional outpuhisfinethod.

2.1.2. Multivariate curve resolution-net analyte signslGR-NAS)

Net analyte signal (NAS) [19, 20] is defined as the part of atuné& spectrum that is directly related to the
concentration of the component of interest and that is grhal to the spectra of the other interfering species tageth
with the background variations. The NAS technique allowsousonitor changes in the concentration of one species
(reactant or product) during the chemical process. Eachvemtord; of D which is the reaction mixture spectrum
at theith step of a reaction kinetic process is composed of the ibotions of all species (namely reactants and
products) plus the contribution from other sources sucined interferences, drifts and instrumental noise. The rol
of NAS calculation is to extract the net contribution of ori¢he components involved in the reaction atelient steps
of the evolutionary process from the recorded spectrums Waiuld be feasible if the concentration of the species
of interest (e.dCg) was known at all reaction steps. In this case the part of tixéune spectrum that is orthogonal
to the spectral space spanned by interferences is used &olaing procedure. The part of the spectrum that is not
orthogonal to the spectral space of the other componentbeagpresented as a linear combination of the spectra of
the other components. Only the orthogonal part is uniqued@halyte of interest.

During the MCR-NAS analysis concentration profiles areaitieely calculated using ffierent values of rate con-
stants. The aim of MCR-NAS approach is to find a suitable vaxfteeaction rate constanitso thatD_g is completely
free from the contribution of componeBt The matrixD_g is defined as the rank annihilated matrix containing spec-
tral information of all species presented in the reactiostesy, excepB. For all values of the rate constants which
are equal to true values the matiix g contains information about all sources of variation in dateeptB. In this
situation, a maximal correlation cfieient between the norm of the NAS vectors (at each time) aaddtculated
concentration profilesdg) by the model equations is obtained. If the process congethen the final estimate &f
is the truek [14, 15].

2.1.3. Facpack kinetic modeling (FKM)

FKM is a pure hard-modeling approach [11]. In its basic v@rs kinetic model is mandatory that describes the
complete reaction system and thus all columng€ofin a similar way as for the previously presented methods the
minimization of a cost functiori (also called objective function) is used in order to deteerihemically meaningful
factorsC andS as well as a model parameter veckorA distinctive feature is thaf solely depends on the vector
k and not only implicitly on the matrice€ andS. Hence the number of the degrees of freedonf ofiamely the
dimension of the vectdk, is significantly smaller than the number of entrie<CadindS. Therefore the minimization
of f can be done in a venfigcient way.

FKM internally uses the truncated singular value decomjumrsD ~ UXVT, whereinU € R™S andV € R™S are
orthogonal matrices arl € RS is a diagonal matrix. Then an alternative representatioa f&olution of Equation
(1) is given byC = UXT* andS = TV with a regular matrixT € RS [21]. Here, T* denotes the pseudoinverse
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of the matrixT. ThusT = T(k) = (C°%(k))*UX is a matrix that minimizes Equation (3) in a least squareseen
Summarizing, this makes it possible to calculate the factor

C(k) = UX(T(K)* and S=TKV' 4)
only depending on the parametérsvhich are then evaluated with the typical constraints foregativity and a low

kinetic fit error
S 2 N .
;1( (max(clj) O)) 2.2 -n( majl(JS”) )) + IZ JZ [CI] m;;\'(ci(l)())u ) ‘

]

f(k) =
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L
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3. Rate constant ambiguities

A major difficulty in the application of MCR methods is the potential acence of bands or continua of solutions
(namely infinitely many solutions) of the factorization pkem (1). These solutions mayfléir considerably. Their
chemical importance can be evaluated and they can mutualliidtinguished by adding further constraints to the
problem. Consistency with a kinetic model is a possible dfattve constraint. This constraint can be very restrictive
Sometimes it allows us to reduce the bands of possible sokito a single, unique solution. However, it has been
shown for first-order kinetic models that often the problematational ambiguity cannot be resolved and has to be
considered in the data analysis [11, 22]. In mathematicaldehere are multiple combinations of fact@sS and
model parameteils such that

