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Abstract

In MCR analyses the similarity of pairs of spectra or concentration profiles can be measured in terms of the acute angle

which is enclosed by the representing vectors. Acute angles between vectors can be generalized to pairs of subspaces.

So-called canonical angles, also called principal angles, measure the mutual orientation of a pair of subspaces. This

work discusses how angles and canonical angles can support multivariate curve resolution analyses. A canonical

angle analysis (CAA) can help to detect changes of the chemical composition during a chemical reaction in a way

comparable, but different to the evolving factor analysis (EFA).
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1. Introduction

Chemometric data analyses are based on mathematical methods from numerical linear algebra, optimization and

statistics and other fields. A typical aim of multivariate curve resolution (MCR) analyses is to extract the pure compo-

nent profiles from spectral mixture data as, e.g., given by a sequence of spectra and which is stored row- or column-

wise in a matrix. Typically, MCR methods use vector and matrix norms in order to measure their convergence or to

evaluate the closeness to certain profiles, e.g., known profiles of pure components. Important examples of such norms

are the Euclidean vector norm (square root of the sum of squares) and the maximum norm (maximum of absolute

values of the components). For higher-dimensional spaces, namely spaces which are spanned by two or more spectra,

other distance measures seem to be more advantageous. It is a fact that the relative orientation of two subspaces is

more complex than can be measured by a single angle or by evaluating the vector norm of a single, properly defined

distance vector. In addition, it is not obvious which (basis) vectors of a subspace serve to measure distances to a sec-

ond subspace. Subspace distances are better measured in terms of angles between these subspaces. The goal of this

paper is to discuss angles and subspace angles as a potential tool for measuring the mutual orientation and distance of

pairs of subspaces for chemometric applications.

The starting point is the basic case of one-dimensional subspaces X and Y which are spanned by nonzero vectors

x and y. Then the acute angle θ(X,Y) between these spaces is

θ(X,Y) = ∡(x, y) = arccos |xT y| (1)

if x and y have the Euclidean norms ‖x‖2 = ‖y‖2 = 1, see Fig. 1. How can this definition be generalized when we are

interested in angles between two subspaces of higher dimensions? And what is the meaning of such angles? So-called

canonical (or principal) angles answer these questions, see [8, 34].

2. Canonical angles

2.1. Canonical angles between two linear subspaces of the same dimension

Let X and Y be two s-dimensional subspaces of the n-dimensional space R
n. Further, let orthonormal bases of

these spaces be given by the column vectors of the orthonormal matrices X, Y ∈ R
n×s. The s singular values of the

s × s matrix YT X are σi = σi(Y
T X) with σ1 ≥ · · · ≥ σs ≥ 0. Then the s canonical angles between X and Y are the

numbers

θi(X,Y) = arccos(σi(Y
T X)), i = 1, . . . , s. (2)

The notion of canonical angles between two Euclidean subspaces, namely real and finite dimensional spaces with

an inner product, goes back to the classical work of Jordan in 1875 [13]. In 1936, Hotelling [9] has introduced the

framework of a canonical analysis between two random number vectors A and B; see [3] for relations to canonical
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angles. In a recent book on multiblock data fusion, Smilde et al. [33] develop a generalized canonical analysis in a

form starting from the Pearson product-moment correlation coefficient, which is a Euclidean inner product between

two normalized vectors. This deeper work is called a canonical/generalized (matrix) correlation analysis, which starts

with matrix correlation measures as

< A, B >=
trace(AT B)

(trace(AT A))1/2(trace(BT B))1/2
=

(vec(A), vec(B))

‖vec(A)‖2‖vec(B)‖2
= ∡(vec(A), vec(B))

for matrices A and B with suitable dimensions and where vec is the matrix vectorization operator. These concepts

refer to some largest angle, whereas in our work the focus is on the fine structure of the number of s canonical angles

between two s-dimensional subspaces.

For one-dimensional spaces X and Y the definition (2) coincides with (1). The following three properties are

important in order to justify the definition (2).

1. The inverse cosine function in (2) can be evaluated since its arguments, namely the singular values of YT X, are

real numbers between 0 and 1. This follows from

0 ≤ σℓ(YT X) ≤ σ1(YT X) = ‖YT X‖2 ≤ ‖Y‖2‖X‖2 = 1, ℓ = 2, . . . , s

with the 2-matrix norm ‖ · ‖2 and the fact that the orthonormal matrices X and Y have a 2-norm equal to 1.

2. The canonical angles are well-defined in the sense that they do not depend on the choice of the orthogonal

bases of X and Y. This can easily be checked by applying the basis transformations X′ = XU and Y′ = YV

with orthogonal s × s matrices U,V . Then (Y′)T X′ = VT (YT X)U has the same singular values as YT X since

orthogonal transformations from the left and the right side do not change the singular values of a matrix. Thus,

the canonical angles are uniquely determined.

3. The canonical angles form an increasing sequence of numbers

0 ≤ θ1 ≤ · · · ≤ θs ≤ π/2.

This is a consequence of the facts that singular values σi are a sequence of decreasing nonnegative numbers by

definition and that the inverse cosine is a monotonously decreasing function.

Canonical angles can be understood geometrically. To this end, we consider the following recursive representation

of canonical angles, see [34]. It holds that

cos(θi) = xT
i yi = max

x ∈ X, ‖x‖2 = 1

xT [x1, . . . , xi−1] = 0

max
y ∈ Y, ‖y‖2 = 1

yT [y1, . . . , yi−1] = 0

xT y for i = 1, 2, . . . s. (3)

This recursive representation of canonical angles implicitly defines pairs of so-called canonical vectors (xi, yi)i=1,...,s

in the order i = 1, 2, . . . s. To understand the formula, we first assume X and Y to be one-dimensional spaces. For

i = 1 the two orthogonality constraints xT [x1, . . . , xi−1] = 0 and yT [y1, . . . , yi−1] = 0 are not active so that Eq. (3) is

equivalent to (1). See [8] for the general case i > 1 and for which Eq. (3) can be traced back to (2). Geometrically,

(3) says that the inner product xT y is maximized (and so θi is minimized) for normalized vectors x, y which are in

the orthogonal complement of the spaces spanned by the previous canonical vectors xℓ, yℓ for ℓ = 1, . . . , i − 1. A

consequence of (3) and (1) is that the largest canonical angle can be expressed as

θs(X,Y) = max
x ∈ X
x , 0

min
y ∈ Y
y , 0

∡(x, y). (4)

This largest canonical angle is sometimes called the subspace angle between two subspaces of the same dimension.

