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Abstract

The results of multivariate curve resolution (MCR) methodsclearly depend on the chosen MCR approach. We com-
pare three MCR tools that support kinetic modeling in order to investigate the significant influence on the determined
solutions. These methods are the Hard-Soft-Multivariate Curve Resolution, the Multivariate Curve Resolution-Net
Analyte Signal and as a common roof the general approach by the computation of the set of feasible rate constants as
implemented in the FACPACK kinetic hard-modeling software. The focus is on the determination of the reaction rate
constants and the occurrence of corresponding solution ambiguities.

Three spectroscopic data sets are considered in this study:First, an alkaline hydrolysis (UV/Vis) with a two-
step consecutive first order mechanism. Since no slow-fast-ambiguity is observed, the three MCR methods give
comparable, consistent results. The two remaining data sets concern a formation of iridium catalysts (FTIR) based
on a two-component reversible mechanism and the reaction of3-chlorophenylhydrazonopropane dinitrile with 2-
mercaptoethanol (UV/Vis) based on a three-component partially reversible mechanism. Even though the rate constants
for these reactions can show some significant deviations, the corresponding error indicators are on an equally low level.
The sets of feasible rate constants as computed by the cube enclosure algorithm enclose the particular solutions as
computed by the other methods.

Keywords: factor analysis, multivariate curve resolution, ambiguity, nonnegative matrix factorization, net analyte
signal, area of feasible solutions

1. Introduction

Multivariate curve resolution methods are key tools for theextraction of pure component information from spec-
troscopic data sets. In its simplest form, such a data set contains one time-resolved series of spectra, which can be
stored row-wise in a nonnegative matrixD ∈ Rm×n. Thenm is the number of spectra andn the number of data channels
in each spectrum.

For ans-component reaction system, the matrixD we are interested in is an approximate factorization of the form

D = CST + E (1)

with the nonnegative matricesC ∈ R
m×s, S ∈ R

n×s and an error matrixE ∈ R
m×n with matrix entries close to zero.

The goal is to assign the columns ofC andS to the concentration profiles and spectra of the pure components [1, 2, 3].
The matrixE comprises the residuals due to deviations from a strict bilinear decomposition model. Its absolute matrix
entries should be small compared to the maximal entries ofD.

The occurrence of multiple solutions of the factorization problem (1) is well known under the keyword rotational
ambiguity. The rotational ambiguity is the main challenge for MCR methods [4, 5]. Usually, additional constraints are
introduced for the factors based on prior knowledge of the system in order to obtain a chemically interpretable solution.
The unimodality constraint and the closure constraint are very common [6, 7]. Here we focus on the implementation
of kinetic models as a chemical constraint in the resolutionprocess [8, 9]. In this manner, the concentration profiles of
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the components involved in a kinetic process are shaped according to the law of mass action in terms of an initial value
problem for a system of ordinary differential equations. Such a kinetic modeling can decrease the underlying rotational
ambiguity drastically. In addition, the parameters of the kinetic model, namely the reaction rate constants, are obtained
as well. They are of particular physicochemical and analytical interest in research problems, industrial design and
process analytical chemistry [10]. It is important to remark that the application of a kinetic model (especially those of
first order or pseudo-first order) does not always guarantee aunique solution. A systematic analysis of the remaining
ambiguities leads to sets of feasible reaction rate constants, see [11].

In this study three different MCR methods supporting kinetic modeling are investigated: Hard-Soft-Multivariate
Curve Resolution (HS-MCR) [12, 13], Multivariate Curve Resolution-Net Analyte Signal (MCR-NAS) [14, 15, 16]
and FACPACK Kinetic Modeling (FKM) [11, 17]. The different methods favor slightly different solutions to the
factorization problem (1) due to their theoretical basis and implementations. It is shown that the consideration of
reaction rate ambiguities [17] can help to overcome the biasof these methods. Three spectroscopic data sets are
studied in this context: 1. alkaline hydrolysis of dimethylphthalate, 2. partial equilibrium of iridium catalysts and3.
reaction of 3-chlorophenylhydrazonopropane dinitrile with 2-mercaptoethanol.