ID-CST| - |IC - CO%K)II . Imin(C, 0)ll : [l min(S, 0)llr .
== smin ———"C 5min, ——2~ 5min and — > - min 5
DIl IClIr IClIr ISlie )

or similar optimality criteria are fulfilled. In this papereause the notation for the solution sets that has been
introduced in [17]. For the noise-free case this includes#t of D-consistent parameters

K = {k e RY: D = C°(K)ST for a (not necessarily nonnegative) matgx R”XS}
and theset of feasible parameters
K = {k e RY: D = C°K)ST for a nonnegative matri$ e ]R”XS}.

In words, the setK contains all those parameters, for which fact6rand S exist that fulfill the first three
optimality criteria in (5), namely the data reconstructand the kinetic fit as well as the nonnegativity constraint fo
C. It can be seen as an intermediate step in the determindti&ii dor which the corresponding factoBsalso needs
to be nonnegative. In summary, the $€t is one way of representing the solution sets of MCR problenteuthe
constraint of a kinetic model in the noise-free case. Th&Seatontains the vectors of feasible reaction rate constants;
the associated pure component facto@ndS can be reconstructed with Equation (4).

All kinds of perturbations, for example noise or baselin®es, have to be considered for the analysis of experi-
mental data. Generalizations of the sktand K™ are defined by introducing error tolerance valadsr the kinetic
fit error andd for the negativity ofS. Then, theset of D-approximate parametersads

_ (odey
XK, = {k e RY: rank(T (K)) = sandW < s} (6)
F
and theset of feasible D-approximate parametergjiven by
(S(K)i.j }
K'y=keK,: ———————— > -0 foralli, 7
{ max ((S().;) : %

Further details on the theory, recommendations on settiagdlerance values and an implementation of the cube
enclosure algorithm for the numerical computatiorfQfK™, K, andk, can be found in [17].
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Figure 1: Visualization of the series of spectra for an afie@hydrolysis of dimethyl phthalate (Data set 1), a formatba partial equilibrium of
iridium catalysts (Data set 2) and a reaction of 3-chloragtieydrazonopropane dinitrile with 2-mercaptoethanoltéDset 3).

4. Data
Three experimental data sets witlfdirent underlying reaction mechanisms are investigategl her

Data set 1 (Alkaline hydrolysis of dimethyl phthalate)The first data set contains the spectroscopic monitoring of
a three-component reaction system, namely the alkalineolysis of dimethyl phthalate in the presence of vanillin
as an inert interference [14, 23]. The spectra were obtaméte wavelength range of 248-308 nm every 20s until
200s and then every 100s until 120min. A totalnof= 81 spectra were recordedrat= 31 wavelengths each. The
corresponding data matrl € R®>3! s illustrated on the left of Figure 1.

Data set 2 (Formation of a partial equilibrium of iridium catalystsyhe equilibrium between HIir(CQJPPh) and
HIr(CO),(PPh), in the presence of carbon monoxide and triphenylphosplsrenalyzed by in-situ FTIR spec-
troscopy [24]. A stopped-flow unit in combination with a rdqsican monitoring is used in this investigation. Herein,
m = 735 spectra in the time range from Omin ta@8in are recorded. Each spectrum contains the intensityesal
for n = 325 wavenumbers in a range from 191Térto 2068cm. The corresponding data matiix € R73%325 js
illustrated in the center of Figure 1.

Data set 3 (Reaction of 3-chlorophenylhydrazonopropane dinitrilgn2-mercaptoethanal)The three-component re-
action of 3-chlorophenylhydrazonopropane dinitrile watimercaptoethanol is investigated by Vié spectroscopy.
Hereby 2-mercaptoethanol and the byproduct ethylenesudfddnot contribute to the spectra in the monitored range
from 300nm to 500nm. Full details of the reaction and dataieitipn conditions can be found in [25, 26, 10]. The
data has been provided by the Biosystems Data Analysis Groilne University of Amsterdam [27].