Applications of this subspace angle can be found in the chemometric literature, see for example [21, 22, 20]. However,

a number of s canonical angles contains more information than can be expressed by a single largest angle.

2.2. Angles between subspaces of different dimensions

Canonical angles can also be considered if the subspaces have different dimensions. Therefore let

p = dimX ≤ dimY = q ≥ 1.

Then a number of p canonical angles can either be defined recursively according to (3) for i = 1, . . . , p or by means

of orthogonal bases. If the orthogonal matrices X ∈ Rn×p and Y ∈ Rn×q have the column spaces X andY respectively,

then the p singular values of YT X ∈ Rq×p are the cosine values of the canonical angles as in (2).
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Figure 1: Left: The simple case of a single angle θ(x, y) enclosed by vectors x and y. Right: The relative orientation of two 2D planes through

the origin is determined by two canonical angles. If the two planes are located in a 3D space, then these planes necessarily intersect within one

dimension. Thus θ1(X,Y) = 0. The second angle θ2(X,Y) is nonzero if the planes are different.

2.3. Intersecting subspaces, vanishing canonical angles and the number of chemical species

Two linear subspaces can intersect at more than the origin. Then one or more of the canonical angles between

these subspaces are equal to zero. The most simple example is the case of two 2D spaces in a 3D space as shown

in Fig. 1 (right). If the two planes are not identical, then they necessarily intersect in a common straight line (a 1D

space). However, if two 2D subspaces are embedded in a 4D space, then two (in general cases nonzero) canonical

angles determine their relative orientation.

The general theory is as follows: If a certain subspace is spanned by the columns or rows of a matrix, then the

matrix rank equals the dimension of the subspace. The maximal number of linearly independent columns of a matrix,

namely the column rank, is always equal to the maximal number of linearly independent rows, namely the row rank.

This fact justifies to use the notion of the rank of a matrix. Next, we focus on the k×n matrix D of spectral observation

data of a chemical reaction system and assume the presence of s chemical species. If noise and other perturbations

are absent and if the pure component profiles do not show a linear dependence (the system has no rank-deficiency),

then the rank of D equals s. For any m-dimensional subspaces X,Y of either the column or the row space of D, the

dimension formula

dim(X ∩ Y) = dim(X) + dim(Y) − dim(X +Y) (5)

predicts the dimension of the intersection X ∩ Y. Therein the dimension of the sum X + Y is the dimension of the

space spanned by all vectors from the set union X ∪ Y. If and only if precisely the ℓ smallest canonical angles are

equal to 0, that is 0 = θ1 = · · · = θℓ < θℓ+1, then the ℓ-dimensional intersection X ∩Y has the form

X ∩ Y = span{x1, . . . , xℓ} = span{y1, . . . , yℓ}

with the vectors xi, yi recursively defined in (3), see Thm. 6.4.2 in [8]. Fig. 1 illustrates this for planes X and Y
(through the origin) with dim(X) = dim(Y) = 2 and dim(X +Y) = 3. Hence, (5) predicts a 1D intersection.

The dimension formula has the following consequences:

1. The number of nonzero canonical angles in chemometric analyses is not greater than half the number of chem-

ical species: In order to have a maximal number of nonzero canonical angles, one has to consider spaces X,Y
so that dim(X ∩ Y) = 0. Then the dimension formula predicts that dim(X) + dim(Y) = dim(X + Y). Next,

let a spectral data matrix with the rank s be given. For simplicity, we assume that no rank-deficiency exists

and that noise is absent. Then s chemical species can be assumed. First, let s be an even number. Taking

the two subspaces of either the row space or the column space of this matrix so that dim(X) = dim(Y) = s/2

and dim(X + Y) = s necessarily results in a maximal number of s/2 nonzero canonical angles (as angles of

the value zero are associated with a nonzero intersection). If s is an odd number, then the largest number of

nonzero canonical values is (s − 1)/2, cf. with the example given in Fig. 1. Later, we consider a four-species

model system, study the relative orientation of two 2D subspaces and seek for a chemical interpretation. We

also consider pairs of subspaces spanned by four consecutive spectra for an experimental data set.

2. The latter property can also be reformulated in the following way. If the smallest canonical angle between

two m-dimensional subspaces X,Y with dim(X) = dim(Y) = m is larger than zero, then dim(X ∩ Y) = 0
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and thus dim(X + Y) = 2m and thus the number of chemical species s (which is the rank of D) satisfies that

s ≥ 2m. However, for noisy data the numerical evaluation of the dimension numbers must be done with care;

the smallest singular values of X, Y and [X, Y] can sometimes serve as indicators for the noise level underlying

the data.

2.4. Distances between subspaces

Distances between pairs of subspaces can be measured in terms of canonical angles. Potentially, such measures

can support chemometric data analyses. There are different notions of subspace distances. The so-called Grassmann

distance between X and Y is defined to be the Euclidean norm of the vector (θ1, . . . , θs) of canonical angles, namely

dG(X,Y) =


s∑

i=1

θ2i


1/2

. (6)

The Grassmann distance is a so-called metric on the set of s-dimensional subspaces. This means that the following

“typical” distance properties are fulfilled:

1. Positivity and definiteness: dG(X,Y) ≥ 0 and dG(X,Y) = 0 if and only if X = Y,

2. Symmetry: dG(X,Y) = dG(Y,X),

3. Triangle inequality: dG(X,Y) ≤ dG(X,Z) + dG(Z,Y)

for all subspaces X, Y andZ of the same dimension.

An alternative measure of distance for subspaces of the same dimensions is based on the largest canonical angle

(4) and is given by (see Sec. 5.15 in [26] and [1])

dist(X,Y) =
√

1 − (cos(θs))2 = sin(θs). (7)

See also Section 2.5.3 in [8] for a proof of the identity dist(X,Y) = ‖PX − PY‖2, where PX, PY are orthogonal

projection operators on X and Y. This distance measure is implemented in the MATLAB function subspace. Later,

we apply distance measures to sequences of certain column- and row-subspaces of spectral data sets and give possible

interpretations.

3. Data sets

3.1. Model system

For numerical studies we consider a model system with four chemical species W,X,Y,Z whose concentration

profiles are determined by the reaction scheme

W
k1

GGGGGA X
k2

GGGGGBF GGGGG

k3

Y
k4

GGGGGA Z (8)

with the reaction rate constants (k1, . . . , k4) = (1, 0.1, 0.1, 0.1). The initial concentration values are taken as (1, 0, 0, 0)

at t = 0. The pure component spectra are taken as overlapping Gaussians of the form

(s1, . . . , s4) =
(
0.95 exp(−(x − 20)2/80), 0.6 exp(−(x − 50)2/50),

0.75 exp(−(x − 70)2/50), 1.1 exp(−(x − 30)2/50) + 0.01
)
.

