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Abstract

Lorentz, Gauss, Voigt and pseudo-Voigt functions play an important role in hard modeling of NMR spectra. This

paper shows the uniqueness of continuous NMR hard models in terms of these functions by proving their linear

independence. For the case of discrete hard models, where the spectra are represented by finite-dimensional vectors,

criteria are given under which the models are also unique.

Keywords: NMR, hard modeling, model uniqueness, pseudo-Voigt functions, Voigt-functions

1. Introduction

1.1. Overview

NMR spectroscopy is an analytical technique for elucidating the structure of chemical compounds by extracting

qualitative and quantitative information from the spectra. Hard modeling [2] is a first step in the quantitative analysis

of NMR spectra. It attempts to reproduce a given spectrum as a sum of individually parametrized model functions.

The model parameters determine the chemical and physical structure of the system for which the NMR spectra are

measured.

Hard models of NMR spectra typically use model functions of the Lorentz, pseudo-Voigt or Voigt type [12, 6, 8,

15, 1]. The goal is to find an optimal fit of a given spectrum in terms of a finite dimensional expansion of such profiles.

The task of assigning an appropriate number of peak profiles and determining their parameters can be formulated as

a (sometimes high-dimensional) optimization problem. This problem can be solved by numerical optimization [2, 9]

or by neural networks [7, 16]. The model fitting approaches raise the question of whether the hard models contain

some model or parameter ambiguity. Here, we show that such hard models are unique from a rigorous mathematical

point of view. Comparable analyses of linear independent and even orthogonal sets of base functions have already

been presented in the area of so-called Gabor systems [3] and further, wavelet theory [4], but we are not aware of any

analyses of a hard model ambiguity in terms of NMR peak model functions.

The uniqueness question can no longer be answered positively if only approximate expansions in terms of the

model functions are considered or if the data are only given up to an accuracy threshold. Such a situation exists, for

example, for noisy experimental data. In this case, the uniqueness property is increasingly lost as the error tolerance

level increases. An example is presented in Appendix C.1.

This work is organized as follows. First, we give a strict mathematical form to the hard modeling problem . Then,

in Section 2, we prove the linear independence of finite sets of differently parametrized model functions and thus show

the continuous model uniqueness. Section 3 discusses discrete hard models and gives criteria under which discrete

hard models are also unique.

1.2. Problem definition

Lorentz, Gauss, Voigt and pseudo-Voigt profiles are introduced first. A Lorentzian with the center value c and the

half-width parameter w > 0 corresponds to an ideal NMR signal without noise or other physical interferences

Lc,w(x) =
w2

w2 + (x − c)2
. (1)
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A Gaussian with parameters (c,w) ∈ R × R>0 is defined by

Gc,w(x) = exp

(

− ln(2) · (x − c)2

w2

)

(2)

and can compensate for such interferences when combined with a Lorentzian, broadening the range of line shapes.

A Voigt profile with parameters (c, v,w) ∈ R × R>0 × R>0 is given by

Vc,v,w(x) =
(

G0,v ∗ Lc,w

)

(x) =

∫ ∞

−∞
G0,v(y) · Lc,w(x − y)dy (3)

and consists of a Lorentzian convolved with a centered Gaussian at possibly different half widths. Allowing the

Gaussian to be uncentered does not enable a more general type of function, refer to Appendix C.3.

A pseudo-Voigt function, also called Gauss-Lorentz function, with parameters (c,w, λ) ∈ R×R>0×[0, 1] simplifies

Voigtian line shape calculations through the use of a convex combination of Gaussian and Lorentz functions with

identical parameters

PVc,w,λ(x) = λ ·Gc,w(x) + (1 − λ) · Lc,w(x). (4)

Next, we refer to the different peak model functions in terms of the variable fp, where p is a parameter tuple

(e.g p = (c,w)). We assume that for all p the function fp is absolutely integrable and non-zero, i.e. fp ∈ L1(R) \ {0};
this is required for the Fourier transform. Additionally, we define [n] as the set {1, 2, . . . , n} for some n ∈ N>0.

Definition 1.1. An NMR spectrum is a function s : R→ R represented by a sum of a positive finite number of model

functions, each parametrized by pairwise distinct tuples pi and scaling coefficients λi ∈ R \ {0}, where

s(x) ≔

n∑

i=1

λi · fpi
(x). (5)

The set {(λi, pi) | i ∈ [n]} is called a hard model or decomposition of s.

Remark 1.2. We can exclude identical parameter tuples, since fpi
and fp j

can be combined into (λi + λ j) fpi
(x),

if pi = p j for i , j, and we can effectively remove one summand. Removing redundant functions from the spectra

definition eliminates the possibility of mathematically trivial ambiguities of the type fp =
∑k

i=1 λi fp , when
∑k

i=1 λi = 1.

In terms of chemistry, this means assigning multiple models of identical widths and positions to a single peak. Usually,

the model functions fpi
(x) and scaling parameters λi are non-negative, implying s(x) ≥ 0. In Section 2, we examine

the situation in which λi < 0 are permitted.

Definition 1.3. A hard model {(λi, pi) | i ∈ [n]} of an NMR spectrum s is called ambiguous, if another hard model

{(µ j, q j) | j ∈ [m]} of s exists for some m ∈ N>0 and µ j ∈ R \ {0}. Therefore an ambiguously decomposable spectrum s

can be represented as

s(x) =

n∑

i=1

λi fpi
(x) =

m∑

j=1

µ j fq j
(x). (6)

If a hard model is not ambiguous, then it is called unique.

Furthermore, we call a pair of ambiguous hard models {(λi, pi) | i ∈ [n]} and {(µ j, q j) | j ∈ [m]} minimal, if pi , q j

holds for all i, j.

If there are indices k, l in the settings of Definition 1.3 satisfying pk = ql, spectra with minimal ambiguous hard

models can be constructed. This concept is illustrated in Appendix C.2. In cases where these indices exist, we can

subtract min{λk, µl} · fpk
(x) from Eq. (6), resulting in another spectrum s′(x) with an ambiguous decomposition, and

one or two fewer summands. If the resulting hard model is not minimal, we can repeat the procedure. Eventually, this

results in one of three cases.