Each data set contaims = 271 spectra in the time range fronD8min to 45min. The spectra are measured at
n = 201 data channels in the wavelength range from 300nm to 50T corresponding data matiix € R27<201
is illustrated on the right of Figure 1.

5. Resultsand discussion

Now, we follow a kinetic study of the three data sets from Bect that are shown in Figure 1. For each data set
this includes a comparison of the MCR methods from Sectioeg2nding the optimality criteria from Equation (5)
and the determination of the rate constant ambiguity (npthel setk; ). The first data set is used in order to verify
that the three MCR methods yield comparable results if noiguities are present. For the remaining two data sets
the rate constant ambiguities are analyzed and are seaiioreto the solutions of the three presented MCR methods.

5.1. Alkaline hydrolysis of dimethyl phthalate (Data set 1)

The assumed reaction model reads ‘ ‘
1 2

X—Y—>Z
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Figure 2: Resolved concentration profiles and spectra foa Bet 1 by three MCR methods. The results of the three MCR metaedhighly
overlapping. A solution ambiguity can not be identified wiglspect to small tolerances.

with X = dimethyl phthalateY = monomethyl phthalate and = phthalate as well as initial concentratiotis =
(0.00380,0)" in mol - L~1. The slow-fast-ambiguity [28] typically associated wiltist model is not to be found for
the present data. The potential second solution can alwaxtluded due to its negative spectrum. Thus only a
single solution is determined. The reaction rate constéimis are obtained by the three MCR methods are shown in
Table 1 together with typical error indicators. Only mindfferences are found in the calculated valuesfaandk,

Table 1: Optimized reaction rate constants and error inglisdor Data set 1 broken down by chemometric methods.

HS-MCR MCR-NAS FKM
ky in min~t 0.7428 0.7389 0.7382
kp in min~t 0.0248 0.0255 0.0247
ID — CST|Ir/IIDlIF 0.0084 0.0008 0.0008
IC — C°%(K)||r/IICllr 0.0007 0.0092 0.0082
[Imin(C, O)lIr/IIClle 0.00002 0.0017 0.0013
| min(S, O)lle/1ISIle 0 0 0

among the three methods. Also the plots of the correspordaigrsC andS, that are shown in Figure 2, show only
minor deviations. Thus, it can be assumed that the three MERads result in equally well solutions.

5.2. Partial equilibrium of iridium catalysts (Data set 2)
The reversible reaction model

kq
X ——Y 8
k1

with X = HIr(CO)s(PPh) andY = HIr(CO),(PPh), as well as relative initial concentrationg = (1,0)" are used. It

is known from [11] for noise-free cases that the model (8)ossufficient in order to obtain a unique solution for the
MCR problem. Analogously a similar observation can be matéhfe Data set 2. The reaction rate constants, that
were obtained by the three MCR methods, are shown in Tablgegher with typical error indicators. Despite some
significant deviations in the values kf andk_1, the corresponding error indicators are on an equally leelleThe
correlated factor€ andS are shown in Figure 3 as a black dashed lines. They also gightie major dierences of
the three solutions.



Table 2: Optimized reaction rate constants and error ingisdor Data set 2 broken down by chemometric methods.

HS-MCR MCR-NAS FKM
kiins? 0.0025 0.0020 0.0030
k.1in s1 0.0005 0.0009 0.0003
IID — CST"|I=/IIDlle 0.0104 0.0082 0.0082
[IC - C°de(k)|||:/||C|||: 0.0013 0.0047 0.0046
lmin(C, O)Il/IIClIr 0 0.0011 0.0008
lmin(S, O)llr/IISIIF 0 0.0282 0.0046
HS-MCR MCR-NAS FKM
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Figure 3: The factor€ (top) andS (bottom) are plotted for a selection of reaction rate vedtwaisare contained in the set of feasibl@pproximate
parameters(; - o5 fOr Data set 2. The black dashed lines are assigned to thivedszoncentration and spectra profiles based on the optimal
reaction rate vectd°P! for each technique.