1.1. Organization of the paper

Section 2 introduces the three MCR methods HS-MCR, MCR-NAS and FKM. A short overview on the theory of
reaction rate ambiguities is given in section 3. The studiedspectroscopic data sets are described in Section 4, followed
by their analysis in Section 5. A conclusion is given in Section 6.

1.2. Notation

All variables and mathematical operators are written in italics. Matrices are denoted by capital letters. Lowercase
letters are used for scalars and vectors.

2. MCR approaches with kinetic modeling

Kinetic modeling in the context of MCR problems is shortly introduced in this section. Three implementations
are presented in the Section 2.1.

The general idea of kinetic modeling for MCR methods is quitesimilar: optimal reaction rate constants are to be
determined under the constraints that the two (almost) nonnegative factorsC andS satisfy Equation (1) and that the
concentration profiles, as described by the columns ofC, are consistent with the kinetic model that is based on the
current reaction rate constants. Next the notion ofconsistencyis explained. To this end, we start with a first-order
kinetic model in terms of the initial value problem

ċ(t) = M(k)c(t), c(t1) = c0. (2)

Therein, the matrixM(k) ∈ R
s×s depends on the vectork ∈ R

q of reaction rate constants. The vectorsc0 represents
the initial concentrations. The initial value problem is solved on the time gridt0, . . . , tm predetermined by the data set.
A column-wise representation of the results in matrix form for ans-component system is given by

Code(k) =

























c1(t1) · · · cs(t1)
...

...

c1(tm) · · · cs(tm)

























∈ Rm×s .

Then the link between the initial value problem (2) and the factorization problem (1) is established by the kinetic fit
error,

‖C −Code(k)‖F . (3)

In the following, we use the relative error term‖C − Code(k)‖F/‖C‖F due to its better mutual comparability of the
results for the different data sets. If the relative error (3) equals 0 or if it is below a small positive threshold value, then
the corresponding factorizationCST is called to be consistent with the kinetic model.
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2.1. MCR methods

On the basis of the introductory part of this section, three MCR methods for solving the factorization problem 1
are introduced:

2.1.1. Hard-soft multivariate curve resolution
MCR-ALS is a very popular iterative curve resolution algorithm. Here the so-called lack-of-fit (lof)

lof = 100
‖E‖F
‖D‖F

is minimized by alternating modifications of the matrices C and S.
Soft-modeling MCR-ALS uses additional constraints as unimodality or selectivity in the optimization process.

Such a regularization can result in chemically meaningful concentration profiles and spectra [18].
Hard-soft multivariate curve resolution (HS-MCR) is a modification of MCR-ALS that implements kinetic models

as a constraint. In each modification step of the factorC, a parameter vectork is determined such that (3) is minimal.
All those columns of the factorC predicted by the model are then replaced byCode(k). The remaining columns are
modified according to the basic MCR-ALS approach. The optimized model parameterskopt (often these are the rate
constants of the kinetic model) are an additional output of this method.

2.1.2. Multivariate curve resolution-net analyte signal (MCR-NAS)
Net analyte signal (NAS) [19, 20] is defined as the part of a mixture spectrum that is directly related to the

concentration of the component of interest and that is orthogonal to the spectra of the other interfering species together
with the background variations. The NAS technique allows usto monitor changes in the concentration of one species
(reactant or product) during the chemical process. Each rowvectordi of D which is the reaction mixture spectrum
at the ith step of a reaction kinetic process is composed of the contributions of all species (namely reactants and
products) plus the contribution from other sources such as inert interferences, drifts and instrumental noise. The role
of NAS calculation is to extract the net contribution of one of the components involved in the reaction at different steps
of the evolutionary process from the recorded spectrum. This would be feasible if the concentration of the species
of interest (e.gCB) was known at all reaction steps. In this case the part of the mixture spectrum that is orthogonal
to the spectral space spanned by interferences is used in a resolving procedure. The part of the spectrum that is not
orthogonal to the spectral space of the other components canbe represented as a linear combination of the spectra of
the other components. Only the orthogonal part is unique to the analyte of interest.

