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Abstract

Rank-deficiency of a spectral data matrix means that its rank is smaller than the number of the anticipated chemical
components. A rank-deficiency can hide the true chemical structure of the underlying pure components and compli-
cates the application of multivariate curve resolution and self-modeling curve resolution techniques. A new approach
for the analysis of the factor ambiguities is introduced and the Area of Feasible Solutions (AFS) is generalized to
rank-deficient spectral data. The extended tools are tested for the Michaelis-Menten kinetics and abstract model data.
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1. Introduction

An elementary example for the “loss of information” in bilinear matrix modeling is the product
(
0 1
0 0

) (
0 1
0 0

)
=

(
0 0
0 0

)

with the rank 0 whereas the factors have the ranks 1. The general law

rank(AB) ≤ min(rank(A), rank(B))

for all matrices A and B (so that AB exists) says that matrix multiplication can delete rank - and, in fact, it does in the
example above.1 This leads us to the following problem.

Question: Assume the nonnegative matrices A or B to have a larger rank than AB and let only AB be

given. How much information on the possible matrix factors A and B can be recovered from AB?

This paper aims at giving an answer. The background of the question is the chemometric curve resolution problem
to find for a given nonnegative matrix D the possible nonnegative factors C and S T so that

D = CS T . (1)

Then D represents given spectral mixture data. We are interested in the underlying concentration profiles in time
of the pure components (forming the columns of C) and the associated pure component spectra (columns of S ), see
[24, 23]. Equation (1) is the Lambert-Beer law in its time and frequency dependent form. Here we assume that the
components of all matrices are nonnegative even though the acceptance of small negative components can be useful
for noisy or biased data [37].

1We would like to point out that this example has no chemical background, but may serve to caricature in a compact, mathematical form the
core phenomenon behind rank-deficient chemical systems and its underlying linear dependencies.
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The main hurdle of the recovery problem is the intrinsic ambiguity of the factorization problem: Not only one
factorization exists, but a continuum or even continua of possible factors C and S . Multivariate curve resolution meth-
ods (MCR) filter out a single solution whereas self-modeling curve resolution (SMCR) techniques in dependence of
the underlying model have the potential to make any feasible solution accessible. The problem of multiple solutions
is well-known under the keyword of rotational ambiguity [25, 23, 2]. More precisely it should be called a transfor-
mation ambiguity since the related matrices are in no way only orthogonal rotation matrices but general invertible
matrices. The entire set of all possible profiles can be represented by the so-called Area of Feasible Solutions (AFS),
see e.g. [7, 31, 35, 14, 36]. The AFS has been established as a powerful instrument to represent the bands of all
possible spectra and concentration profiles that can appear in the factorization (1).

In this work we suggest a generalization of the AFS for rank-deficient spectral data. If D suffers from rank-
deficiency, then at least one of the factors C and S is not of full rank and vice versa, see [4, 19, 33, 12, 9] among
others. The fundamental paper of Amrhein et al. [4] systematically describes and analyzes various reaction schemes
including a rank deficiency. It discusses data augmentation techniques in the context of experimental planning in
order to avoid the annoying influence of rank deficiencies. The analysis of Amrhein and coauthors is of a significant
mathematical nature, but also includes practical guidelines for data pretreatment. In contrast to this work, our focus is
on the impact of rank deficiency on the factor ambiguity.

Rank-deficiency complicates the pure component factorization and can result in chemically meaningless matrix
factors. Here we distinguish the following two situations:

1. For the given spectral data matrix D with the rank s there is no nonnegative so-called rank or full-rank factoriza-

tion [41]. In other words, there are no nonnegative matrices C and S of rank s so that (1) holds.
2. For the given spectral data matrix D with the rank s nonnegative full-rank factorizations exist, but none of the

factors has a meaningful chemical interpretation. Only if one of the factors C and S is allowed to have at least
s + 1 columns, then chemically interpretable factors can be determined.

Here we focus on the first case, which automatically alarms the user since an empty AFS is a clear indicator that the
chemometric analysis has not been successful. The second case, which is to be treated in a forthcoming publication,
is somewhat harder since increasing the rank in order to attain interpretable factors is a more complex procedure.
However, even the first case contains a rich structure that is analyzed here.

It is a known fact [4] that rank-deficiency can be observed if the number of independent reactions is smaller than
the number of absorbing species. The simple kinetic X + Y → Z serves to explain this. The concentration factor
satisfies rank(C) = 2 (closure constraint) and if the spectra are complicated enough (no linear dependence), then
rank(S ) = 3 holds. Then D = CS T has the rank 2 and is a rank-deficient matrix; see the second case above.

This paper includes a general definition of the AFS that embraces rank-deficient and non-rank-deficient problems.
We call the latter problems rank-regular. Here the analysis focuses on rank-deficient problems. In contrast to rank-
regular problems we cannot continue to use a truncated singular value decomposition (SVD) of D for a simultaneous
reconstruction of C and S . Certain fundamental changes are required for the computational procedure. A further
difference to rank-regular problems is that the AFS can only be computed for the factor that causes the rank-deficiency
and not for the dual factor.

The paper is organized as follows: In Sec. 2 the MCR problem and the AFS are reviewed for the (classical)
rank-regular problems. Then Sec. 3 explains the mathematical challenges of rank-deficient problems and introduces
the generalized AFS for these problems. The underlying analysis is presented in Sec. 4. A numerical approximation
method is introduced in Sec. 5. Numerical results are discussed for the Michaelis-Menten kinetics and abstract model
data in Secs. 6 and 7.