(9)

The model is discretized by n = 51 equidistant nodes in the time interval [0, 20], and the ordinary differential equation

for the concentration profiles is solved numerically with the Matlab solver ode15s. The discretization along the

frequency direction uses k = 101 spectral channels. Thus D is a 51 × 101 matrix. The concentration profiles and the

spectra are shown in Fig. 2. The four dominant singular values of D

(σ1, . . . , σ4) ≈ (9.4808, 3.9977, 3.2456, 0.6975)

are well separated from zero and the fifth singular value σ5 ≈ 2.4014 · 10−15 is close to 0. This shows that a non-rank-

deficient system with four species is given.

To demonstrate that our analysis and conclusions are not falsified by the simple form of the one-peak spectra, we

also consider a second set of more complex spectra, each constructed from three Gaussians. These spectra replace

(9), the concentration profiles are still the same, and are defined as follows

(s1, . . . , s4) =
(
0.95 exp(−(x − 20)2/80) + 0.3 exp(−(x − 30)2/30) + 0.3 exp(−(x − 80)2/30),

0.6 exp(−(x − 50)2/50) + 0.3 exp(−(x − 60)2/30) + 0.3 exp(−(x − 82)2/30),

0.75 exp(−(x − 70)2/50) + 0.3 exp(−(x − 75)2/30) + 0.3 exp(−(x − 84)2/30),

1.1 exp(−(x − 30)2/50) + 0.01 + 0.3 exp(−(x − 35)2/30) + 0.3 exp(−(x − 86)2/30)
)
.

(10)
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Compared to (9), each of the initial peaks gets a shoulder, and additional peaks at the frequency coordinates 80, 82,

84, and 86 increase the mutual overlap of the spectra. These four spectra are shown on the left in Fig. 6.

3.2. Spectroelectrochemical data set

This experimental spectroelectrochemical (SEC) data set results from measurements on a mixture of two naph-

thalenediimides (NDI), namely NDI-7 and NDI-4, see Fig. 1 in [25] for the respective substituents. Fig. 3 shows the

data set with its characteristic peak pattern. The initial concentrations of the two NDIs are 0.5mM. The NDI species

are reduced to electronically excited radical anions and dianions at lower potentials. A more detailed quantitative

analysis of the excited state decay rates of these radical anions can be found in [25] and its supporting information.

For the purposes of this work, it is important that the reaction system contains multiple species with different spectral

signatures, and that different species dominate the mixture depending on the reduction potential.

The solvent is acetonitrile using 0.1 M Bu4NBF4 as the supporting electrolyte. A platinum mesh working electrode

and a platinum wire counter electrode are used. The potential runs through -0.43V till -1.8 V versus an Ag/AgNO3

(c=0.01 M) reference electrode and back with a scan rate of 2mV/s. A series of 1586 UV/Vis spectra is measured at

1470 spectral channels. The data set is thinned out first, so that only one in five spectra and only every fifth spectral

channel are considered. The reduced matrix has the dimensions 318 × 296.

The ten dominant singular values of D

(σ1, . . . , σ10) ≈ (1272.5, 258.8, 210.8, 73.6, 16.7, 14.4, 10.7, 4.6, 3.0, 2.1)

are slowly decaying towards zero and even σ30 ≈ 0.351 is not close to 0. Therefore the number of chemical species

is not clearly determinable by the SVD. At least six chemical species are expected, namely the starting compound,

radical anions and dianions for each NDI-7 and NDI-4.

4. Evolving factor analysis and canonical angle analysis indicate chemical conversion

Next, we apply the Evolving Factor Analysis (EFA) and a canonical angle analysis (CAA) to the data sets from

Sec. 3. The aim is to give the angle values a chemical interpretation. These studies are conducted along the time

direction (sequence of measured spectra in the rows of D) and partially along the frequency direction (the frequency

channels relate to the columns of D).

4.1. Time domain analysis in the row space

The spectral data matrix D is built up row-wise in terms of the measured spectra. The EFA analysis studies the

largest singular values of the sequence of sub-matrices D(1: i, :) of D for i = 1, 2, . . . , k. In words, D(1: i, :) contains the

first i rows of D. Next we consider the model data set from Sec. 3.1. The forward EFA plot of the four largest singular

values of D(1: i, :) versus i = 1, . . .51 is shown in Fig. 4. In a preliminary step the rows D have been normalized to

give them a Euclidean norm equal to 1, see [27] for a justification of this step. A short explanation is that the EFA

curve for normalized spectra and for a stationary reaction has precisely the form of a square root function while the

normalization does not change the underlying chemical information.

These EFA curves indicate that the four chemical species appear in the initial phase of the reaction. The existence

of four chemical species can be stated even for D(1:4, :) as its fourth singular value is larger than 10−3. This indicates

that the most interesting period of this reaction concerning rapid changes of the spectra and the formation of the

spectral information is given by about the first ten spectra. Can an angle analysis be used in order to confirm this?

Further, how can we extract more information on the changes of linear algebra properties of the spectral data matrices?

The plot of angles∡(D(i, :),D(i+1, :)) between consecutive spectra for i = 1, . . . , 50, see the centered plot of Fig. 4,

confirms that the main changes in the spectral data take place in the initial phase of the reaction. The consecutive angle

values show a characteristic peak at the beginning of the reaction, which correlates with major changes of the chemical

composition in this phase. For i > 10 these changes are small and finally converging to zero. A comparable behavior

can be observed in the EFA plot of the SEC data set with its higher number of chemical species. Deviations of an EFA

curve from a square root profile are known to be correlated with the appearance of a new chemical species, see [27].