However, the consistency of the three results can be shovaoimputing the sek’,. Here we use = 0.017
andd = 0.05. The values were determined according to the recommiendan [17] by evaluatlng the corresponding
error indicators, see (6) as well as (7), and setting the &sterances slightly higher. The Cube Enclosure Algorithm
is applied for the approximation ok, [17]. The initial cube side length is set to = (k; + k-1)/20 ~ 0.000165
for the reaction rate constants obtalned by the FKM methodindJthe reaction rate constants of the other two
methods would result in the same approximation. Thef§gf,, s is presented in Figure 4 as a black dashed line.
Furthermore, for each obtained vector of reaction rate teoits of the three methods the corresponding/ées
plotted in black. Despite the fact that an analysis by th&/Gattually presupposes perturbation-free data, it is easy
to see that the three lines are very well aligned wiih,. The setsk extend far beyond</,, especially for small
ki, because the associated rate constant vectors are asgigfiaetbrizations whose facto have negative entries
(beyond the tolerance). The optimized rate constant vectbHS-MCR (blue), MCR-NAS (red) and FKM (green)
are all contained in the sé(;,. This quite abstract information can also be presentedersgiace of concentration
profiles and spectra, see Flgure 3. The calculated soludi@isighlighted by black dashed lines in each column. The
factors that correspond to selected rate constant vect@(s,j are indicated in color. In the plots of the concentration
profiles as well as the plots of the spectra it can be seenhbahtee obtained MCR solutionsfi@ir significantly.
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Figure 4: Reaction rate ambiguities for Data set 2. The cdlbnes are assigned to the s@sdetermined by the optimal rate constant vectors of
the diferent chemometric tools: HS-MCR (blue), MCR-NAS (green) ak#MKred). The solutions of each method are marked by crossés wit
the same color coding. The area marked by black dashed lirstréltes the set of feasib2-approximate paramete 5017,0.05. On the right a
zoomed section is shown.

Table 3: Optimized reaction rate constants and error indiisdbr Data set 3 broken down by chemometric method.

HS-MCR MCR-NAS | FKM
ke in min* 0.2305 0.2182 0.1887

k 1 in min < 0.0612 0.0757 0.0971

ko in min* 0.0383 0.0388 0.0448
ID — CS'[I+/IDlir 0.0067 0.0003 0.0003
IC = Co%(K)|/IIClIF 0.0010 0.0035 0.0034
'min(C, O)ll/IICllr 0 0.00060 0.00056
'min(S, O)lI=/IISIIF 0 0.000067 0.000069

For example the peak at 1945chis present for the HS-MCR and the FKM solution, but vanishesttie MCR-
NAS solution. It is clear that further chemical informatignneeded in order to decide which solution is the one
that explains the chemical reaction system in a correct Wag setX, helps to give an overview of the possible
solutions.

5.3. Reaction of 3-chlorophenylhydrazonopropane dikitnith
2-mercaptoethanol (Data set 3)

The partially reversible consecutive reaction model

k1 ko
Xe=—=>Y—"Z (9)
K1

is used withX = 3-chlorophenylhydrazonopropane dinitril,= intermediate and = 3-chlorophenylhydrazono-
cyanoacetamide as well as initial concentrations (5.3 10°°,0)" in mol - L2,

In analogy to Data set 2 the model (9) is noffsuent to obtain a unique solution of the MCR problem. This is
confirmed by the following observation. The reaction ratastants, that were obtained by the three MCR methods,
are shown in Table 3 together with typical error indicatdrbe correlated factor€ andS are shown as black lines
in Figure 5. Major diferences can already be seen by just comparing the resultsefdirst batch. The other nine
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batch reactions result in equally low error indicators. gdlutions are shown in the parameter space in Figure 6 as
colored crosses. Furthermore, the three $eétsave been computed based on the optimal reaction rate sesfttire
three methods for the first batch. They are shown as colof@tils®s. The solutions are spread roughly along the
setsK. The diferent results among the methods and batches have muliggens. On the one hand, the three MCR
methods seem to be biased in a way that the solutions shovine iparameter space form clusters, see the left plot
of Figure 6. On the other hand, the solutions within such atelushow deviations, which are most likely caused by
deviations in the execution of the batch experiments.