2. The MCR problem and the AFS for rank-regular data

Let D be a k × n-matrix containing k spectra in its rows. Each spectrum is recorded at n frequency channels. The
MCR problem is to find the possible nonnegative factors C and S according to (1). If s = rank(D), then rank-regularity
of the data implies that C ∈ R

k×s and S ∈ R
n×s with D = CS T . A possible approach to find proper C and S is to

compute a truncated singular value decomposition D = UΣVT and then to form

C = UΣT−1, S T = TVT (2)
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with those regular matrices T ∈ R
s×s that result in nonnegative C and S . See, e.g., [22, 25, 23] for more details on

MCR techniques and the SVD-based construction of C and S .
Typically, many regular T exist with C, S ≥ 0. Such solutions (C, S ) can be expressed in terms of bands of possible

spectra and bands of concentration profiles. The AFS pursues the concept to represent in a low-dimensional way all
profiles that can be part of a nonnegative factorization of D. See the references [22, 7, 31, 15, 37, 39, 14, 35, 36, 27]
and many others. Without loss of generality T can be assumed to be of the form

T =

(
1 xT

1 W

)
(3)

with 1 = (1, . . . , 1)T ∈ Rs−1 and W ∈ R(s−1)×(s−1). The vector x ∈ Rs−1 is called feasible if it can be supplemented by a
proper W in (3) so that T is a regular matrix and C = UΣT−1 ≥ 0 as well as S T = TVT ≥ 0. Then the AFS is defined
as

M =
{
x ∈ Rs−1 : exists W ∈ R(s−1)×(s−1) in (3) with rank(T ) = s and C, S ≥ 0

}
. (4)

The AFS has a strong underlying geometric theory, see for instance [7, 31, 20, 36]. Decisive elements of this
theory are the superset of the AFS (called outer polygon or FIRPOL) F =

{
x ∈ Rs−1 : (1, xT )VT ≥ 0

}
as well as its

subset I = convhull({a1, . . . , ak}) with the vectors ai ∈ Rs−1 given by

ai =
(UΣ)T (2 : s, i)

(UΣ)T (1, i)
, i = 1, . . . , k. (5)

The two sets F and I are polyhedra and polygons for s = 3 in the two-dimensional AFS-plane. With these polyhedra
a (feasible) nonnegative matrix factorization of D can be represented by a simplex contained in F and which includes
I and vice versa [7, 31, 20]. Geometrically these relations can be expressed in a way that x is feasible if and only if
x ∈ F and further s − 1 vectors y1, . . . , ys−1 ∈ F exist so that the simplex with the vertices x, y1, . . . , ys−1 encloses I.

The computation of the AFS is a challenging task even for small dimensions. Computational methods are known
for systems with two, three and four components, namely by geometric construction [22, 7, 31, 20, 36], numerical
optimization-based approximations [42, 1, 15, 16, 37, 39] as well as a hybrid algorithm [36, 38].

3. Rank-deficient problems and its AFS

An MCR-problem suffers from a rank-deficiency if at least one of the chemically true factors C and S has a rank
which is smaller than the number of underlying species. A rank-deficiency can be known a priori, e.g., if for a given
kinetic the number of independent reactions is smaller than the number of reacting species. Not only C, but also the
factor S can cause a rank-deficiency [33]. If the rank-deficiency is not known in advance, then it can be detected if no
or no chemically interpretable factorization D = CS T with nonnegative factors C ∈ Rk×s and S ∈ Rn×s exists. Rank
deficiency can often be avoided by data augmentation. Amrhein et al. [4] discuss such techniques under the keyword
of rank augmentation, which can be gained by multiple process runs or the addition of absorbing components in
the course of the chemical reaction. Nevertheless, these authors point out that rank deficiency must be expected “in
many practical reaction networks”. Hence techniques for rank deficient or nearly rank deficient systems appear to
be necessary whenever it is too costly or even impossible to change the experimental design or to re-run the reaction
under different conditions.

3.1. Rank-deficiency and the nonnegative rank of a matrix

An important characteristic number in the context of rank-deficient problems is the nonnegative rank of a matrix
[17, 8, 13]. The notion of the nonnegative rank is the basis for several theorems on the existence or non-existence of
nonnegative matrix factorizations [41, 8].

Definition 3.1 (Nonnegative rank). Let D ∈ Rk×n be a nonnegative matrix. The nonnegative rank m := rank+(D) of D

is the least integer m ∈ N so that nonnegative matrices C ∈ Rk×m and S ∈ Rn×m exist with D = CS T .
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According to Def. 3.1 a matrix D has a rank-deficiency if its rank is smaller than its nonnegative rank, namely
rank(D) < rank+(D). Known facts, see [8], are that rank(D) ≤ rank+(D) ≤ min(k, n) and rank+(D) = rank(D) for any
matrix D with the rank s = 2. Thus s = 3 is the smallest rank of D for which D can be rank-deficient and k = n = 4
would be the associated smallest dimension. In [41] Thomas has provided the example

D =



1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1


∈ R4×4 (6)

with the rank 3, but for which no factors C, S ∈ R4×3
+ exist with D = CS T .

Remark 3.2. These mathematical properties from [8] have interesting implications (not only) for the simple reaction

X + Y → Z. The associated spectral mixture data matrix D has the rank 2. The mathematical theory predicts the

existence of a nonnegative factorization of D with factors of the rank 2. However, these factors cannot represent the

true chemical solution as they cannot separate the contributions from X and Y. In other words, the AFS is not empty

but does not contain the chemically correct solution. Such a solution can be gained if the spectral factor is allowed to

have the rank 3.