1) The resulting two sums have at least one summand and are therefore minimally ambiguous.

2) One sum vanishes while the other one does not. Given that f is neither the zero function nor does the scaling

coefficient vanish, the other sum must have at least two summands of different parameter tuples. We can subtract

the first remaining summand to obtain a spectrum with minimally ambiguous hard models.
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3) Both sums vanish, which implies that the summands of the initial hard model are merely permutated. This

implies that the initial decomposition sets are equal and contradict the definition.

So the existence of minimally ambiguous hard models is equivalent to the existence of ambiguous hard models

and it suffices to show that no minimally ambiguous hard models exist for certain model functions f .

Additionally, minimal uniqueness is not primarily a property of a particular spectrum, but a property of the peak

model functions and their parametrizations. We can set k = n + m and λn+ j = −µ j, pn+ j = q j for j ∈ [m] and rewrite

Eq. (6) as follows

0 =

k∑

i=1

λi fpi
(x). (7)

If there is an ambiguous hard model, then there is some k ∈ N and parameter tuples pi, such that the set { fpi
| i ∈ [k]}

is linearly dependent. Conversely, if k ≥ 2, λi ∈ R \ {0} and parameter tuples pi exist, such that Eq. (7) holds, we can

construct spectra which have ambiguous hard models, namely

s(x) = λ1 fp1
(x) =

k∑

j=2

−λ j fp j
(x).

Therefore, the independence of a finite number of model functions with different parameters is equivalent to the

uniqueness of hard models of all NMR spectra belonging to this type of model function. Finally, we always consider

linear independence over the space of functions f : R → R before the Fourier transform and over the space of

functions f : R→ C after the Fourier transform.

2. Unique Hard Models of Continuous Spectra

2.1. Linear Independence of Lorentz Functions

Theorem 1. Any finite number of pairwise different Lorentzians Lc j ,w j
is linearly independent.

This theorem can be proven in two ways. The first method for proving the theorem is straightforward and uses

the structure of the polynomials that underlie the Lorentz functions. The second proof uses the Fourier transformation

and works with technical steps that lay the foundation for later, more complex proofs.

Proof by algebraic means. We assume a linear combination of pairwise different Lorentzians to be given with coeffi-

cients λ1, . . . , λn ∈ R such that

0 =

n∑

j=1

λi

w2
j

w2
j
+ (x − c j)2

with pairwise different parameter tuples pi = (c j,w j) ∈ R × R>0. We need to show λ j = 0 for all j to prove the linear

independence. By multiplication with all denominators we get

0 =

n∑

j=1

λ jw
2
j





n∏

k=1
k, j

w2
k + (x − ck)2





︸                   ︷︷                   ︸

≔ g j(x)

. (8)

For any j the polynomial g j has the degree 2n − 2. Its set of zeros {ck ± wki | k , j} consists of 2n − 2 pairwise

different complex numbers (since wk > 0) and there are no other zeros. Thus z j ≔ c j + w ji cannot be a zero of g j,

i.e. g j(z j) , 0. Inserting zk = ck + wki in (8) for k = 1, . . . , n results in

0 =

n∑

j=1

λ jw
2
j g j(zk) = λk w2

k
︸︷︷︸

>0

gk(zk)
︸︷︷︸

,0

.
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Thus λk = 0 for all k. This proves that any set of finitely many pairwise different Lorentz functions is linearly

independent.

Before proving Thm. 1 in another way, let us define the Fourier transform.

Definition 2.1. Let f ∈ L1(R). The continuous Fourier transform f̂ is defined by

f̂ (ω) = (F f )(ω) =

∫

R

f (x)e−ixωdx, ω ∈ R.

Since the Fourier transform is linear and invertible, if f is continuous [11, Thms. 2.8, 2.10], it is straightforward to

show that a set of functions { fi, | i ∈ [n]} is linearly independent if and only if the set of Fourier transformed functions

{ f̂i | i ∈ [n]} is also linearly independent. Thus, proving Theorem 1 only requires showing the linear independence of

the Fourier transformed functions.

Lemma 2.2. Assume f = Lc,w with parameters c ∈ R and w ∈ R>0. Then, for ω ∈ R we have

(F f )(ω) = C(w) · e−w|ω| · e−icω,

where C(w) ∈ R is a constant only dependent on the parameter w of f .

For its proof, see Appendix A.

The Fourier transformed Lorentzians converge at significantly different rates for different w j. The dominating term

is defined by the functions with the smallest value of w j. We can eliminate all functions with greater convergence

rates, resulting in a simplified case, where only the parameters c j remain. We can prove that the convergence of the

remaining sum of functions implies that all of the remaining coefficients must equal 0.

Lemma 2.3. For j ∈ [m] let c j ∈ R be pairwise distinct and let λ j ∈ C such that

m∑

j=1

λ je
−ic jω

ω→∞→ 0. (9)

Then, all λ j = 0.

Intuitively, a sum of periodic functions can hardly converge, if it is not already constant. The proof of this lemma

only involves the use of basic mathematical theorems. Therefore, it is omitted here and can be found in Appendix

B.1.

The following proof is conducted as a proof by contradiction.

Proof of Thm. 1 by means of Fourier transformations. Let {(c j,w j) | j ∈ [n]} ⊆ R × R>0 be a set of distinct ordered

pairs. We assume that coefficients λ j ∈ C \ {0} exist such that

n∑

j=1

λ je
−w j |ω| · e−ic jω = 0. (10)

Additionally, we define w = min{w j | j ∈ [n]} and I = { j ∈ [n] |w j = w} , ∅. We then multiply Eq. (10) by ew|ω|,
thereby dividing by the smallest rate of decay

∑

j∈I
λ je
−ic jω +

∑

j∈[n]\I
λ je
−(w j−w)|ω| · e−ic jω = 0.