During the MCR-NAS analysis concentration profiles are iteratively calculated using different values of rate con-
stants. The aim of MCR-NAS approach is to find a suitable vector of reaction rate constantsk so thatD−B is completely
free from the contribution of componentB. The matrixD−B is defined as the rank annihilated matrix containing spec-
tral information of all species presented in the reaction system, exceptB. For all values of the rate constants which
are equal to true values the matrixD−B contains information about all sources of variation in dataexceptB. In this
situation, a maximal correlation coefficient between the norm of the NAS vectors (at each time) and the calculated
concentration profiles (CB) by the model equations is obtained. If the process converges, then the final estimate ofk
is the truek [14, 15].

2.1.3. Facpack kinetic modeling (FKM)
FKM is a pure hard-modeling approach [11]. In its basic version a kinetic model is mandatory that describes the

complete reaction system and thus all columns ofC. In a similar way as for the previously presented methods the
minimization of a cost functionf (also called objective function) is used in order to determine chemically meaningful
factorsC andS as well as a model parameter vectork. A distinctive feature is thatf solely depends on the vector
k and not only implicitly on the matricesC andS. Hence the number of the degrees of freedom off , namely the
dimension of the vectork, is significantly smaller than the number of entries ofC andS. Therefore the minimization
of f can be done in a very efficient way.

FKM internally uses the truncated singular value decomposition D ≈ UΣVT , whereinU ∈ Rm×s andV ∈ Rn×s are
orthogonal matrices andΣ ∈ Rs×s is a diagonal matrix. Then an alternative representation for a solution of Equation
(1) is given byC = UΣT+ andS = TVT with a regular matrixT ∈ R

s×s [21]. Here,T+ denotes the pseudoinverse
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of the matrixT. ThusT = T(k) = (Code(k))+UΣ is a matrix that minimizes Equation (3) in a least squares sense.
Summarizing, this makes it possible to calculate the factors

C(k) = UΣ(T(k))+ and S = T(k)VT (4)

only depending on the parametersk, which are then evaluated with the typical constraints for nonnegativity and a low
kinetic fit error

f (k) =
m

∑

i=1

s
∑

j=1

(

min

(

Ci j

maxl (Cl j )
,0

))2

+

n
∑
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s
∑

j=1

(

min

(
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maxl (Sl j )
,0

))2

+

m
∑

i=1

s
∑

j=1













Ci j − (Code(k))i j

maxl (Cl j )













2

.

3. Rate constant ambiguities

A major difficulty in the application of MCR methods is the potential occurrence of bands or continua of solutions
(namely infinitely many solutions) of the factorization problem (1). These solutions may differ considerably. Their
chemical importance can be evaluated and they can mutually be distinguished by adding further constraints to the
problem. Consistency with a kinetic model is a possible and effective constraint. This constraint can be very restrictive.
Sometimes it allows us to reduce the bands of possible solutions to a single, unique solution. However, it has been
shown for first-order kinetic models that often the problem of rotational ambiguity cannot be resolved and has to be
considered in the data analysis [11, 22]. In mathematical terms there are multiple combinations of factorsC,S and
model parametersk, such that

‖D −CST‖F

‖D‖F
→ min,

‖C −Code(k)‖F
‖C‖F

→ min,
‖min(C,0)‖F
‖C‖F

→ min and
‖min(S,0)‖F
‖S‖F

→ min (5)

or similar optimality criteria are fulfilled. In this paper we use the notation for the solution sets that has been
introduced in [17]. For the noise-free case this includes theset of D-consistent parameters

K =
{

k ∈ Rq : D = Code(k)ST for a (not necessarily nonnegative) matrixS ∈ Rn×s
}

and theset of feasible parameters

K+ =
{

k ∈ Rq : D = Code(k)ST for a nonnegative matrixS ∈ Rn×s
}

.