Def. 3.1 motivates to consider the following general factorization problem in idealized, namely noise-free form.

Definition 3.3. Let D ∈ R
k×n be a nonnegative matrix with s = rank(D) and m = rank+(D) ≥ s. The generalized

nonnegative matrix factorization problem for D is to determine nonnegative factors C ∈ R
k×m and S ∈ R

n×m with

D = CS T .

Definition 3.3 includes rank-regular problems as m = s is possible. The generalized factorization problem with
m > s includes the difficulty that it is not possible to compute the two factors C and S simultaneously by means of a
truncated SVD as in (2). Instead, it is only possible to compute the factor that causing the rank-deficiency. Only this
factor with the rank s can be represented by the associated basis of the s singular vectors belonging to the s nonzero
singular values. For the representation of the other factor with rank m > s only s singular vectors are available.
The remaining m − s singular vectors are missing and are completely undetermined (aside from their orthogonality
to the given s singular vectors). However, nonnegative least squares techniques (namely least squares approaches
under nonnegativity constraints, NNLS) or geometric arguments can be useful to compute at least one factorization.
However, no approach is available to compute the set of all nonnegative factorizations. Furthermore, if in practical
computations a rank-deficiency is detected due to non-interpretable factors, then it is not clear in advance which of
the two factors C and S has caused the rank-deficiency.

3.2. The AFS for rank-deficient problems

The AFS for rank-regular problems is briefly introduced in Sec. 2. Next an extension is suggested for rank-
deficient problems. The basic idea remains the same, but for the construction of the factors C and S the number of
required species m = max(rank(C), rank(S )) is larger than the rank s of D.

For ease of representation we assume for the rest of this section and in Sec. 4 that the rank-deficiency is caused by
the factor S . This assumption does not restrict the generality of the approach as the procedure can then be applied to
DT = S CT . According to the definition 3.3 the aim is to compute the set of all possible spectral profiles, namely all
possible first columns of the spectral factor S , that can be extended to a nonnegative pure component decomposition.
This set of feasible spectral profiles reads (where R+ is the set of the real nonnegative numbers)

S =
{
a ∈ Rn : exist C ∈ Rk×m

+ , S ∈ Rn×m
+ with S (:, 1) = a, rank(S ) = s and D = CS T

}
(7)

with m = rank+(D) being the number of components.
Once again, a low-dimensional representation of the elements ofS is possible by using the s expansion coefficients

with respect to the basis of the s right singular vectors. And again, the factor C cannot be constructed only from the
first s left singular vectors, since m = rank(C) > rank(D) = s. Thus the factor C has to be treated as a free variable.
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In this respect, the AFS for rank-deficient problems is basically different from the AFS for rank-regular problems. In
mathematical terms the generalized AFS for the spectral factor reads

N =
{
x ∈ Rs−1 : exist C ∈ Rk×m

+ , T ∈ Rm×s with T (1, :) = (1, xT ), TVT ≥ 0 and D = CTVT
}
. (8)

This definition of the generalized AFS uses the normalization that the expansion coefficient of the first right singular
vector always equals 1, cf. [30] on a study of Borgen norms in SMCR. The definitions of the two polyhedra F and I,
see Sec. 2, remain unchanged and by the nonnegativity constraint on N it holds that N ⊂ F . For completeness, the
AFS for a rank-deficiency in C reads

NC =
{
y ∈ Rs−1 : exist S ∈ Rn×m

+ , T ∈ Rs×m with T (:, 1)T = (1, yT ), UΣT ≥ 0 and D = UΣTS T
}
.

Remark 3.4. Formally, a rank-deficient problem can result in the two generalized AFS-sets N and NC . But only

the AFS-set of the deficiency-causal factor represents meaningful profiles. If it is not known in advance which of the

factors causes the deficiency, e.g., by a given kinetic model, then both generalized AFS-sets can be computed and

chemical expertise can help to determine the deficiency-causal factor and the chemical meaningless profiles.

4. Properties of the AFS for rank-deficient problems

Many of the properties of the AFS for rank-deficient problems can be shown by slight modifications of the proofs
for rank-regular problems. An ingredient of the following analysis is the irreducibility of the matrix DT D, see, e.g.,
[26]. In a simplified way this means that the chemical reaction system does not consist of (at least) two independent
reaction subsystems with completely non-overlapping spectra. Otherwise, the measured data could be separated
according to the subsystems. Then the chemometric analysis could be applied to each of the subsystems. Practically,
the analytical chemist can visually recognize independent subsystems from non-overlapping (groups of) signals. An
example is discussed in [28].

4.1. Boundedness ofN
The boundedness of the AFS is a necessary prerequisite for the use of numerical approximation routines for

its computation. The crucial point is that an unlimited set and its unlimited boundary cannot be approximated by
algorithms as grid search [42], triangle enclosure [15] or polygon inflation [37, 39]. For rank-regular problems the
boundedness of the AFS is a simple, easy-to-prove property [39, 40]. This is equally valid for rank-deficient problems.

Remark 4.1. Let D ∈ Rk×n be a nonnegative matrix of the rank s and without zero-columns. If DT D is an irreducible

matrix, then the generalized AFSN is a bounded set as it is a subset of the bounded polyhedron F . The boundedness

of F is shown in Thm. 2.4 of [39].