As ω approaches infinity, the functions with greater rates of decay converge to 0 and the above equation implies

∑

j∈I
λ je
−ic jω

ω→∞→ 0. (11)

Note that for j ∈ I we have w j = w and therefore all c j are distinct. Finally, Lemma 2.3 implies λ j = 0 for j ∈ I,

thereby contradicting the initial assumption.
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2.2. Linear Independence of Gaussian Functions

Theorem 2. Any finite number of pairwise different Gaussians Gc j ,w j
is linearly independent.

A well-known result states that applying the Fourier transformation to a Gaussian function again yields a Gaussian

function [11, Ex. 2.6]. While it is possible to prove the independence of multiple Gaussians without Fourier trans-

forming them, applying the Fourier transformation first allows for a consistent method of proof for all four model

functions (1) - (4). In addition, the Fourier transformed Gaussians are also required in Section 2.3.

Lemma 2.4. Assume f = Gc,w with parameters c ∈ R and w ∈ R>0. Then, for ω ∈ R, we have

(F f )(ω) = C(w) · e−w′2ω2 · e−icω,

where C(w) ∈ C is a constant only dependent on the parameter w of f and w′ = w

2
√

ln 2
.

For the proof, see Appendix A.

Proof of Thm. 2. It suffices to show that an arbitrary, finite set of Fourier transformed Gaussians is linearly indepen-

dent. Thus, we can neglect the difference between w′ and w in this proof. We conduct this proof similarly to the

second proof of Thm. 1. Assume that λ j ∈ C \ {0} and (c j,w j) ∈ R × R>0 exist such that

n∑

j=1

λ je
−w2

j
ω2 · e−ic jω = 0. (12)

We define w = min j∈[n] w j and I = { j ∈ [n] |w j = w}. Multiplying Eq. (12) by ew2ω2

and taking the limit as ω

approaches infinity yields

∑

j∈I
λ je
−ic jω +

∑

j∈[n]\I
λ je
−(w2

j
−w2)ω2 · e−ic jω

ω→∞→ 0.

The second sum converges to 0 and we have

∑

j∈I
λ je
−ic jω

ω→∞→ 0.

This is the same as Eq. (11). Lemma 2.3 implies that λ j = 0 for j ∈ I , ∅, contradicting the assumption.

2.3. Linear Independence of Voigt Functions

Theorem 3. Any finite number of pairwise different Voigt functions Vc j ,v j,w j
is linearly independent.

Let us recall a well-known fact that helps proving Theorem 3.

Lemma 2.5. Let f , g ∈ L1(R). Then for all ω ∈ R

(F ( f ∗ g))(ω) = (F f )(ω) · (F g)(ω) (13)

holds.

This lemma can be found and is proven in [11, Thm. 2.15].

Lemma 2.6. Assume f = Vc,v,w with parameters c ∈ R and v,w ∈ R>0. Then, for ω ∈ R, we have

(F f )(ω) = C(v,w) · e−v′2ω2 · e−w|ω| · e−icω,

where C(v,w) ∈ C is a constant only dependent on the parameters v,w of f and v′ = v

2
√

ln 2
.
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Proof. Using Lemmas 2.2, 2.4 and 2.5, it follows that

(FVc,v,w)(ω) = (F (G0,v ∗ Lc,w))(ω)
2.5
= (FG0,v)(ω) · (F Lc,w)(ω)

2.2,2.4
= C(v,w) ·

(

·e−v′2ω2
)

·
(

e−w|ω| · e−icω
)

.

Proof of Thm. 3. Again, we may neglect the difference of v′ and v for this proof. We assume there are pairwise

different triples (c j, v j,w j) ∈ R × R>0 × R>0 and λ j ∈ C \ {0} such that

0 =

n∑

j=1

λ je
−v2

j
ω2 · e−w j |ω| · e−ic jω

︸                     ︷︷                     ︸

≔ g j(ω)

. (14)

Additionally, we define

v = min{v2
j | j ∈ [n]}, w = min{w j | v2

j = v, j ∈ [n]}
I1 = { j ∈ [n] | v2

j = v,w j = w} , ∅, I2 = { j ∈ [n] | v2
j = v,w j , w}, I3 = [n] \ (I1 ∪ I2).

All functions g j with j ∈ I have the smallest rate of convergence. Multiplying Eq. (14) by evω2
+w|ω| leads to

0 =
∑

j∈I1

λ je
−ic jω +

∑

j∈I2

λ je
−(w j−w)|ω| · e−ic jω +

∑

j∈I3

λ je
−(v2

j
−v)ω2 · e−(w j−w)|ω| · e−ic jω.

As ω approaches infinity, the second and the third sum vanish, because for j ∈ I2 the inequality w j > w holds, and for

j ∈ I3 we have v j > v and e−aω2
+bω → 0 for all a > 0, b ∈ R. Consequently, we have the following convergence

∑

j∈I1

λ je
−ic jω

ω→∞→ 0.

This is identical to Eq. (11). Finally, Lemma 2.3 implies λ j = 0 for j ∈ I1 and I1 , ∅, leading to a contradiction.

2.4. Linear Independence of Pseudo-Voigt Functions

The use of pseudo-Voigt functions introduces another type of ambiguity linked to the parameter λ ∈ [0, 1]. It is

important to note this ambiguity when considering the linear independence of the functions.

Remark 2.7. Let n > 1, λ1, . . . , λn ∈ [0, 1], α1, . . . , αn ∈ R>0, and (c,w) ∈ R × R>0. With

α′ =
n∑

i=1

αi, λ′ =

∑n
i=1 αiλi

α′
,

we have

n∑

i=1

αiPVc,w,λi
=





n∑

i=1

αiλi



Gc,w +





n∑

i=1

αi(1 − λi)



 Lc,w

= α′λ′Gc,w + α
′(1 − λ′)Lc,w = α

′PVc,w,λ′ . (15)

The above remark implies that any spectrum with two or more summands of different λ and identical parameters

(c,w) can be represented by using fewer summands and therefore has an ambiguous hard model. This works due to

λ behaving similarly to a linear scaling parameter. In fact, with some redefinitions the problem of fitting λi as well as

some height parameters αi can be solved by linear least squares.