The consistency of the calculated solutions is shown witthttlp of the sek(;,. Therefore the set is approximated
with the Cube Enclosure Algorithm fer = 0.015 andd = 0.015. An apprOX|mat|on of<’, is presented as a gray
volume in the right of Figure 6. It contains 28 of the 30 congglisolutions. The two outllers belong to the FKM
method and are located slightly outside the approximaticifjg. The factorsC andS assigned to these two solutions
result in error indicators that are larger than the chostrdnce values. Increasing these values or neglecting the
corresponding batches would be a possible approach.

Again the abstract information of the skT', can be illustrated in the space of fact@sndS, see the colored
lines in Figure 5. While all concentration profiles aféeated by the remaining ambiguity of the MCR problem, it is
revealed that the characteristic peaks in the possiblegnmgonent spectra of the first and third species are nearly
uniquely determined. The possible spectra of the secoradespghows some deviations, but the maxima of the peaks
are located in a very small wavelength range around 400nm.

To conclude, the assignment of the species to the obtaireirapcan be done with a great certainty. However, a
quantification of the species is not possible in a reliablg wihout further information.
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Figure 5: The factor€ (top) andS (bottom) are plotted for a selection of reaction rate vedtmaisare contained in the set of feasibl@pproximate
parameter§(g_0150_015 for Data set 3. The black lines represent the resolved coratem and spectra profiles based on the optimal reactien rat
vectork®P! for each technique. The detailed assignment is given in trenl

6. Summary and conclusion

Three MCR tools for the extraction of pure component infaforaand optimized reaction rate constants of a
given kinetic model have been compared. As part of a kingtidys they have been applied to three spectroscopic
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Figure 6: Reaction rate ambiguities for Data set 3. The cdldirees are assigned to the sétsobtained by the dierent chemometric tools:
HS-MCR (blue), MCR-NAS (green) and FKM (red). The soluti@mishe 10 batches are marked by crosses with the same colorgcaddirthe
right plot the set of feasibl®-approximate paramete’iég.omo'015 is indicated by the gray volume. It is a tube-like structurat #xtends around
the setgX. It contains all determined solutions except for two ouglier

data sets. Despite comparable low residuals of the data addlit, significant diferences of the reaction rate values
occur in two of the three studied cases. This is caused byiffereht chemometric approaches of the tools and the
intrinsic ambiguities that are correlated to the choseetidrmodels. However, the analysis by the set of feadible
approximate parameters has shown the consistency of thiésteldence we conclude, that the analysis of parameter
ambiguities should be appended to a “classical” MCR analyrserder to reveal possible uncertainties.

The comparison of the three MCR tools has yield the followiegults: The computation time for HS-MCR are
relatively large since the method uses various constraimisall components must be considered in the optimization
process. However, the resulting deviation from nonneggtim C and S is the lowest. MCR-NAS is based on
extracting the net contribution of only one component oéiiest from the mixture of known and unknown species.
Hence it can be applied to more complex and rank deficieneésysts well. FKM is a pure hard-modeling approach.
The target function in FKM solely depends on the vedtand not on the matriceS andS. Thus the number of the
degrees of freedom, that is the dimension of the vagta significantly smaller than the number of matrix entriés o
C andS. This makes a veryfBcient computational minimization of cost function possibl

Finally, the existence of solution ambiguities is a probiefMCR-based methods even under the regularization
of a kinetic model. However, it is shown here that these amitieg are computable. The results can be visualized in
an abstract form a&f, and in an easy-to-interpret form as band plots. Hence viduaformation can be extracted
even for data sets, that arffected by this solution ambiguity. Often only some of the geaka species spectrum
are dfected by such ambiguities and sometimes single specie% affatted at all. Thus this information can be
considered as reliable even if there is a solution ambiguity

Perspectively further constraints can be applied to thecgetin the case that the interesting species are heavily
affected by the ambiguity. This results in a reductiofkgf, to a subset which is consistent with the chosen constraints
e.g smoothness or unimodality.
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