4.2. Geometric construction – feasible polytopes instead of feasible simplices

The geometric argument for classifying a vector x as feasible or non-feasible for rank-regular problems is well
known [7, 31, 20, 36]. An x ∈ R

s−1 is feasible if and only if x ∈ F and further s − 1 vectors y1, . . . , ys−1 can be
found in F so that the simplex with the vertices x, y1, . . . , ys−1 encloses I. A similar geometric criterion for feasibility
can be formulated for rank-deficient problems. This criterion uses polytopes with m vertices instead of simplices
with s vertices. Then m − 1 additional points in the AFS are to be determined in F instead of the smaller number of
s − 1 points. For example, a matrix D with rank(D) = 3 and rank+(D) = 4 uses quadrangles for the geometric AFS
construction instead of triangles. This is illustrated later by certain examples where no triangles exists with all of its
vertices in F and that also include I. However, quadrangles with these properties exist. The next theorem proves
such a general polytope property.

Theorem 4.2. Let D ∈ R
k×n be a nonnegative matrix without an all-zero row and let DT D as well as DDT be

irreducible matrices. Let s = rank(D), m = rank+(D) and UΣVT be an SVD of D with V(:, 1) > 0. A vector x ∈ Rs−1

is feasible if and only if further m − 1 vectors y1, . . . , ym−1 ∈ R
s−1 exist so that the polytope with the m vertices

x, y1, . . . , ym−1 is contained in F and also encloses I.
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Figure 1: The AFS-sets and geometric constructions of nonnegative matrix factorizations for D(z) according to Example 4.3 for z = 0.75 (left)
and z = 0.4 (center, right). Left: If z = 0.75, then D is a rank-regular matrix (rank(D(0.75)) = rank+(D(0.75)) = 3). The AFS M (gray) is not
empty. One feasible triangle is presented that is in F (dashed black line) and encloses I (dash-dotted line). Center: If z = 0.4, then D suffers
from a rank-deficiency (rank(D(0.75)) = 3 < rank+(D(0.75)) = 4). Thus the AFSM is empty. No triangle exists which is contained in F and which
encloses I. Right: The generalized AFS N (gray) is computed. Additionally a certain feasible quadrangle is presented that is contained in F and
that encloses I.

The proof in given in Appendix A. Next we illustrate Thm. 4.2 by a parameter-dependent model problem, for
which parameter changes allow us to switch between rank-regularity to rank-deficiency. See Sec. 7 for the mathemat-
ical analysis of the problem and [43, 5] for the theoretical background on polytopes and convexity.

Example 4.3. Let z ≥ 0 and

D(z) =



1 + z 1 + z z z

1 + z z 1 + z z

z 1 + z z 1 + z

z z 1 + z 1 + z


. (9)

It holds that rank(D(z)) = 3 for any z ≥ 0. Furthermore, rank+(D(z)) = 4 for z < 1/
√

2 ≈ 0.707 and rank+(D(z)) = 3
for z ≥ 1/

√
2, see Sec. 7. So for z < 1/

√
2 no triangle can be found with vertices in F that also encloses I. However

quadrangles with these properties exist. The AFSM for D(0.75) and the AFSN for D(0.4) are presented in Fig. 1.

4.3. The minimal number of vertices of a feasible polytope equals the nonnegative rank

Thm. 4.2 generalizes the geometric characterization of the feasibility of a point x from rank-regular to rank-
deficient problems. Therein the nonnegative rank m of D is a crucial quantity. The following theorem shows that the
nonnegative rank m is the minimal number of vertices of any polytope that is contained in F and that encloses I;
cf. [10, 11].

Theorem 4.4. Let the assumptions of Thm. 4.2 on D be fulfilled and let CS T be an arbitrary nonnegative matrix

factorization of D with S (:, i)T V(:, 1) = 1 for all i. (This means that the columns of S are scaled in a way that the

first column of T = S T V is the all-ones vector.) Furthermore let yT
i−1 = S (:, i)T V(:, 2 : s) ∈ R

s−1 for i = 1, . . . ,m.

Then none of the vectors can be skipped, that is no index ℓ exists such that yℓ is a convex combination of the m − 1
vectors y0, . . . , yℓ−1, yiℓ+1, . . . , ym−1. (For ease of the proof representation we start the enumeration of the vectors with

the index 0.)

The proof in given in Appendix A.

4.4. The origin is never contained in the generalized AFS

It is a known fact that the origin, namely the all-zero vector, is never contained in the AFS if some mild assumptions
on D hold [39]. This property is still valid for the generalized AFS N .
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Theorem 4.5. On the assumptions on D as made by Thm. 4.2 the origin (0, . . . , 0)T ∈ Rs−1 is not an element ofN but

is contained in F .

Proof. Let 0 = (0, . . . , 0)T ∈ R
s−1 be the origin. It belongs to F since (1, 0T )VT = V(:, 1) ≥ 0. Next we show that

0 < N . Let αi = U2
i1 for i = 1, . . . , k so that

∑k
i=1 αi = 1 since the singular vectors have the Euclidean norm 1. Thus∑k

i=1 αiai is a convex combination of the vertices of I by (5) for which we get

k∑

i=1

αiai =

k∑

i=1

U2
i1

(UΣ)T (2 : s, i)
(UΣ)T (1, i)

=

k∑

i=1

U2
i1

(ΣUT )(2 : s, i)
Ui1σ1

=
1
σ1

k∑

i=1

(ΣUT )(2 : s, i)Ui1 =
1
σ1
Σ(2 : s, :) UT U(:, 1)︸     ︷︷     ︸

=e1

= 0.