If we consistently write such ambiguities as a single summand, we can assume that for different pseudo-Voigt

functions the tuples (c,w) are distinct. We can even prove a more general result.
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Theorem 4. For j ∈ [n], k ∈ [m] let p j = (c j, v j) and qk = (dk,wk) be distinct parameter tuples with v j,wk > 0.

However, we allow for equalities p j = qk. Then, the set of functions

{

Gc j,v j
| j ∈ [n]

}

∪
{

Ldk ,wk
| k ∈ [m]

}

is linearly independent.

In other words, any finite linear combination of Lorentzians and Gaussians is linearly independent.

Proof of Thm. 4. Using the previous scheme, we only consider the Fourier transformed functions f j(ω) = e−v2
j
ω2 ·e−ic jω

and gk(ω) = e−wk |ω| · e−idkω and assume there are λ j, µk ∈ C \ {0}, such that

n∑

j=1

λ j f j +

m∑

k=1

µkgk = 0. (16)

Using Thm. 2, we can deduce that m ≥ 1, since a sum of Fourier transformed Gaussians can only equal zero if all

λ j = 0. Therefore, w = min{wk | k ∈ [m]} exists and I = {k ∈ [m] |wk = w} , ∅. If we multiply Eq. (16) by ew|ω|, we

have

n∑

j=1

λ je
−v2

j
ω2
+w|ω| · e−ic jω +

∑

k∈I
µke−idkω +

m∑

k∈[m]\I
µke−(wk−w)|ω| · e−idkω = 0.

The first and the third sum each converge to 0 as ω approaches infinity and we arrive at Eq. (11) with differently

named variables. Lemma 2.3 implies µk = 0 for all k ∈ I and I , ∅, contradicting the assumption.

The following corollary indicates that the only type of ambiguity is the one mentioned in Remark 2.7.

Corollary 2.8. Assume s is an NMR spectrum with ambiguous decompositions (α j, p j), j ∈ [n] and (βk, qk), k ∈ [m],

where p j = (c j, v j, λ j), qk = (dk,wk, µk) and

s(x) =

n∑

j=1

α j · PVc j,v j ,λ j
(x) =

m∑

k=1

βk · PVdk ,wk ,µk
(x). (17)

Then for each j ∈ [n] there exists a k ∈ [m] so that (c j, v j) = (dk,wk).

Proof. By applying Eqs. (15), we can modify both sides of Eq. (17) in such a way that each pair of parameters (c j, v j)

and (dk,wk) appears not more than once in each sum. We call the remaining index sets J and K respectively. Now,

assume there exists a j0 ∈ J such that (c j0 , v j0 ) , (dk,wk) for all k ∈ K. Consequently,

α j0λ j0Gc j0
,v j0

(x) = α j0 (1 − λ j0 )Lc j0
,v j0
+

∑

j∈J\{ j0}
−α jλ jGc j ,v j

− α j(1 − λ j)Lc j ,v j
+

∑

k∈K
βkµkGdk ,wk

+ βk(1 − µk)Ldk ,wk

represents a non-trivial linear combination for the Gaussian on the left hand side, whose parameters (c j0 , v j0) do not

appear on any Gaussian on the right. This contradicts Thm. 4.

In other words, NMR spectra consisting of pseudo-Voigt functions with different tuples (c j,w j) have a unique hard

model.

3. Unique and Ambiguous Hard Models of Discrete Spectra

Experimental NMR spectra record signals as a finite sequence of discrete chemical shifts, rather than a continuous

function. In this section we discuss the extent to which the uniqueness of hard models for continuous NMR spectra is

still valid when the spectra are given only at a finite set of points X. Therefore, we need to redefine ambiguity in such
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a way that it suffices if Eq. (6) holds for all x ∈ X. Given n linearly independent functions f1, . . . , fn one can always

choose n points X = {x1, . . . , xn}, so that the matrix A(i, j) ≔ f j(xi) is invertible and the n equations

s(xi) =

n∑

j=1

λ j · f j(xi) i ∈ [n]

have a unique solution in λ1, . . . , λn. Nonetheless, there might be sets of n points X at which A is non-invertible even

for linearly independent functions.

In general, increasing the number of data points k ≔ |X| leads to a higher number of constraints, which are to be

satisfied by the hard model as written in terms of the respective function bases. The limit case with infinitely many data

points corresponds to continuous spectra and unique hard models. Another crucial quantity is the number of model

functions m, n ∈ N. Increasing their number provides more degrees of freedom, which tends towards ambiguous hard

models due to a larger number of parameters to solve k equations. So we want to find the number of points k f (m, n)

depending on the function class f , which guarantees the uniqueness of a hard model of a sum of n functions in m

differently parametrized functions.

Definition 3.1. Consider a parameter tuple p and let fp : R → R. Additionally, let m, n ∈ N. We define k f (m, n) as

the maximum k ∈ N, so that a set X ⊆ R of k points as well as m + n parametrized functions fp1
, . . . , fpn

, fq1
, . . . , fqm

with positive scaling coefficients λi, µ j ∈ R>0 exist fulfilling

n∑

i=1

λi fpi
(x) =

m∑

j=1

µ j fq j
(x) for all x ∈ X.

Remark 3.2. It should be noted that not all such sets X are finite. For instance, if fc(x) = sin(x− c) we choose c1 = 0,

c2 = π and have sin(x) = sin(x − π) for x ∈ {kπ | k ∈ Z}. In these cases, we conventionally write ksin(1, 1) = ∞.

Note that in general k f (m, n) = k f (n,m) and for m1 ≤ m2 and n1 ≤ n2 we have k f (m1, n) ≤ k f (m2, n) and

k f (m, n1) ≤ k f (m, n2) respectively.

k f (m, n) is closely linked to the uniqueness of spectra hard models over a finite set X. If a spectrum s consisting of

n functions is measured at any k f (m, n)+1 points, there is no hard model of up to m differently parametrized functions

which is equal to s at all k f (m, n) + 1 points.