In words, the setK contains all those parameters, for which factorsC and S exist that fulfill the first three
optimality criteria in (5), namely the data reconstructionand the kinetic fit as well as the nonnegativity constraint for
C. It can be seen as an intermediate step in the determination of K+, for which the corresponding factorsS also needs
to be nonnegative. In summary, the setK+ is one way of representing the solution sets of MCR problems under the
constraint of a kinetic model in the noise-free case. The setK+ contains the vectors of feasible reaction rate constants;
the associated pure component factorsC andS can be reconstructed with Equation (4).

All kinds of perturbations, for example noise or baseline errors, have to be considered for the analysis of experi-
mental data. Generalizations of the setsK andK+ are defined by introducing error tolerance valuesε for the kinetic
fit error andθ for the negativity ofS. Then, theset of D-approximate parametersreads

Kε :=

{

k ∈ Rq : rank(T(k)) = s and
‖C(k) −Code(k)‖F
‖C(k)‖F

≤ ε

}

(6)

and theset of feasible D-approximate parametersis given by

K+ε,θ :=

{

k ∈ Kε :
(S(k))i, j

maxl(|(S(k))l, j |)
≥ −θ for all i, j

}

. (7)

Further details on the theory, recommendations on setting the tolerance values and an implementation of the cube
enclosure algorithm for the numerical computation ofK ,K+,Kε andK+

ε,θ
can be found in [17].
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Figure 1: Visualization of the series of spectra for an alkaline hydrolysis of dimethyl phthalate (Data set 1), a formationof a partial equilibrium of
iridium catalysts (Data set 2) and a reaction of 3-chlorophenylhydrazonopropane dinitrile with 2-mercaptoethanol (Data set 3).

4. Data

Three experimental data sets with different underlying reaction mechanisms are investigated here.

Data set 1 (Alkaline hydrolysis of dimethyl phthalate). The first data set contains the spectroscopic monitoring of
a three-component reaction system, namely the alkaline hydrolysis of dimethyl phthalate in the presence of vanillin
as an inert interference [14, 23]. The spectra were obtainedin the wavelength range of 248–308 nm every 20s until
200s and then every 100s until 120min. A total ofm = 81 spectra were recorded atn = 31 wavelengths each. The
corresponding data matrixD ∈ R81×31 is illustrated on the left of Figure 1.

Data set 2 (Formation of a partial equilibrium of iridium catalysts). The equilibrium between HIr(CO)3(PPh3) and
HIr(CO)2(PPh3)2 in the presence of carbon monoxide and triphenylphosphine is analyzed by in-situ FTIR spec-
troscopy [24]. A stopped-flow unit in combination with a rapid-scan monitoring is used in this investigation. Herein,
m = 735 spectra in the time range from 0min to 39.9min are recorded. Each spectrum contains the intensity values
for n = 325 wavenumbers in a range from 1911cm−1 to 2068cm−1. The corresponding data matrixD ∈ R

735×325 is
illustrated in the center of Figure 1.

Data set 3 (Reaction of 3-chlorophenylhydrazonopropane dinitrile with 2-mercaptoethanol). The three-component re-
action of 3-chlorophenylhydrazonopropane dinitrile with2-mercaptoethanol is investigated by UV/Vis spectroscopy.
Hereby 2-mercaptoethanol and the byproduct ethylenesulfide do not contribute to the spectra in the monitored range
from 300nm to 500nm. Full details of the reaction and data acquisition conditions can be found in [25, 26, 10]. The
data has been provided by the Biosystems Data Analysis Groupof the University of Amsterdam [27].

Each data set containsm = 271 spectra in the time range from 0.06min to 45min. The spectra are measured at
n = 201 data channels in the wavelength range from 300nm to 500nm. The corresponding data matrixD ∈ R271×201

is illustrated on the right of Figure 1.