Hence the origin is a convex combination of the vertices of I. As the first left singular vector U(:, 1) is componentwise
positive (due to the irreducibility of DDT ) we get αi > 0 for all i. Thus 0 is a vector in the interior of I and can never
be an element ofN (since at most elements from the boundary of I can be contained inN according to Thm. 4.2).

The properties of the generalized AFS, as proved in Thms. 4.4 and 4.5, underline the key importance of the notion
of the nonnegative rank with the definition of m = rank+(D) in (8). Otherwise the geometric AFS construction for
rank-regular problems could not be extended to the generalized AFS for rank-deficient problems.

5. Computation of the AFS for rank-deficient problems

A new routine for the numerical computation of N is required. To this end we adapt the polygon inflation proce-
dure and its algorithmic variant the inverse polygon inflation procedure [37, 39]. The idea to approximate the AFS-sets
by adaptively refined, inflating polygons remains valid. What needs to be modified for rank-deficient problems is the
objective function that checks the feasibility of points x ∈ R

s−1. The new objective function works for the general
case rank+(D) ≥ rank(D).

5.1. The modified objective function

The feasibility check in the program code is based on a numerical optimization of an objective function. For rank-
regular problems a nonlinear least squares problem is to be solved that includes various penalty terms. The degrees
of freedom of this optimization are the matrix elements of T by (3). However, as (2) does not allow to represent both
nonnegative factors we have to apply a different objective function for rank-deficient problems. Instead of expanding
C with respect to the left singular vectors, we use the geometric arguments or a NonNegative Least Squares (NNLS)
solver.

The feasibility check for x is subdivided into two steps. First the rapid and computationally cheap test V(1, xT )T ≥
0 is performed in order to decide whether x ∈ F or x < F . If x is in F , then a second, more expensive second
test is applied. We suggest the following two approaches: First, the geometric construction principles can be applied
directly. Then an optimization is performed that tries to extend x by m − 1 additional points in F so that the resulting
polygon includes I. If such vertices exist, then x is feasible. Otherwise x is not feasible. Alternatively, one can run
the optimization with an NNLS-algorithm. Then the optimization aims at computing the factor S (depending on the
variables y1, . . . , ym−1 ∈ Rs−1) and the associated factor C is computed row-wise by the NNLS-solver as

C( j, :) = arg min
c∈R1×m

+

∥∥∥cS T − D( j, :)
∥∥∥2

2
, j = 1, . . . , k. (10)

Possible NNLS-solvers are suggested in [21, 6, 32]. Rank deficiency of S does not raise a specific problem for the
NNLS solver. The aim is to compute a nonnegative solution vector C( j, :). Any non-uniqueness due to vectors from
the null space of S does not interfere with the approach. A vector x is feasible if and only if C, S ≥ 0 and D = CS T .
The numerical computations of this publication follow this approach and use the NNLS solver by [21].

The computational costs for the NNLS-based AFS computation are much higher than AFS computations for rank-
regular problems. The main reason for this is that the factor C can no longer be computed directly from T as in (2),
but necessitates the solution of a least squares problem under nonnegativity constraints.
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5.2. The objective function for noisy data

Several approaches have already been published for a stable AFS-computation of rank-regular problems in the
presence of noise. Next we suggest an extension to rank-deficient problems in order to deal with small negative
entries. Small negative entries are often a problem if noisy, biased or background-subtracted data is considered. Here
we accept small negative entries of C and S if their relative sizes are bounded from below as follows

C(:, ℓ)
max

i=1,...,k
|C(i, ℓ)| ≥ −ε,

S (:, ℓ)
max

i=1,...,n
|S (i, ℓ)| ≥ −ε for ℓ = 1, . . . , s (11)

with a small control parameter ε ≥ 0.
The handling of small negative entries is relatively easy for the construction of F but by no means obvious for I.

For the construction of I the duality principles [18, 29, 34] can help. First the outer boundaries of F are computed
for the factor C and also for the factor S . Small negative entries are accepted according to (11). This is only done for
ℓ = 1 and without considering dual interactions. Then the inner polygons I for C and S are computed by duality as
explained in [36, 38]. On the basis of these modified polygons the objective function can be evaluated. See [38] for
more details on this approach.

The NNLS-based AFS computation needs an additional control parameter ε f . The reason is that the factor C

resulting from (10) is strictly nonnegative so that a componentwise vanishing residual D − CS T cannot always be
achieved. Hence we let x pass the feasibility check if S satisfies (11) and ‖D − CS T ‖ ≤ ε f . We suggest to use
ε f ∈ [10−8, 10−3] and ε ≤ 0.02 as proper values.

5.3. How polygon inflation is used

The polygon inflation algorithm [37] and inverse polygon inflation [39] are adaptive AFS-computation methods for
three-component systems. The idea is to approximate the boundary of the AFS, respectively the boundaries of all of
its subsets, by series of inflating polygons. The (direct) polygon inflation method has been designed for an application
to AFS-sets that consist of three clearly separated subsets. The algorithmic variant of inverse polygon inflation has
been developed for a stable computation of AFS-sets that consist of either only one topologically connected subset
(then necessarily with a hole around the origin) or for AFS-sets whose subsets are not clearly separated. However,
inverse polygon inflation is also capable to treat the case of an AFS with three clearly separated segments, even though
at somewhat higher computational costs.