If negative λi, µ j were allowed in Def. 3.1, we would have k f (m, n) = k f (m − 1, n + 1) = k f (m + 1, n − 1), given

that m − 1, n − 1 are greater than 0. This would imply that k f depends solely on m + n. However, there may exist a

function f where k f (1, 3) , k f (2, 2), if limited to positive linear combinations.

As exact values for k f cannot yet be obtained for all model functions (1) - (4), our aim is to at least establish lower

and upper bounds.

Theorem 5. Assume f0,1 ∈ L1(R) \ {0} and let F be the set of functions
{

fc,w = f0,1
(

x−c
w

) ∣
∣
∣ c ∈ R,w ∈ R>0

}

.

We impose the following set of conditions on F :

(I) The function f0,1 is continuous.

(II) The function f0,1 is even, i.e. f0,1(x) = f0,1(−x) for all x ∈ R.

(III) The function f0,1 is monotonically decreasing for x > 0.

(IV) For all c ∈ R,w > 1 there exists some ϑw ∈
[

0, 1
w

)

such that

fc,1(x)

f0,w(x)

x→∞→ ϑw.

(V) f0,1(0) = 1 and f0,1(1) = 1
2
.

Then k f (m, n) ≥ 2m + 2n − 2.
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Given m ≥ n ∈ N, the proof constructs two sets of m and n functions with different parameters, whose scaled

sums have exactly 2m+ 2n− 2 intersections. The intersection points cannot be given explicitly, but are implied by the

intermediate value theorem [13], since we can explicitly name 2m+2n−1 points where the first sum is strictly greater

than the second sum and vice versa, alternating at each point. The detailed proofs of each inequality are omitted here

and can be found in Appendix B.2. Here, we present an overview of the construction. Fig. 1 gives an example for

m = 10, n = 5 and Lorentzian peaks.

We denote the sums of the functions by fm and fn respectively. Both sums have one summand of significant width.

This term of fm has a width of w1 and is centered around c1 = 0. The corresponding summand of fn is centered

around a sufficiently large point c1 > 0 with a width of v1 < w1. The two functions intersect twice. In Fig. 1, the two

intersections lie at about x = 297 and x = 309.5 and can be seen in the bottom left plot.

The remaining intersections can be found within two intervals, namely in [−m−w1,−w1] and in [c1 − v1, c1 + v1].

We define functions of very small widths so that the amount added to the sum outside a given range around their center

is negligible. In the left interval, n − 1 functions are defined in both sums, and each pair of functions contributes 4

intersections, while only marginally interfering with other peaks. This is illustrated in the top two plots of Fig. 1.

If m > n, we define the remaining m − n functions of fm in the right interval so that they each intersect the widest

function of fn twice. This can be seen in the bottom left of Fig. 1

Adding the first two intersections to the 4n − 4 found in the left interval and to the 2(m − n) found in the right

interval leads to a total number of 2m + 2n − 2 intersections.
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Figure 1: Two sums of Lorentzians with different parameters, showing the maximum number of intersection points.

3.1. Lorentz Functions

Again, we start with the simplest type of model function. Consider m, n ∈ N, and a finite subset X ⊆ R. Let

(ci, vi), (d j,w j) represent different parameter tuples and let λi, µ j ∈ R such that

n∑

i=1

λiv
2
i

v2
i
+ (x − ci)2

=

m∑

j=1

µ jw
2
j

w2
j
+ (x − d j)2

for x ∈ X.
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After multiplying both sides by both denominators the resulting polynomials have a degree of 2m + 2n − 2 and the

difference can have at most 2m+2n−2 zeros. If more zeros existed, then the equality would hold for all x ∈ R, which

is impossible as per Thm. 1. This results in an upper bound of kL(m, n) ≤ 2m + 2n − 2.

To confirm if f0,1 ≔ L0,1 fulfills the requirements of Thm. 5, we can see that Lc,w(x) = L0,1

(
x−c
w

)

. Additionally,

conditions (I) - (III) and (V) are trivially satisfied. Assume c ∈ R and w > 1. Then, we have

Lc,1(x)

L0,w(x)
=

w2
+ x2

w2
(

1 + (x − c)2
)

x→∞→ 1

w2
<

1

w
,

satisfying condition (IV) as well. By Thm. 5 we can deduce that kL(m, n) ≥ 2m + 2n − 2 and ultimately, we have

kL(m, n) = 2m + 2n − 2.

This proves that two sums of n and m Lorentz functions cannot be equal at 2m+2n−1 or more points. Conversely,

for a spectrum of 10000 points with 40 peaks present, a sum of 4960 or fewer Lorentz functions would be unable to

replicate the spectrum at these points.

3.2. Gauss Functions

Again we would like to obtain a value for kG(m, n).

First, we must prove that the family of Gaussians, as defined in Eq. (2), satisfies the requirements of Thm. 5. Note

that Gc,w(x) = G0,1

(
x−c
w

)

. Also note that conditions (I) - (III) as well as (V) are trivially satisfied. If c ∈ R and w > 1,

then

Gc,1(x)

G0,w(x)
= exp

(

− ln(2)

((

1 − 1

w2

)

x2 − 2cx + c2

))

x→∞→ 0 <
1

w
.

Thus, Thm. 5 implies that kG(m, n) ≥ 2m + 2n − 2.

Second, for an upper bound, we refer to the following lemma.

Lemma 3.3. For m, n ∈ N we have

kG(m, n) ≤ 2m+n − 2.