These appearances of new species show a coincidence to peaks in the plot of consecutive angles. It seems plausible

to relate the curve of angle values to the chemical conversion of the reaction (8). This is investigated next.
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Figure 2: A four-component model data set together with the pure component concentration profiles according to (8) and the pure component
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4.2. Consecutive angles and chemical conversion

The angle between the ith spectrum D(i, :) and the jth spectrum D( j, :) of the spectral data matrix D ∈ Rk×n (which

is also the correlation between consecutive spectra) is given by

ϕi, j = ∡(D(i, :),D( j, :)) =
arccos

∣∣∣D(i, :)(D( j, :))T
∣∣∣

‖D(i, :)‖2‖D( j, :)‖2
. (11)

For ease of representation and without any restriction of generality we assume that the rows of D (namely the spectra)

are normalized so that ‖D(ℓ, :)‖2 = 1 for all ℓ. This justifies to omit the denominator in (11). Relating the angle values

to a fixed spectrum D(i, :) while j changing has the disadvantage that such a measure cannot detect any rotation of

D( j, :) around D(i, :) or in other words any movement on the surface of a cone with the axis D(i, :) in the n-dimensional

space, see Fig. 7. Instead, we consider the consecutive angle change rate

δϕi,i+1 =
∡(D(i, :),D(i + 1, :))

τ

where τ = ti+1 − ti is the (constant) time period between spectra measurements. This angle change rate can be

interpreted as a first order finite difference approximation of a continuous angle change rate curve.

Next we show that δϕi,i+1 allows us to assess the chemical conversion of all species during the reaction. Assuming

the spectra to be normalized ‖D(i, :)‖2 = 1 for all i (otherwise apply this normalization), the angle ∡(D(i, :),D(i+1, :))

in radians is always larger than or equal to the chord length ‖D(i, :) − D(i + 1, :)‖2 so that

δϕi,i+1 =
∡(D(i, :),D(i + 1, :))

τ
≥ 1

τ
‖D(i, :) − D(i + 1, :)‖2.

The right plot in Fig. 7 illustrates this. The inequality turns into an equality in the time limit τ = ti+1 − ti → 0. A

time-continuous representation of the spectral data can be written in the form

D(t) = c(t)S T
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with the row vector c(t) = (c1(t), . . . , cs(t)) of the concentration values of the s chemical species. From this represen-

tation we get

lim
τ→0
δϕ(t) =

d

dt
ϕ(t) =

d

dt
‖D(t)‖2 =

d

dt
‖c(t)S T‖2 ≤

d

dt
‖c(t)S T ‖1 =

d

dt
‖

s∑

ℓ=1

cℓ(t)sT
ℓ ‖1

≤ d

dt

s∑

ℓ=1

|cℓ(t)| ‖sℓ‖1 ≤ M

s∑

ℓ=1

∣∣∣∣∣
d

dt
cℓ(t)

∣∣∣∣∣ .

Therein, sℓ for ℓ = 1, . . . , s are the column vectors of S , namely the spectra, and M is the maximum of ‖sℓ‖1 for

ℓ = 1, . . . , s. Furthermore, we have used the norm inequality ‖ · ‖2 ≤ ‖ · ‖1, which is an upper estimate of the Euclidean

norm by the 1-norm. We call the absolute values of the time derivatives of the concentration functions cℓ(t) the

absolute rate

R(t) =
∑

all species ℓ

∣∣∣∣∣
dcℓ(t)

dt

∣∣∣∣∣ (12)

and consider it as a measure for the chemical conversion.

For the model reaction (8) the absolute rate with the four species W, X, Y and Z is

R(t) =

∣∣∣∣∣
dcW

dt

∣∣∣∣∣ +
∣∣∣∣∣
dcX

dt

∣∣∣∣∣ +
∣∣∣∣∣
dcY

dt

∣∣∣∣∣ +
∣∣∣∣∣
dcZ

dt

∣∣∣∣∣ .

The blue dotted curve in the centered plot of Fig. 4 shows R(t) as approximated by the vector of 1-norms of the

absolute values of C(:, j) − C(:, j + 1) for j = 1, . . . , 50. We state a qualitatively similar course of the curves of angle

values and the absolute rate at least for i ≥ 4. In other words, the absolute rate R(t) measures the time-changes of all

chemical species which due to the Lambert-Beer law correlates with the rate of changes of the spectra and thus with

changes of the angle between consecutive spectra. This indicates the chemical interpretability of the angle analysis.

4.3. Consecutive angles computations for noisy data

Noise can severly affect the consecutive angle computations. To understand why, consider the case where two

consecutive spectra are equal. In the noise-free case, the angle between these spectra is zero. If normal distributed

noise with the mean zero is added, then the difference vector between two consecutive spectra is determined only by

the noise. Let ‖d‖ be the Euclidean norm of the difference vector d and assume normalized spectra with an Euclidean

norm equal to 1. Then for small ‖d‖2 the angle between these consecutive spectra is also close to ‖d‖2. The expectation

value E(‖d‖2) for this type of noise grows approximately with
√

n times the standard deviation of the noise, where n

is the dimension of d. This shows that for high-dimensional nearly similar spectra (this may be the case if the time

resolution is high or if the reaction is stationary) and in the presence of noise, the consecutive angles are dominated

by the noise.

Away from these limit cases and for moderate noise levels, the qualitative message of Fig. 4 and the approximation

by the conversion rate R(t) by Eq. (12) may still be valid. We study the model problem from Sec. 3.1 with the more

complex spectra given by Eq. (10) for the three levels of 1%, 3%, and 5% of standard normal distributed homoscedastic

noise that is added to the spectral data matrix D. Fig. 8 (left) shows the data matrix for the spectra given by Eq. (10)

for the case of 5% (of the maximum amplitude) homoscedastic standard normal distributed noise and after a rank-4

truncated SVD approximation. Fig. 8 (middle plot) shows the counterpart of Fig. 4 (middle plot) for the noise-free

case. The right plot of Fig. 8 shows the consecutive angles value curves for the three noise levels in black (1%), green

(3%), and magenta (5%). When the chemical conversion is relatively high, the angle values are most reliable. The

curves become more oscillatory as the conversion rate decreases and the noise level increases.

4.4. Two-dimensional angle plots

The one-dimensional curves of consecutive angle values ϕi,i+1 can be generalized to two-dimensional plots of the

angle values ϕi, j between the spectra i and j where the indexes run through all possible values between 1 and k. The

resulting 2D-plots in the spectra space and also in the frequency channel space are shown in Fig. 9 for the model

data set. These plots are 2D correlation plots between consecutive spectra or concentration profiles, and they show a

rich structure. Yellow areas relate to pairs of profiles which are nearly orthogonal (the enclosed angle in degrees is

larger than about 60 till 70 degrees). Such areas indicate major changes in the chemical composition for the respective

ranges of indexes i and j. Blue areas indicate a similarity of the respective pairs of spectra; this is a trivial fact along

the diagonal i = j, but there are also blue areas for i , j. This indicates a stronger similarity and can indicate a

8
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Figure 8: A study of consecutive angles for the model problem of Sec. 3.1 with the spectra given by Eq. (10). Left: Series of spectra after 5% noise

addition and after a rank-4 truncated SVD approximation. Middle: Counterpart of Fig. 4 (centered plot) for the more complex spectra given by

Eq. (10) for the noise-free case. Right: Counterpart of Fig. 4 (centered plot) for the three noise levels in black (1%), green (3%) and magenta (5%).

stationary phase of the chemical reaction. The characteristic pattern of these angle plots (with its rectangular areas of

different colors) seem to have additional potential for a meaningful chemical interpretation.