For rank-deficient problems (inverse) polygon inflation uses the feasibility check as described in Sec. 5.1. The
general idea of an adaptive polygon inflation remains unchanged, namely the boundary of each subset is approxi-
mated from its interior by inflating polygons. For each subset an inner point (computed from a nonnegative matrix
factorization) is used to compute a starting triangle which is then recursively refined by subdividing the edges. The
refinement process is stopped if a certain final accuracy has been reached. The inverse polygon inflation algorithm
computes two super-sets of the AFSN and then computes their intersection, see [39] for the details on a rank-regular
problem. Minor changes are necessary for rank-deficient problems.

6. Numerical results for a Michaelis-Menten model reaction

We consider the Michaelis-Menten kinetic

K + S
κ1−−⇀↽−−
κ−1

[K-S ]
κ2−→ K + P

with four reacting species but only three independent reactions. Thus the rank-loss occurs in the factor C and only
for this factor the AFS can be computed. The true profiles of the factor C are determined by the Michalis-Menten
model whose parameters are taken as κ1 = 30, κ−1 = 0.1 and κ2 = 3. The initial concentration values are cS (0) = 1,
cK(0) = 0.1 and c[K-S ](0) = cP(0) = 0. A number of k = 101 nodes are selected in the time interval [0, 7.5]. As
the concentration values of S and K-S change rapidly in t ∈ [0, 0.25], this sub-interval gets a finer discretization

8



0 2 4 6
0

0.2

0.4

0.6

0.8

1

t

Concentration profiles

20 40 60 80 100
0

2

4

6

8

10

ν

Pure component spectra

5

20 40 60 080

0.5

100

1

ν
t

Mixed spectra

Figure 2: Spectra and concentration profiles for the model problem introduced in Sec. 6. The pure component profiles (left, center) and the mixed
spectra (right, only a few spectra are plotted for a better readability). For the original factors it holds that rank(C) = 3 and rank(S ) = 4. The spectral
mixture data suffers from a rank-deficiency since rank(D) = 3 but rank+(D) = 4.

with 51 equidistant nodes. The remaining, much longer interval is equidistantly discretized with 50 nodes. The pure
component spectra are built from the shifted Gaussians

s1(ν) = exp
(
− (ν − 20)2

200

)
+ 0.075, s2(ν) = 10 exp

(
− (ν − 40)2

200

)
+ 0.075,

s3(ν) = 10 exp
(
− (ν − 60)2

200

)
+ 0.065, s4(ν) = exp

(
− (ν − 80)2

100

)
+ 0.065.

The spectra are evaluated for ν ∈ [1, 100] by using n = 100 equidistant nodes. From C ∈ R
101×4 and S ∈ R

100×4

we get D = CS T ∈ R
101×100. Numerical calculations show that s = rank(D) = 3, but m = rank(S ) = rank+(D) = 4

which confirms the rank-deficiency. The profiles underlying C and S as well as the time-series of the mixture spectra
forming the rows of D are shown in Fig. 2.

No nonnegative factors C ∈ R
101×3 and S ∈ R

100×3 with D = CS T exist since rank+(D) = 4. Therefore the
classical AFS (for rank-regular problems) is empty. Due to Theorem 4.4 no triangles exist in FC that enclose IC , see
the left plot of Fig. 3. Assuming the Michalis-Menten model we know that C is responsible for the rank deficiency.
Thus we compute the generalized AFS for the concentration factor, cf. Rem. 3.4. Only the factor C can be computed
as a linear combination of the first three singular vectors since the rank-deficiency is caused by C. The AFS NC is
computed for m = rank+(D) = 4. Then the polygon inflation algorithm on the basis of feasible quadrangles is applied.
This algorithm uses the modified objective function as introduced in Sec. 5 for the computation of NC . The AFS
consists of four isolated subsets and is shown in Fig. 3. Finally, the associated bands of feasible profiles of the factor
C are computed for each of the AFS-subsets. Some of these profiles are plotted in Fig. 4. We use a low profile density
in order to prevent the bands from covering the internal structure of the individual profiles.

7. Rank-deficiency analysis for the model matrix

Example 4.3 generalizes the classical 4 × 4 example matrix (6) as suggested by Thomas in 1974, see [41, 8]. This
matrix shows a rank-deficiency for the smallest possible dimension. We add to this matrix a z-multiple of the all-ones
4 × 4 matrix and get the parameter-dependent matrix D(z) given in Eq. (9). We consider only parameters z ≥ 0. The
value z = 0 reduces (9) to (6). The singular values of D(z) are σ1 = 2 + 4z, σ2 = σ3 =

√
2 and σ4 = 0 so that its rank

equals s = 3 irrespective of z. As the singular value
√

2 has the multiplicity 2, the orientation of the AFS involves a
certain non-uniqueness. In other words, a different SVD can result in a rotated AFS; nevertheless the sets of feasible
profiles remain to be the same, cf. S by (7). The nonnegative rank of D(z) can be tuned by z. Next we show that D(z)

is rank-regular for z ≥ 1/
√

2 and rank-deficient for 0 ≤ z < 1/
√

2.
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Figure 3: The AFS for the Michaelis-Menten model problem as introduced in Sec. 6 with s = 3 and m = 4. Left: The set FC is marked by a
dashed line and IC by a dash-dotted line. No triangle with vertices in FC exists which encloses IC (the plotted triangle is not feasible). Hence D

suffers from a rank-deficiency, see Thm. 4.2. Right: the AFS NC with m = 4. The AFS consists of four isolated subsets. Instead of triangles (as
used for Borgen plots) quadrangles are necessary for a low-dimensional construction of a complete factor C. The correct solution according to the
Michaelis-Menten kinetics is added as a quadrangle (solid black lines).
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Figure 4: Feasible profiles of the factor C according to the Michaelis-Menten kinetic, see Sec. 6, with the chemical species S , K, [K-S ] and P. The
associated generalized AFS is plotted right in Fig. 3. The four black lines are the true concentration profiles according to the Michaelis-Menten
kinetic with the kinetic parameters as specified in Sec. 6.