5. Results and discussion

Now, we follow a kinetic study of the three data sets from Section 4 that are shown in Figure 1. For each data set
this includes a comparison of the MCR methods from Section 2 regarding the optimality criteria from Equation (5)
and the determination of the rate constant ambiguity (namely the setK+

ε,θ
). The first data set is used in order to verify

that the three MCR methods yield comparable results if no ambiguities are present. For the remaining two data sets
the rate constant ambiguities are analyzed and are set in relation to the solutions of the three presented MCR methods.

5.1. Alkaline hydrolysis of dimethyl phthalate (Data set 1)

The assumed reaction model reads

X
k1

GGGGGA Y
k2

GGGGGA Z
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Figure 2: Resolved concentration profiles and spectra for Data set 1 by three MCR methods. The results of the three MCR methods are highly
overlapping. A solution ambiguity can not be identified with respect to small tolerances.

with X = dimethyl phthalate,Y = monomethyl phthalate andZ = phthalate as well as initial concentrationsc0 =

(0.0038,0,0)T in mol · L−1. The slow-fast-ambiguity [28] typically associated with this model is not to be found for
the present data. The potential second solution can always be excluded due to its negative spectrum. Thus only a
single solution is determined. The reaction rate constants, that are obtained by the three MCR methods are shown in
Table 1 together with typical error indicators. Only minor differences are found in the calculated values fork1 andk2

Table 1: Optimized reaction rate constants and error indicators for Data set 1 broken down by chemometric methods.

HS-MCR MCR-NAS FKM
k1 in min−1 0.7428 0.7389 0.7382
k2 in min−1 0.0248 0.0255 0.0247

‖D −CST‖F/‖D‖F 0.0084 0.0008 0.0008
‖C −Code(k)‖F/‖C‖F 0.0007 0.0092 0.0082
‖min(C,0)‖F/‖C‖F 0.00002 0.0017 0.0013
‖min(S,0)‖F/‖S‖F 0 0 0

among the three methods. Also the plots of the correspondingfactorsC andS, that are shown in Figure 2, show only
minor deviations. Thus, it can be assumed that the three MCR methods result in equally well solutions.

5.2. Partial equilibrium of iridium catalysts (Data set 2)
The reversible reaction model

X
k1

GGGGGBF GGGGG

k−1

Y (8)

with X = HIr(CO)3(PPh3) andY = HIr(CO)2(PPh3)2 as well as relative initial concentrationsc0 = (1,0)T are used. It
is known from [11] for noise-free cases that the model (8) is not sufficient in order to obtain a unique solution for the
MCR problem. Analogously a similar observation can be made for the Data set 2. The reaction rate constants, that
were obtained by the three MCR methods, are shown in Table 2 together with typical error indicators. Despite some
significant deviations in the values ofk1 andk−1, the corresponding error indicators are on an equally low level. The
correlated factorsC andS are shown in Figure 3 as a black dashed lines. They also highlight the major differences of
the three solutions.
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Table 2: Optimized reaction rate constants and error indicators for Data set 2 broken down by chemometric methods.

HS-MCR MCR-NAS FKM
k1 in s−1 0.0025 0.0020 0.0030
k−1 in s−1 0.0005 0.0009 0.0003

‖D −CST‖F/‖D‖F 0.0104 0.0082 0.0082
‖C −Code(k)‖F/‖C‖F 0.0013 0.0047 0.0046
‖min(C,0)‖F/‖C‖F 0 0.0011 0.0008
‖min(S,0)‖F/‖S‖F 0 0.0282 0.0046
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Figure 3: The factorsC (top) andS (bottom) are plotted for a selection of reaction rate vectorsthat are contained in the set of feasibleD-approximate
parametersK+0.017,0.05 for Data set 2. The black dashed lines are assigned to the resolved concentration and spectra profiles based on the optimal
reaction rate vectorkopt for each technique.