The analogous plots for the experimental SEC data set are shown in Fig. 11. The plots for the SEC data confirm

the findings discussed above. Strong deviations of an EFA curve from a square root profile (a strict square root profile

corresponds to stationarity of the chemical reaction, see [27]) correlate with changes in the chemical decomposition

of the reaction system. This also correlates with peaks in the curve of consecutive angles values. The 2D plot of angle

values, see Fig. 11 (bottom row, left), show that the spectra in the index interval of about 70 till 270 (yellow area)

are most independent/orthogonal to the first 50 spectra. Thus a major reorganization of the chemical decomposition

can be assumed in the spectral index range between 50 and 70. Again, this correlates with the strongest peak in

the curve of consecutive angles (middle row, left plot in Fig. 11). The corresponding plots in the frequency channel

domain (right column of plots in Fig. 11) also show an ample structure. These results can be interpreted in a way

that the addition of certain frequency channels correlates with a gain of spectral information on the chemical reaction

system. This discussion alludes to recent research work on essential spectral information [30, 6, 31, 35]. There is also

a remarkable similarity between these 2D correlation plots and the 2D IR correlation spectrum in time-resolved IR

spectroscopy as proposed by Noda [29], but the underlying mathematical formula and the meaning of the calculated

quantities are different. In any case, there is still space for a deeper interpretation of such CAA plots.

4.5. Canonical angles and a weighted chemical conversion

While the angles ∡(D(i, :),D(i + 1, :)) refer to distances of consecutive 1D subspaces, one can also measure

distances and canonical angles for pairs of subspaces spanned by the columns or rows of the spectral data matrix.

Provided that the number of chemical species is large enough (compare this with the discussion on the dimension

formula (5) and nonzero angles in Sec. 2.2) such distance measures can have a chemical interpretation. Next, we

consider the four-component model data set from Sec. 3.1 and compare the two-spectrum row space of D(i : i + 1, :)

with the consecutive two-spectrum row space of D(i + 2 : i + 3, :) for index values i = 1, . . . , 48. Their Grassmann

distances (6) are shown in the right plot of Fig. 4. This curve has also a characteristic peak at the initial phase of

the reaction with its maximum (somewhat shifted to the right compared to the consecutive 1D-angle curve) at i = 6.

This curve indicates that the maximal changes in the spectra of a chemical system with at least three active chemical

species appear slightly later in the reaction - a result which is plausible in the light of the EFA plot where the third

and fourth chemical species gain importance between i = 4 and i = 10. Moreover, the curve of Grassmann distances

between the 2D spaces converges much faster to zero than the curve of consecutive angles between 1D subspaces.

This clearly indicates that the later phase of the reaction for i > 20 is dominated by changes of the concentrations of

the two species X and Z, whereas the concentration of Y is small and tends to zero for increasing i. Hence the row

spaces of D(i + 2 : i + 3, :) for i > 20 do not change very much, but the row vectors of these matrices can change.

Mathematically, we suggest to model the chemical conversion by a weighted absolute rate

Rw(t) =


∏

all species ℓ

cℓ(t)




∑

all species ℓ

∣∣∣∣∣
dcℓ(t)

dt

∣∣∣∣∣

 . (13)

Compared to (12), the additional first factor takes its maximal value if all chemical species are present. (It is a simple

fact that the product αβ takes its maximum in α = β under the constraint that the sum α + β takes a constant positive

value. This property also holds for products with more than two factors together with a fixed-sum constraint.) The

curve Rw(t) is also plotted in Fig. 4 (the blue dotted curve in the right plot) and reflects the curve of Grassmann

distances qualitatively correct.
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The characteristic peak of the Grassmann distance curve indicates the presence of at least three active chemical

species. If only two species contributed to the reaction in this time region, then the Grassmann distances would be zero

(and the two 2D-subspaces would be the same). The chemical meaning is that the Grassmann distance is sensitive to

the number of active chemical species; only two species would not give a signal, but three or more can give a signal.

This argumentation is consistent with the much slower decay of the curve of consecutive 1D-angles (see the centered

plot of Fig. 4) where for i > 20 the reaction shows a predominant turnover of the two (and not three) species X and Z.

These findings are confirmed by Fig. 10 in which the two canonical angles between the row subspaces D(i : i+1, :)

and D( j+ 2 : j+ 3, :) for i, j = 1, . . . , k− 3 are compared. The larger canonical angle θ2 between these spaces takes its

maximum if the first spectra (rows 1 till 6 of D) are compared with the spectra D(i, :) for i > 10, see the yellow areas

in the right plot of Fig. 10. Dark blue areas, namely any pairs of subspaces with indexes i and j greater than about

15, represent small canonical angles, which indicates that the chemical reaction for i > 15 does not show a significant

contribution of more than two chemical species. The analogue of these plots for the SEC data set of Sec. 3.2 is shown

in Fig. 12. At least six chemical species are expected, see [25], so that it seems to be justified to consider two spaces

of each four consecutive spectra. Plots of the four canonical angles (in degrees) between the row-spaces D(i : i + 3, :)

and D( j : j+3, :) for i, j = 1, . . . , k−3 are shown in Fig. 12. The largest canonical angle between subspaces with i , j

is in most cases close to 90 degrees; such a maximal canonical angle is not surprising for an experimental (noisy) data

set since noise changes the orientation of the subspaces. The two smaller canonical angles θ1 and θ2 show a much

stronger pattern, which allows us to determine regions with a stronger chemical dissimilarity (in yellow) and others

where the color blue indicates similar subspaces (or minor chemical changes).