7.1. Rank-regularity for z ≥ 1/
√

2
For z ≥

√
2 it holds that rank+(D(z)) = 3. This can easily be proved by specifying the following nonnegative

factors C, S ∈ R4×3 (among others)

C(z) =
1

2 + 2z



(1 + 2z)(1 + z) (1 + 2z)(1 + z) 0
(1 + 2z)2 0 1 + 2z

0 (1 + 2z)2 1 + 2z

z(1 + 2z) z(1 + 2z) 2 + 4z


, S (z) =

1
(1 + 2z)2



2(1 + z)2 2(1 + z)z 0
2(1 + z)z 2(1 + z)2 0

(1 + z)2 + z2 2z2 − 1 1
2z2 − 1 (1 + z)2 + z2 1


.

Figure 5 shows the AFS (as computed by the inverse polygon inflation algorithm) for the factor S of D(0.75). By
decreasing z towards the limit value z = 1/

√
2 ≈ 0.7071 the AFS shrinks to a finite set of isolated points. It is possible

to describe the AFS for the factor S analytically. The right singular vectors of D(1/
√

2) are

V(:, 1 : 3) =



1
2 1/

√
2 0

1
2 0 −1/

√
2

1
2 0 1/

√
2

1
2 −1/

√
2 0


,

and the AFS consists of 24 isolated points. The AFS is plotted in Fig. 5 and has the form

M =
{

(γ,± 1
√

2
) : γ ∈ Γ

}
∪

{
(± 1
√

2
, γ) : γ ∈ Γ

}
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Figure 5: The AFS-sets M for the second (spectral) factor of D(0.75) (left) and D(1/
√

2) (right). The a1, . . . , a4 define the vertices of I (black

dash-dotted line). The boundary of F is plotted by a gray dashed line in the right plot. The AFS of D(1/
√

2) consists of 24 isolated points. The
matrices do not suffer from a rank-deficiency. As two singular values are equal (σ2 = σ3) the AFS can be rotated by any angle around the origin
and has still the same information content.
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Figure 6: The AFS N for the rank-deficient matrices with m = 4 for D(0.60), D(0.5) and D(0.25). The inner polygon I (black dash-dotted line) has
the vertices a1, . . . , a4 . Since two singular values are equal (σ2 = σ3) the AFS can be rotated by any angle around the origin and has still the same
information content.

with

Γ =

{
0, ± 1

√
2(1 +

√
2)2
, ± 1
√

2(1 +
√

2)
, ± 1
√

2

}
.

7.2. Rank-deficiency for z < 1/
√

2

If 0 ≤ z < 1/
√

2, then D(z) is a rank-deficient matrix. Its nonnegative rank equals m = 4 since no nonnegative
factors C, S ∈ R

4×3 exist with D(z) = CS T . Instead, 4 × 4 nonnegative factors C and S exist. A trivial example is
C = I4×4 and S T = D(z) with rank(C) = 4 and rank(S ) = 3. Fig. 6 shows the AFS-sets for z = 0.6, z = 0.5 and
z = 0.25 as computed by (inverse) polygon inflation. We used the modified objective function, introduced in Sec. 5,
for these computations. The AFS for z = 0.6 is a topologically connected set with a hole around the origin. The AFS
for z = 0.5 consists of four triangles so that neighboured triangles touch in one point. The AFS for z = 0.25 consists
of four clearly separated subsets.

8. Summary and outlook

Rank-deficiency is a relatively complex phenomenon that can occur in MCR problems. Whenever the rank of the
measured spectral data matrix is degenerated due to internal linear dependencies, one cannot find chemically correct
pure component factors of the same rank. Instead, one of the two factors must have a larger rank - otherwise no
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interpretable pure component factorization can be determined. Sometimes a workaround is possible in such cases,
namely by changing the focus of the chemometric data analysis. One can either augment the given data, see Amrhein
et al. [4] and others, or one can narrow the focus towards a local analysis in time and/or frequency windows, see,
e.g., Lakeh et al. [3] on aspects of a local rank deficiency. Such techniques can sometimes considerably support the
extraction of pure component information from multi-component systems. Nevertheless, if data augmentation or data
reduction are not possible or not pursued, then the systematic approach for determining the ambiguity underlying the
pure component factorization can partially be generalized from rank-regular to rank-deficient problems. However,
the AFS can only be computed for the factor that causes the rank-deficiency. For the other factor the rank-deficiency
implies an information gap, namely at least one singular vector for the factor reconstruction is unknown. It is not clear
a priori from given D which of its factors causes the rank-deficiency. Additional information is required. Alternatively,
both factors can be tested individually and the results can be evaluated concerning their chemical interpretability.

A further problem, we call it a hidden rank-deficiency, is not treated in this paper. For this problem it holds that
rank(D) = rank+(D) but none of the nonnegative factorizations of D provides chemically meaningful profiles. In other
words, the AFS is not empty, but does not contain the correct solution. This can arise if one factor (C or S ) suffers
from a rank-deficiency hidden in the interaction with the other factor. Such problems are be analyzed in a forthcoming
paper.