The proof of this lemma relies heavily on Rolle’s theorem [17, App. A4]. According to this theorem, if a differ-

entiable function f : R → R has at least n zeros a1 < . . . < an, then its derivative f ′ has at least n − 1 zeros bi with

ai < bi < ai+1. Conversely, if the derivative f ′ has no more than n− 1 zeros, we can conclude that f must have at most

n zeros. This argument can also be applied iteratively. Assuming that f is differentiable n-times and f (n) has no more

than k zeros, then the number of zeros of f must be less than or equal to k + n. In the proof, we define a procedure for

eliminating each summand by utilizing differentiation to obtain an upper bound to the number of zeros of a sum of

scaled Gaussians. We also use the fact that for some polynomial p(x) we have d
dx

(

p(x)Gci,vi
(x)

)

= q(x)Gci,vi
(x), where

q(x) is another polynomial satisfying deg(q) ≤ deg(p) + 1. The proof is omitted and can be found in Appendix B.3

This represents the only information on the upper limit of the number of intersections of sums of Gaussians. We

can deduce that 2m + 2n − 2 ≤ kG(m, n) ≤ 2m+n − 2. When m = n = 1, this implies that kG(1, 1) = 2, which can also

be obtained by transforming λGc,v(x) = µGd,w(x) into a quadratic equation.

However, this result is of limited practical use. For a spectrum of 10000 points with 40 Gaussians present, we

cannot exclude the possibility of a single Gaussian fitting the spectrum exactly at all 10000 points, since 240+1 − 2 >

10000.

However, for a spectrum of 10000 points with 10 Gaussians present, we can exclude the possibility of 3 or fewer

Gaussians fitting the spectrum due to 210+3 − 2 = 8190 < 10000.

3.3. Voigt Functions

It is currently unclear if kV (m, n) < ∞. However, a lower bound can be found. Recall that

Vc,v,w(x) = (G0,v ∗ Lc,w)(x)

lim
vց0

Vc,v,w(x) = lim
vց0

(G0,v ∗ Lc,w)(x) = (δ ∗ Lc,w)(x) = Lc,w(x),

where δ is the Dirac delta distribution. This implies that the proof of Thm. 5 can also be conducted by using Voigt

functions with sufficiently small parameters v. Therefore, we can achieve at least 2m+2n−2 intersections using sums

of m and n Voigt functions and kV (m, n) ≥ 2m + 2n − 2.

10



3.4. Pseudo-Voigt Functions

For all m, n ∈ N we can easily establish a lower bound to the number of intersections kPV (m, n) ≥ 2m + 2n − 2, by

selecting λi = µ j = 0. The resulting functions are all Lorentzian and can have at least 2m + 2n − 2 intersection points

as proven in Thm. 5. Note that selecting λi = µ j = 0 results in a significantly simplified version of the function.

To find an upper bound, we refer to the following lemma.

Lemma 3.4. For m, n ∈ N, we have

kPV (m, n) ≤
(

2m+n+2 − 2
)

(m + n) − 2.

The proof can be found in Appendix B.4.

Numerical results suggest that neither the upper nor the lower bound is strict for any m, n. Even for m = n = 1,

the bounds imply 2 ≤ kPV (1, 1) ≤ 26. Nonetheless, we can find parameters such that at least 6 intersections between

two pseudo-Voigt functions exist and therefore 2 < 6 ≤ kPV (1, 1) ≤ 26, see Appendix C.4.

This result, again, is of limited use. For a spectrum of 10000 points consisting of 5 pseudo-Voigt peaks, we can

only guarantee that three or fewer pseudo-Voigt functions cannot fit the spectrum at all points. For 4 functions, we

have (25+4+2 − 2) · (5 + 4) − 2 = 18412 > 10000.

4. Conclusion

Modeling and simulation in natural sciences, engineering, medicine and other fields is an important tool for

gaining a deeper understanding of the system behavior and for decision making. Model uniqueness is a valuable

prerequisite for drawing the right conclusions from the simulated data. We hope that this work can contribute to a

better understanding of the reliability and uniqueness of hard models for NMR spectral data and their qualitative and

quantitative analysis. Such an analysis is a building block for successfully solving chemical structure elucidation

problems.

In this work, we first state that the uniqueness of NMR hard models in terms of Lorentz, Gauss, pseudo-Voigt and

Voigt functions with distinct center and width values requires mathematical analysis. Proofs are given for the linear

independence of finite sets of these basis functions. Thus, any continuous NMR spectrum consisting of a finite sum of

these functions can be uniquely hard modeled. For discrete spectra, we have introduced a minimum number of points

k f (m, n)+ 1 required in order to prevent a sum of n model functions from being represented by a sum of m differently

parametrized model functions and in most cases we provided upper and lower bounds on k f (m, n). Conversely, if the

number of points of a spectrum consisting of n functions is given, we have a lower bound on the number m of model

functions needed for an ambiguous hard model. However, it is uncertain whether an arbitrary set X allows ambiguous

decompositions for |X| ≤ k f (m, n), but it is known that there is some set X of this cardinality so that an ambiguous

hard model exists. It is understood that the lower bound given by Thm. 5 is strict for Lorentz functions and not strict

for pseudo-Voigt functions. However, it remains uncertain whether it is really strict for Gaussians. Numerical tests

indicate strictness by randomly choosing parameters for both sums and then checking the number of intersections.

In summary, hard models of continuous NMR spectra are unique, and hard models of discrete NMR spectra can

be assumed to be unique if the number of points at which the spectrum is recorded is high and if the number of basis

functions used to build the model is not too large.
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Appendix A. Two Fourier Transforms

In general, the Fourier transform of functions commonly used in signal theory is well known. In this appendix,

we derive two formulas needed in this paper.

Lemma 2.2

Let (c,w) ∈ R × R>0 and f = Lc,w. By applying the Fourier transform to f and substituting y = x−c
w

we obtain

(F f )(ω) =

∫

R

w2

w2 + (x − c)2
· e−ixωdx

= we−icω ·
∫

R

1

1 + y2
· e−iy(wω)dy.

The integral
∫

R

1
1+y2 e−iyαdy = πe−|α| is well known in complex analysis and is used to determine the characteristic

function of a Cauchy distribution [10, App. D]. Consequently, we have

(F f )(ω) = wπ
︸︷︷︸

≔C(w)

e−w|ω| · e−icω.