However, the consistency of the three results can be shown bycomputing the setK+
ε,θ

. Here we useε = 0.017
andθ = 0.05. The values were determined according to the recommendations in [17] by evaluating the corresponding
error indicators, see (6) as well as (7), and setting the error tolerances slightly higher. The Cube Enclosure Algorithm
is applied for the approximation ofK+

ε,θ
[17]. The initial cube side length is set toω = (k1 + k−1)/20 ≈ 0.000165

for the reaction rate constants obtained by the FKM method. Using the reaction rate constants of the other two
methods would result in the same approximation. The setK+0.017,0.05 is presented in Figure 4 as a black dashed line.
Furthermore, for each obtained vector of reaction rate constants of the three methods the corresponding setK is
plotted in black. Despite the fact that an analysis by the setK actually presupposes perturbation-free data, it is easy
to see that the three lines are very well aligned withK+

ε,θ
. The setsK extend far beyondK+

ε,θ
, especially for small

k1, because the associated rate constant vectors are assignedto factorizations whose factorsS have negative entries
(beyond the tolerance). The optimized rate constant vectors of HS-MCR (blue), MCR-NAS (red) and FKM (green)
are all contained in the setK+

ε,θ
. This quite abstract information can also be presented in the space of concentration

profiles and spectra, see Figure 3. The calculated solutionsare highlighted by black dashed lines in each column. The
factors that correspond to selected rate constant vectors inK+

ε,θ
are indicated in color. In the plots of the concentration

profiles as well as the plots of the spectra it can be seen that the three obtained MCR solutions differ significantly.
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Figure 4: Reaction rate ambiguities for Data set 2. The colored lines are assigned to the setsK determined by the optimal rate constant vectors of
the different chemometric tools: HS-MCR (blue), MCR-NAS (green) and FKM (red). The solutions of each method are marked by crosses with
the same color coding. The area marked by black dashed line illustrates the set of feasibleD-approximate parametersK+0.017,0.05. On the right a
zoomed section is shown.

Table 3: Optimized reaction rate constants and error indicators for Data set 3 broken down by chemometric method.

HS-MCR MCR-NAS FKM
k1 in min−1 0.2305 0.2182 0.1887
k−1 in min−1 0.0612 0.0757 0.0971
k2 in min−1 0.0383 0.0388 0.0448

‖D −CST‖F/‖D‖F 0.0067 0.0003 0.0003
‖C −Code(k)‖F/‖C‖F 0.0010 0.0035 0.0034
‖min(C,0)‖F/‖C‖F 0 0.00060 0.00056
‖min(S,0)‖F/‖S‖F 0 0.000067 0.000069

For example the peak at 1945cm−1 is present for the HS-MCR and the FKM solution, but vanishes for the MCR-
NAS solution. It is clear that further chemical informationis needed in order to decide which solution is the one
that explains the chemical reaction system in a correct way.The setK+

ε,θ
helps to give an overview of the possible

solutions.

5.3. Reaction of 3-chlorophenylhydrazonopropane dinitrile with
2-mercaptoethanol (Data set 3)

The partially reversible consecutive reaction model

X
k1

GGGGGBF GGGGG

k−1

Y
k2

GGGA Z (9)

is used withX = 3-chlorophenylhydrazonopropane dinitrile,Y = intermediate andZ = 3-chlorophenylhydrazono-
cyanoacetamide as well as initial concentrationsc0 = (5.3 · 10−5,0)T in mol · L−1.

In analogy to Data set 2 the model (9) is not sufficient to obtain a unique solution of the MCR problem. This is
confirmed by the following observation. The reaction rate constants, that were obtained by the three MCR methods,
are shown in Table 3 together with typical error indicators.The correlated factorsC andS are shown as black lines
in Figure 5. Major differences can already be seen by just comparing the results forthe first batch. The other nine
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batch reactions result in equally low error indicators. Allsolutions are shown in the parameter space in Figure 6 as
colored crosses. Furthermore, the three setsK have been computed based on the optimal reaction rate vectors of the
three methods for the first batch. They are shown as colored solid lines. The solutions are spread roughly along the
setsK . The different results among the methods and batches have multiple reasons. On the one hand, the three MCR
methods seem to be biased in a way that the solutions shown in the parameter space form clusters, see the left plot
of Figure 6. On the other hand, the solutions within such a cluster show deviations, which are most likely caused by
deviations in the execution of the batch experiments.