A. Proofs of the theorems 4.2 and 4.4

Proof of Theorem 4.2:

Proof. First the direction “⇒” is shown. Let x be feasible, i.e. x ∈ N with N by (8). Due to the definition of N an
m× s matrix T with the rank s exists with T (1, :) = (1, xT ). Also a nonnegative matrix C ∈ Rk×m exists with D = CS T

and S T = TVT ≥ 0. The first column of T is the all-ones vector. This factorization D = CS T is used for the rest
of the proof. A number of m − 1 vectors can be extracted from the rows of T according to yT

i
= T (i + 1, 2 : s) for

i = 1, . . . ,m − 1. Further, the nonnegativity of S T = TVT proves that all m vertices x, y1, . . . , ym−1 of the quadrangle
are contained in F . We still have to show that this quadrangle encloses the inner polygon I. We do this by showing
that the vertices a1, . . . , ak by Eq. (5) are convex combinations of the x, y1, . . . , ym−1.

The starting point is Eq. (5) which can be rewritten with DV = UΣ

ai =
(UΣ)T (2 : s, i)

(UΣ)T (1, i)
=

(DV)T (2 : s, i)
(DV)T (1, i)

=
(D(i, :)V(:, 2 : s))T

D(i, :)V(:, 1)
. (12)

Hence we get that

(1, aT
i ) =

D(i, :)V
D(i, :)V(:, 1)

=
C(i, :)T

D(i, :)V(:, 1)
(13)

where for the last equality we use that

D(i, :) = C(i, :)S T = C(i, :)TVT and thus D(i, :)V = C(i, :)T.

Next we define the vectors α(i) ∈ Rm componentwise as

α
(i)
j
=

C(i, j)
D(i, :)V(:, 1)

, j = 1, . . . ,m. (14)

Next we show that α(i) is the vector of expansion coefficients allowing to represent the ai by (5) as a convex combina-
tion of x, y1, . . . , ym−1.

First, α(i) ≥ 0, since C(i, :) ≥ 0 and D(i, :)V(:, 1) > 0 as (the Perron eigenvector) V(:, 1) can be assumed compo-
nentwise positive. For each i ∈ {i = 1, . . . , k}, the sum of coefficients equals 1, since

m∑

j=1

α
(i)
j
=

C(i, :)e
D(i, :)V(:, 1)

=
C(i, :)Te1

D(i, :)V(:, 1)
= (1, aT

i )e1 = 1
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where e = (1, . . . , 1)T ∈ Rm, e1 = (1, 0, . . . , 0)T ∈ Rs and since e = Te1.
Finally, by inserting (14) and by using the representation of the vectors x, y1, . . . , ym−1 from the rows of T we get

for the convex combination

α
(i)
1 x +

m∑

j=2

α
(i)
j

y j−1 =
C(i, 1)

D(i, :)V(:, 1)
(xT )T +

m∑

j=2

C(i, j)
D(i, :)V(:, 1)

(yT
j−1)T

=
1

D(i, :)V(:, 1)

C(i, 1)(T (1, 2 : s))T +

m∑

j=2

C(i, j)(T ( j, 2 : s))T



=
1

D(i, :)V(:, 1)

m∑

j=1

C(i, j)(T ( j, 2 : s))T

=
1

D(i, :)V(:, 1)


m∑

j=1

C(i, j)T ( j, 2 : s)



T

=
1

D(i, :)V(:, 1)
(C(i, :)T (:, 2 : s))T = (aT

i )T = ai

where in the last line (13) has been applied.
The proof direction “⇐” inverts the preceding construction line-by-line.

Proof of Thm. 4.4:

Proof. We assume that yℓ is a convex combination of y0, . . . , yℓ−1, yℓ+1, . . . , ym−1 and derive a contradiction. Without
loss of generality let ℓ = 0. Let β ∈ R

m−1 be the nonnegative column vector with
∑m−1

i=1 βi = 1 that represents the
presumed convex combination y0 =

∑m−1
j=1 β jy j. Next we define the auxiliary matrix B ∈ Rm×m as

B = I − e1(0, βT )

where I is the m × m identity matrix and e1 its first column. Direct computation shows that B−1 = I + e1(0, βT ) and
hence B−1 ≥ 0.

Then C̃ = CB−1 and S̃ T = BS T define a further factorization of D. In order to show the nonnegativity of the
factors we first state that B−1 ≥ 0 implies C̃ = CB−1 ≥ 0. We still have to check that S̃ T = BS T = BTVT is also a
nonnegative matrix. To this end we calculate

BT =
(
I − e1

(
0
β

)T )


1 yT
0

...
...

1 yT
m−1


=



1 yT
0

...
...

1 yT
m−1


− e1

( m−1∑

j=1

β j

︸︷︷︸
=1

, β1yT
1 + . . . + βm−1yT

m−1︸                      ︷︷                      ︸
=yT

0

)
=



0 0
1 yT

1
...

...

1 yT
m−1


.

This allows us to determine S̃ as
S̃ T = BTVT = (0, s2, . . . , sm)T

where the si are the columns of S . On the one hand this proves that S̃ ≥ 0. On the other hand the sub-matrices
C̃(:, 2 : m) and S̃ (:, 2 : m) have at most the rank m − 1 and define a further nonnegative matrix factorization of D.
Hence rank+(D) ≤ m− 1. This contradicts the assumption on the nonnegative rank of D and completes the proof.
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