Lemma 2.4

Let (c,w) ∈ R × R>0 and f = Gc,w. By applying the Fourier transform to f and substituting y =
√

ln 2
w

(x − c) we

obtain

(F f )(ω) =

∫

R

e
− ln(2)· (x−c)2

w2 · e−ixωdx

=
w
√

ln 2
e−icω ·

∫

R

e−y2 · e−i w√
ln 2

yω
dy.

To simplify the calculations, we write α ≔ iwω

2
√

ln 2
. All that remains is to find a value for the integral

∫

R

e−(y2
+2yα)dy = eα

2

∫

R

e−(y+α)2

dy.

To calculate the integral on the right-hand side we define the function g(β) =
∫

R
e−(y+β)2

dy : C → C. Now, for β ∈ R,

we have g(β) =
√
π for this well-known integral. [11, Ex. 2.6]. Since g is an entire function obtained as an integral

over another entire function, we have g(β) =
√
π for all β ∈ C [14, Cor. 3.57].

This leads to the following equation

(F f )(ω) =
w
√

ln 2
exp

(

−w2ω2

4 ln(2)
+ −icω

)

·
√
π.

Finally, we can define w′ = w

2
√

ln(2)
∈ R>0 and obtain

(F f )(ω) =

√
πw
√

ln 2
︸︷︷︸

≔C(w)

e−w′2ω2 · e−icω.

Appendix B. Proofs of mathematical theorems

This appendix contains those proofs that are omitted from the main body of the paper for better readability.
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Appendix B.1. Proof of Lemma 2.3

We conduct this proof in two steps. First, we prove that there are some µ j ∈ C such that

m∑

j=1

µ je
−ic j x = 0 (B.1)

holds. Second, we show that the functions e−ic j x : R → C are linearly independent for different c j. Therefore, all

µ j = 0, which implies λ j = 0 for all j.

We assume that |c1| = max
{

|c j|
∣
∣
∣ j ∈ [m]

}

. Furthermore, we have c1 , 0, if m ≥ 2.

First, we consider the case where m = 1 and c1 , 0. We define the sequence ωk = k · 2π
c1

for k ∈ N, satisfying

e−ic1ωk = 1. From the convergence in (9) we can deduce that λ1 = 0. In the case where c1 = 0, (9) still implies λ1 = 0.

Second, we consider the case where m ≥ 2. For notational purposes, we define f j(ω) = e−ic jω. Next, we examine

the sequence
(

ω
(1)

k

)

k∈N
≔ k · 2π

c1
satisfying

λ1 f1(ω
(1)

k
) = λ1.

Additionally, we define µ1 = λ1. The Bolzano-Weierstrass theorem implies the existence of a convergent subsequence

of the bounded sequence λ2 f2
((

ω
(1)

k

))

converging to some µ2 ∈ C. The corresponding subsequence of
(

ω
(1)

k

)

is denoted

as
(

ω
(2)

k

)

, which satisfies

λ1 f1
(

ω
(2)

k

) k→∞→ µ1 and λ2 f2
(

ω
(2)

k

) k→∞→ µ2.

If we define subsequences
(

ω
(3)

k

)

, . . . ,
(

ω
(m)

k

)

and limits µ3, . . . , µm according to the above procedure, we can obtain

the following convergences for all j ∈ [m]

λ j f j

(

ω
(m)

k

) k→∞→ µ j.

Note that 0 , |µ j| = |λ j|, since the image of λ j f j is a subset of {z ∈ C, | |z| = |λ j|}, which is a closed set. Additionally,

let x ∈ R. We define ω
(m,x)

k
= ω

(m)

k
+ x for all k ∈ N and note that

λ j f j

(

ω
(m,x)

k

)

= λ j f j

(

ω
(m)

k

)

e−ic j x
k→∞→ µ je

−ic j x.

By using (11) for all x ∈ R, we obtain

m∑

j=1

λ j f j

(

ω
(m,x)

k

) k→∞→
m∑

j=1

µ je
−ic j x = 0.

To complete the proof, it suffices to show that the functions e−ic j x are linearly independent for different c j. Let

x1 ≔
π

2·|c1| > 0. This ensures that x1c j ∈
[

− π
2
, π

2

]

and thus, the values e−ic j x1 are distinct for different c j. Additionally,

let

x2 = 2x1, x3 = 3x1, . . . , xm−1 = (m − 1)x1, xm = 0.

Evaluating Eq. (B.1) at the points x1, . . . , xm yields a homogeneous linear system of equations with the following

matrix

V =





e−ic1 xm · · · e−icm xm

e−ic1 x1 · · · e−icm x1

e−ic1 x2 · · · e−icm x2

...
. . .

...

e−ic1 xm−1 · · · e−icm xm−1





=





1 · · · 1

e−ic1 x1 · · · e−icm x1

(

e−ic1 x1

)2
· · ·

(

e−icm x1

)2

...
. . .

...
(

e−ic1 x1

)m−1
· · ·

(

e−icm x1

)m−1





.

This Vandermonde matrix has det(V) =
∏

j<k

(

e−ick x1 − e−ic j x1

)

, [5, 4.6]. Since the values eic j x1 are distinct, we

have det(V) , 0. Therefore, all µ j = 0. The fact |µ j| = |λ j| implies the desired result.
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Appendix B.2. Proof of Theorem 5

From conditions (I) - (V) we obtain the following auxiliary statements:

A: We have f0,1(x)
x→∞→ 0, using f0,1 ∈ L1(R) and condition (III).

B: For every w ∈ R>0 there exists some x∗ ∈ R>0 such that f0,w(x∗) < 1
10

. This is because statement A implies

f0,w(x) = f0,1
(

x
w

) x→∞→ 0.

C: There exists some δ ∈ R>0 such that f0,δ
(

1
2

)

< 1
30m

. This is true due to the fact that statement A implies

f0,δ
(

1
2

)

= f0,1
(

1
2δ

) δ→0→ 0.

D: Assume v ≤ w, conditions (II) and (III) imply the relation f0,v(x) ≤ f0,w(x) for all x.