4.6. Frequency domain analysis in the column space

The subspace analysis can also be applied to pairs of column subspaces of D. Technically, this can simply be

done by applying the row space analysis to the transposed matrix DT . However, such an analysis has a very different

interpretation when vectors of absorption values for certain spectral channel indexes are compared. Fig. 5 shows the

forward EFA plot, consecutive angles and Grassmann distances of consecutive two-spectrum subspaces. For the EFA

plot each column of D is first normalized to give it a Euclidean norm equal to 1. The EFA plot shows a relatively late

rising fourth singular value, which is explained by the fact that the species Y is absorbent at relatively high frequencies,

see Fig. 2. The plot of angles between the consecutive columns D(:, j) and D(:, j+ 1) for j = 1, . . . , 100 has five well-

separated maxima due to the fact that with each rising new peak, as shown in the pure component spectra in Fig. 2

(right plot), each newly added frequency channel vector comes with a new orientation of the frequency channel vector

D(:, j + 1). The plot of Grassmann distances is even harder to interpret, see the right plot in Fig. 5, between the

consecutive 2D spaces D(:, j : j + 1) and D(:, j + 2 : j + 3) for j = 1, . . . , 98. The graph shows the peak on the

inner third of the x-axis, which can be qualitatively understood by the fact that, again, the two spaces must act in an

at least three-dimensional space; the peak distribution of the pure components confirms this. However, a simple and

convincing explanation for the fine structure of the Grassmann distance curve cannot be given here.

As we have observed a distinct fine structure of the curve of angles between consecutive 1D spaces and the curve

of Grassmann distances between consecutive 2D subspaces, it is obvious to generalize this approach and to inspect

such angle and distance measures for non-consecutive subspaces. This is done in Fig. 9 (left plot) where the acute

angles between D(i, :) and D( j, :) are plotted for the model data set for i, j = 1, . . . , k. A similar plot along the

frequency channel axis, or equivalently by applying the row space analysis to DT , shows a much stronger structure as

indicated by the centered plot in Fig. 5). The right plot in Fig. 9 shows the result. See the caption of Fig. 9 for a first

interpretation. The rich structure of this plot leaves room for further interpretation.

One possible interpretation could go in the direction of correlation and clustering. In general, the analysis of high-

dimensional data is a challenge that requires dimensionality reduction, whereby the selection of variables improves

the interpretability of the models. Features with high collinearity (or small angles between them) often contribute little

information, leading to increased susceptibility to noise as the number of features increases. The Pearson correlation

coefficient (ranging from −1 and 1) measures the collinearity between variables. Absolute values of the Pearson

correlation coefficient close to 1 indicate a strong collinearity [5]. For efficient feature selection, a combination of the

correlation coefficient and clustering analysis can be employed [10]. The correlation coefficient serves as a similarity

measurement, and clustering analysis organizes the feature set into distinct groups based on the dependencies between

features. Subspace angles can be useful at this point as Fig. 9 shows some strong clustering. Each group represents

a specific segment of the feature space. The primary objective is to select relevant, non-redundant features while

minimizing dimensionality. The strategy is to select one feature from each feature cluster, emphasizing their close

proximity. The correlation coefficient and potentially subspace angles can play a crucial role in assessing feature

dependencies during clustering. The challenge lies in selecting the most class-dependent feature within each cluster,

utilizing the correlation coefficient or subspace angle to measure class-feature dependencies. This strategic approach

aims to improve overall classification accuracy by selecting the most class-dependent features from all clusters.
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Figure 9: Left: Acute angles ∡(D(i, :),D( j, :)) in degrees between the rows i and j of D (sequence of spectra) for the model data set, see Sec. 3.1.

The angles in the row space attain largest values (yellow) around 65 degrees (to a moderate extent orthogonal) between the first few and the late

spectra which is consistent with the time series of spectra in Fig. 2 (left). Right: Acute angles ∡(D(:, i),D(:, j)) in degrees between the columns i

and j of D (frequency channels) for the model data set. The analysis within the space of frequency channels shows a much more pronounced angle

pattern. Here the frequency channels around 5 to 15 are nearly orthogonal to all other frequency channels with indexes larger than 25. This can be

understood by the pure spectra with the well-localized spectral peaks. The left plot indicates that the strongest variations of the angle values relates

to the initial phase of the reaction.

Figure 10: Plots of the two canonical angles θ1 in degrees (left plot, the smaller angle) and θ2 (right plot, the larger angle) between subspaces

D(i : i + 1, :) to D( j : j + 1, :) for i, j = 1, . . . , k − 1 for the model data set, see Sec. 3.1. If i = j, then the subspaces are the same and all canonical

angles are equal to zero. Thus the ascending diagonal is always dark blue. The plots are symmetric in i and j.
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Figure 11: Analysis of the spectroelectrochemical data set of Sec. 3.2. Top row: Evolving factor analysis (EFA) plots of the ten largest singular

values of a sequence of spectra-wise extended matrices (left) and frequency-channel-wise extended matrices (right). The curves of angle values (in

degrees) between consecutive spectra (left) and consecutive frequency channels (right) are shown in the second row. The 2D plots of acute angles

∡(D(i, :),D( j, :)) (in degrees) between the rows i and j of D (measured spectra) is shown left in the bottom row. The corresponding plot of acute

angles ∡(D(:, i),D(:, j)) in degrees between the columns i and j of D (frequency channels) is shown right.
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Figure 12: Analysis of the spectroelectrochemical data set of Sec. 3.2. Plots of the four canonical angles (in degrees) between the row-spaces

D(i : i + 3, :) and D( j : j + 3, :) for i, j = 1, . . . , k − 3. The ascending diagonals are always dark blue since the canonical angles between identical

spaces are always equal to 0. The plots of the first and second canonical angles reflect the structure of the SEC experiment. Domains where certain

components appear (or disappear) are indicated by their colors; see the blue and yellow rectangles. These changes correlate with the development

of the electric potential in the SEC experiment, cf. Sec. 3.2. Further, the index of about 200, where we expect the electric potential to reach its

minimum, indicates a (local) axis of symmetry.
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5. Angle analyses in the AFS space

MCR methods sometimes use a singular value decomposition D = UΣVT of the spectral data matrix D ∈ R
k×n

for the construction of a pure component factorization D = CS T . The matrix factor C is intended to contain the

concentration profiles of the pure components in its columns and S should contain the associated pure component

spectra. The left singular vectors (namely the columns of U spanning the U-space) are the basis for representing

the factor C, and the right singular vectors (spanning the V space) serve to represent the pure component spectra S .

SVD-based pure component factorization techniques are useful to analyze such techniques, to study their properties

and, in particular, to treat the problem of the factorization ambiguity (the so-called rotational ambiguity). Angles and

canonical angles are invariant with respect to orthogonal transformations. To show this for the angles between two

vectors, let x̄ and ȳ represent x̄ = Vx and ȳ = Vy in the V space. Then the angles satisfy

∡(x, y) =
xT y

‖x‖2‖y‖2
=

xT VT Vy

‖Vx‖2‖Vy‖2
= ∡(x̄, ȳ).