The consistency of the calculated solutions is shown with the help of the setK+
ε,θ

. Therefore the set is approximated
with the Cube Enclosure Algorithm forε = 0.015 andθ = 0.015. An approximation ofK+

ε,θ
is presented as a gray

volume in the right of Figure 6. It contains 28 of the 30 computed solutions. The two outliers belong to the FKM
method and are located slightly outside the approximation of K+

ε,θ
. The factorsC andS assigned to these two solutions

result in error indicators that are larger than the chosen tolerance values. Increasing these values or neglecting the
corresponding batches would be a possible approach.

Again the abstract information of the setK+
ε,θ

can be illustrated in the space of factorsC andS, see the colored
lines in Figure 5. While all concentration profiles are affected by the remaining ambiguity of the MCR problem, it is
revealed that the characteristic peaks in the possible purecomponent spectra of the first and third species are nearly
uniquely determined. The possible spectra of the second species shows some deviations, but the maxima of the peaks
are located in a very small wavelength range around 400nm.

To conclude, the assignment of the species to the obtained spectra can be done with a great certainty. However, a
quantification of the species is not possible in a reliable way without further information.
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Figure 5: The factorsC (top) andS (bottom) are plotted for a selection of reaction rate vectorsthat are contained in the set of feasibleD-approximate
parametersK+0.015,0.015 for Data set 3. The black lines represent the resolved concentration and spectra profiles based on the optimal reaction rate
vectorkopt for each technique. The detailed assignment is given in the legend.

6. Summary and conclusion

Three MCR tools for the extraction of pure component information and optimized reaction rate constants of a
given kinetic model have been compared. As part of a kinetic study, they have been applied to three spectroscopic
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right plot the set of feasibleD-approximate parametersK+0.015,0.015 is indicated by the gray volume. It is a tube-like structure that extends around
the setsK . It contains all determined solutions except for two outliers.

data sets. Despite comparable low residuals of the data and model fit, significant differences of the reaction rate values
occur in two of the three studied cases. This is caused by the different chemometric approaches of the tools and the
intrinsic ambiguities that are correlated to the chosen kinetic models. However, the analysis by the set of feasibleD-
approximate parameters has shown the consistency of the results. Hence we conclude, that the analysis of parameter
ambiguities should be appended to a “classical” MCR analyses in order to reveal possible uncertainties.

The comparison of the three MCR tools has yield the followingresults: The computation time for HS-MCR are
relatively large since the method uses various constraintsand all components must be considered in the optimization
process. However, the resulting deviation from nonnegativity in C and S is the lowest. MCR-NAS is based on
extracting the net contribution of only one component of interest from the mixture of known and unknown species.
Hence it can be applied to more complex and rank deficient systems as well. FKM is a pure hard-modeling approach.
The target function in FKM solely depends on the vectork and not on the matricesC andS. Thus the number of the
degrees of freedom, that is the dimension of the vectork, is significantly smaller than the number of matrix entries of
C andS. This makes a very efficient computational minimization of cost function possible.

Finally, the existence of solution ambiguities is a problemin MCR-based methods even under the regularization
of a kinetic model. However, it is shown here that these ambiguities are computable. The results can be visualized in
an abstract form asK+

ε,θ
and in an easy-to-interpret form as band plots. Hence valuable information can be extracted

even for data sets, that are affected by this solution ambiguity. Often only some of the peaks of a species spectrum
are affected by such ambiguities and sometimes single species aren’t affected at all. Thus this information can be
considered as reliable even if there is a solution ambiguity.

Perspectively further constraints can be applied to the setK+
ε,θ

in the case that the interesting species are heavily
affected by the ambiguity. This results in a reduction ofK+

ε,θ
to a subset which is consistent with the chosen constraints

e.g smoothness or unimodality.
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