The situation is different if the first left/right singular vector is skipped by normalization and if one works in the

reduced U- and V-spaces. In these spaces the factor ambiguity is represented by the so-called Area of Feasible

Solutions (AFS), see for instance [2, 7, 32]. With

DV = UΣ and Σ−1UT D = VT

the ith row of D has the representation with respect to the basis of right singular vectors

ai =
((UΣ)(i, 2 : s))T

(UΣ)(i, 1)
=

((DV)(i, 2 : s))T

(DV)(i, 1)
, i = 1, . . . , k, (14)

see [32]. Analogously, the columns of D with respect to the scaled basis of left singular vectors are represented for

j = 1, . . . , n by

b j =
VT (2 : s, j)

VT (1, j)
. (15)

Angle analyses can also be applied to the data representing vectors ai and b j or to subspaces which are spanned by

these vectors. However, working with the vectors ai and b j instead of using the rows and columns of the spectral data

matrix amounts to a certain loss of information. This loss of information can be represented precisely by applying

a projection operator to the original spectral data, where the projections remove the contribution from the dominant

either left or right singular vector. The next theorem analyzes these relations for the projection operator P which maps

the rows of D to the orthogonal complement of the first singular vector 31.

Theorem 5.1. Let P = V̄V̄T with V̄ = [32, . . . , 3s] be the orthogonal projector on the orthogonal complement 3⊥
1

of

the first right singular vector 31. Further, let ai according to Eq. (14) be the representatives of the rows of D, namely

the spectra, within the projected V space. Then it holds that

∡(P(D(i, :))T , P(D( j, :))T ) = ∡(ai, a j), (16)

namely that acute angles between the projections of the spectra (rows of D) are equal to the acute angles of the

respective representation vectors ai.

Proof. Direct calculation shows that

P(D(i, :))T = V̄V̄T (eT
i D)T = V̄V̄T (eT

i UΣV)T = (eT
i UΣVT V̄V̄T )T

= (eT
i UΣ

(
0

V̄T

)
)T = (eT

i

s∑

ℓ=2

σℓuℓ3
T
ℓ )T =

s∑

ℓ=2

σℓUi,ℓ3ℓ

where ei is the ith standard basis (column) vector. Hence, the Euclidean norm of PD((i, :))T satisfies

‖PD((i, :))T‖2 =


s∑

ℓ=2

σ2
ℓUi,ℓ


1/2

= ‖ãi‖2, (17)

where ãi = ((UΣ)(i, 2 : s))T is the numerator of the left quotient in (14). Since ai and ãi are collinear vectors, we get

that ∡(ai, a j) = ∡(ãi, ã j). Finally, (16) holds due to the norm equality (17) and since the inner product of PD((i, :))T

with PD(( j, :))T equals the inner product of ãi with ã j according to

(PD((i, :))T )T PD(( j, :))T =

s∑

ℓ=2

σ2
ℓUi,lU j,l = ãT

i ã j.
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Similar relations can be proved for the representatives (15) of the columns of D. The resulting message is that

angle analyses should preferably be applied to the initial, non-projected spectral data.

6. On subspace distances of MCR-ALS and MCR-SVD

Multivariate curve resolution methods can be classified into two major classes, namely the Alternating Least

Squares (ALS) techniques, see [12, 4, 11] and many other references, and SVD-based factorization techniques, see

for example [17, 24, 23, 28]. These techniques have been studied extensively in the chemometric literature. A

characteristic trait of the SVD-based approach is its underlying truncation, namely the basis for representing the pure

component factors is truncated by all singular vectors which belong to small singular values below a certain threshold

value. MCR-ALS does not require a basis truncation, but restricts the dimension of the iteration matrices and truncates

(small) negative matrix entries in each step of the iterative procedure. This raises the interesting question to which

extent the subspaces in which MCR-ALS and MCR-SVD operate are different.

SVD-based MCR methods start with an initial SVD computation of the spectral data matrix, see Sec. 5. If s

chemical species are involved and the noise level is low, then a fixed space is considered, which is spanned by the s

dominant left respectively right singular vectors. These spaces serve to expand the pure component factors. MCR-

ALS does not necessarily require an initial SVD, but iteratively computes a sequence of factors (Ci, S i) that should

eventually converge to the desired pure component factors (C, S ). The initial factors (C0, S 0) can be determined by

means of an SVD, by running SIMPLISMA, or by other approaches. While in the SVD-based MCR-methods the

factors by construction remain in the spaces spanned by the s dominant left and right singular vectors, the ALS-based

factors are not constrained to remain in the spaces of the dominant left and right singular vectors. The truncation of

negative entries in the ALS algorithm is the reason why (Ci, S i) can leave these spaces. However, one can expect that

the column spaces of C and S will remain very close to, or even in, the spaces of the dominant left and right singular

vectors where the chemically correct solution is expected. Especially, for noisy experimental data, the spaces of the

dominant singular vectors and the row/column space of D are different, which may give the different MCR solvers

more room for a different localization of their approximate solution factors.

This raises the question: Do the subspaces of the MCR-ALS factors eventually converge to the truncated SVD

subspaces in which the MCR-SVD factors live? Canonical angles can help to answer this question.

The starting point is the (full) singular value decomposition D = ŪΣ̄V̄T of the given k-by-n matrix D with square

orthogonal matrices U ∈ R
k×k, V ∈ R

n×n. For an s-species chemical system only s left and right singular vectors

are considered together with the s largest singular values σ1 ≥ · · · ≥ σs. The further singular values σs+1, σs+2, . . .

are assumed to be close to zero; these further small singular vectors are caused by noise, measurement errors or

other deviations from strict bilinearity. The truncated SVD D ≈ UΣVT works with U ∈ R
k×s and V ∈ R

n×s and

the s × s square diagonal matrix Σ of the s largest singular values. The key idea of MCR-SVD is to find chemically

interpretable matrix factorizations D ≈ CS T with nonnegative factors C and S in the column spaces of left and right

singular vectors of U and V by means of a regular matrix T and its inverse according to

D ≈ CS T = (UΣT−1)︸    ︷︷    ︸
C≥0

(TVT )︸︷︷︸
S T≥0

. (18)

In contrast to this, MCR-ALS computes chemically interpretable nonnegative matrix factorizations of D by means

of an Alternating (Nonnegative) Least Squares Algorithm, e.g., based on the algorithms introduced by Kim and Park

[14, 15, 16] or Lee and Seung [18, 19].

The key idea of MCR-ALS is to start with a rank-s matrix C(0) and to form a sequence of matrix pairs (C(i), S (i)),

i = 0, . . . , imax so that according to Kim and Park

(S (i+1))T = max(0,C(i)\D) and C(i+1) = max(0,D/(S (i+1))T )

where the / and \ operators denote the solution of least squares problems according to the Matlab notation. The

max(0, ·) operators serve to truncate all negative entries and to substitute them by zero. The columns of C(i) are

contained in the k-dimensional space Rk and the columns of S (i) are contained in the n-dimensional space R
n.

How far can the column space of C(i) be from the space spanned by the s dominant left singular vectors (namely

the column space of U)? And, in the same way, how far can the column space of S (i) be from the column space of

V? First, if D has precisely the rank s and if the MCR-ALS algorithm works with s-column matrices C(i) ∈ Rk×s and

S (i) ∈ Rn×s and if it converges in the sense that

lim
i→∞
‖D −C(i)(S (i))T ‖ = 0,
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then the limit matrices Ĉ := limi→∞C(i) and Ŝ := limi→∞ S (i) satisfy

span(Ĉ) = span(U) and span(Ŝ ) = span(V).

The situation is more complex if the rank of D is larger than s and pairs of only rank-s matrices (C(i), S (i)) and (C, S )

are considered for the approximation of D. However, the column space of Ĉ cannot be very distant from the column

space of U and also the column space of Ŝ cannot be very distant from the column space of V . This is guaranteed by

the optimal approximation properties of singular vectors namely that the best rank-s approximation of the matrix D is

given by
s∑

i=1

uiσi3
T
i .

It is a well-known fact [8] that the error of the low-rank approximation with respect to the spectral norm is given by

‖D −
s∑

i=1

uiσi3
T
i ‖22 = σ2

s+1.

Therein the vectors ui and 3i are the singular vectors, namely the columns of U respectively V . Any other rank-s

approximation has an error equal or larger than σ2
s+1

. If the spectral norm is substituted by the Frobenius norm, then

the error bound σs+1 changes to
∑min(k,n)

i=s+1
σi.

For a numerical study of these small deviations we consider the model data matrix D ∈ R
51×101 as introduced

in Section 3.1 with the spectra given in Eq. (9) and add normal distributed noise with the mean 0 and a maximal

amplitude of 1% of the maximal entry of D. The five largest singular values of this noisy data matrix are

(σ1, . . . , σ6) ≈ (9.4888, 4.0012, 3.2393, 0.7185, 0.1614, 0.1557).

The further singular values slowly decrease so that, for instance, σ20 ≈ 0.1051. MCR-SVD works with s = 4 singular

values/vectors, which is well known to have a good noise filtering effect. MCR-ALS works with 4-column matrices

C(i) ∈ R51×4 and S (i) ∈ R101×4 whose column vectors are not necessarily expandable in terms of the left respectively

right singular vectors. The Grassmann distance allows us to measure the distance of the iteration matrices (C(i), S (i))

from the subspaces of the s = 4 left and right singular vectors of the MCR-SVD basis as spanned by the columns of

(U,V).

Fig. 13 and Fig. 14 show the typical convergence behavior of the Kim-Park and the Lee-Seung iterations. The

mean squared residual is ‖D−C(i)(S (i))T ‖2
F
/(kn) for the iterates of the ANLS iterations with the Frobenius norm ‖ · ‖F .

The plots also show the Grassmann distances of C(i) to U and of S (i) to V . The fourth plots (oscillatory curves) show

the Grassmann distances of the (noisy) data set matrix D to C(i)(S (i))T . All plots illustrate the results for a random pair

of initial iterates (C(0), S (0)). Convergence is not guaranteed for any choice of initial matrices. However, if convergence

occurs, the course of the error curves is qualitatively comparable. We observe that the Grassmann distances of C(i)

to U and S (i) to V numerically converge to some small positive (nonzero) values which indicates that the MCR-ALS

factors even in the limit of convergence cannot be equal to the MCR-SVD factors. However, the pair of factor iterates

(C(i), S (i)) are for almost all iteration indexes i numerically precise approximations of the spectral data matrix in the

sense that the Grassmann distances of the data D and the approximations C(i)(S (i))T are not greater than 10−7.

Such minor differences between the pure component factors are not very surprising. By construction, the MCR-

ALS factors are component-wise nonnegative, whereas MCR-SVD is capable of constructing pure component factors

with small negative entries. However, such negative entries are typically penalized by nonnegativity constraints in the

iterative optimization algorithm of an MCR-SVD iteration, see for instance [28]. Such differences between MCR-ALS

and MCR-SVD are well-known, but there is no final answer which of the approaches is the “better” one. Depending on

the data (e.g. data with small negative entries due to baseline subtraction) one is sometimes interested in constructing

pure component factors for which small negative entries are also tolerable. In other applications this is not the case.

Grassmann distances and canonical angles are a tool to study these differences.

7. Conclusion

Canonical angle analyses (CAA) can reveal a variety of chemometrically interpretable structures from spectral

data matrices. Pairs of consecutive spectra can be compared with other pairs either in a local way, in order to follow

the reaction process and to monitor the chemical conversion, or in a non-local way, in order to become aware of

significant reorganizations in the chemical composition by the chemical reaction. The canonical angles allow an in-

depth insight into the linear algebra of the row- and column subspaces of the spectroscopic data matrices. The rich

structure of the two-dimensional (canonical) angle plots leaves much room for further chemometric interpretation.

We hope that this work will inspire further analyses and potentially establish CAA as a useful methodology in MCR.
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Figure 13: Convergence of the Kim and Park ANLS algorithm. Top row (left): The mean squared residuals ‖D − C(i)(S (i))T ‖2
F
/(kn) versus the

iteration index with respect to the Frobenius norm. Top row (right): The Grassmann distances dG(C(i),U) versus the iteration index. Bottom row

(left): The Grassmann distances dG(S (i),V) versus the iteration index. Bottom row (left): The Grassmann distances dG(D,C(i)(S (i))T ) versus the

iteration index.
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Figure 14: Convergence of the Lee and Seung multiplicative ANLS algorithm. Top row (left): The mean squared residuals ‖D−C(i)(S (i))T ‖2
F
/(kn)

versus the iteration index with respect to the Frobenius norm. Top row (right): The Grassmann distances dG(C(i) ,U) versus the iteration index.

Bottom row (left): The Grassmann distances dG(S (i),V) versus the iteration index. Bottom row (left): The Grassmann distances dG(D,C(i)(S (i))T )

versus the iteration index.
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