E: For every m ∈ N there exists w′ ∈ R>0 such that f0,w′(x) ∈ [0.4, 0.5] for x ∈ [w′,w′ + m]. Based on conditions

(I), (III), (V) and statement A there exists a point y > 1 where f0,1(y) = 0.4. We define w′ = m
y−1

and obtain

f0,w′ (w
′
+ m) = f0,1

(

1 +
m

w′

)

= 0.4.

Note that for w ≥ w′ statement E also holds.

F: For all c ∈ R, w ∈ R>0 and x ∈ [c − w, c + w] we have fc,w(x) ≥ 1
2

based on conditions (I) - (III) and (V).

G: For each δ > 0 there exists some N ∈ N such that f0,δ/N(δ) < 1
10

. This holds because statement A implies

f0,δ/N(δ) = f0,1(N)
N→∞→ 0.

We frequently refer to these statements and denote them by their abbreviated definitions A −G.

Let m ≥ n be natural numbers. For i ∈ [n] and for j ∈ [m] let fci ,vi
(x) and fd j ,w j

(x) be functions parametrized as

defined in Thm. 5 and let f0,1 satisfy conditions (I) to (V). We need to define the parameters ci, d j, vi and w j, and prove

that the sums

fn(x) =

n∑

i=1

λi fci ,vi
(x) and fm(x) =

m∑

j=1

µ j fd j ,w j
(x) (B.2)

are equal in at least 2m + 2n − 2 different points x ∈ X.

Let w′ be sufficiently large such that f0,w′(x) ∈ [0.4, 0.5] for x ∈ [w′,w′ + m] and let ρ = 3mn. We define

w1 = max{m,w′, ρ + 1} and choose x∗ sufficiently large such that f0,w1
(x∗) < 1

10
. Let δ be sufficiently small such that

f0,δ
(

1
2

)

< 1
30m

. Note that δ < 1
2
. Then, let N be sufficiently large such that f0,δ/N(δ) < 1

2
. The previous definitions use

statements E, B,C and G respectively. Additionally, we define the following parameters

c1 = x∗ +
1

2
(m − n + 1), v1 =

1

2
(m − n + 1), λ1 =

1

2

ci = −w1 − i + 1, vi = δ, λi =
5

2
for i = 2, . . . , n

d1 = 0, w1 prev. defined µ1 = 1

d j = −w1 − j + 1, w j =
δ

N
, µ j = 2 for j = 2, . . . , n

d j = x∗ + j − n, w j = δ, µ j = 1 for j = n + 1, . . . ,m.

Note that these parameters yield functions that mainly intersect in two intervals. Firstly, in [−w1 − m,−w1] and

secondly, in [x∗, x∗ + m − n + 1]. Additionally, there are two more intersection points. One is within the interval

(−w1 − 1
2
, x∗ + 1

2
) and the other is greater than x∗ + m − n + 1.

In total, we define 2m+ 2n− 1 points at which fn < fm and fm < fn alternate. Since both functions are continuous,

according to the intermediate value theorem [13] there must be at least 2m+ 2n− 2 points x ∈ X, where fn(x) = fm(x).
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Part 1: [−w1 − m,−w1]

The first 4n − 3 points are defined as follows

x0 = −w1 − n +
1

2
, x4 = −w1 − n +

3

2
, . . . , x4n−4 = −w1 −

1

2
(B.3)

x1 = −w1 − n + 1 − δ, x5 = −w1 − n + 2 − δ, . . . , x4n−7 = −w1 − 1 − δ (B.4)

x2 = −w1 − n + 1, x6 = −w1 − n + 2, . . . , x4n−6 = −w1 − 1 (B.5)

x3 = −w1 − n − 1 + δ, x7 = −w1 − n − 2 + δ, . . . , x4n−5 = −w1 − 1 + δ. (B.6)

All points lie within the given interval and based on (II), (V), D and E we have f0,w1
(xk) ∈ [0.4, 0.5]. Let x be a point

defined by Eqs. (B.3). Note that v1 < m ≤ w1 and c1 ≥ 0, resulting in

fc1,v1
(x)

(III)

≤ fc1 ,v1
(0)

(II)
= f0,v1

(c1)

D

≤ f0,w1

(

x∗ +
1

2
(m − n + 1)

)
(III)

≤ f0,w1
(x∗)

B
<

1

10
.

We observe that |x − ci| ≥ 1
2

for all i = 2, . . . , n and obtain

fn(x) =
1

2
· fc1,v1

(x) +

n∑

i=2

5

2
· fci ,vi

(x)

B,C
<

1

20
+

5(n − 1)

2 · 30m
<

2

15
<

2

5
≤ f0,w1

(x) ≤ fm(x).

Note that all functions are nonnegative.

Let x be a point defined in Eqs. (B.4), where x = −10m − k − δ for some k = 1, . . . , n − 1. Additionally, let

cl = dl = −10m − k for some l ∈ {2, . . . , n}. It follows that 5
2

fcl ,δ(cl − δ) = 5
2

f0,1(−1) = 5
4

and fn(x) ≥ 5
4
. Similarly, we

have

3 fdl ,δ/N(cl − δ) = 3 f0,δ/N(−δ)
G
<

3

10
.

Moreover, we again have |x − d j| ≥ 1
2

for j ∈ [m] \ {1, l}. Finally, we have

fm(x) = 1 · fd1 ,w1
(x) + 3 · fdl ,wl

(x) +
∑

j∈[m]\{1,l}
µ j · fd j ,w j

(x)

E,G,C

≤ 1

2
+

3

10
+

3(m − 2)

30m
<

9

10
<

5

4
≤ fn(x).

The above inequality holds for all x defined by Eqs. (B.6) based on the same arguments. It is important to note that

fcl ,δ(cl − δ) = fcl ,δ(cl + δ).

Finally, suppose x is a point defined in Eqs. (B.5), where x = −10m − k for some k = 1, . . . , n − 1 and let

cl = dl = −10m − k. Following similar arguments, we obtain

fn(x) =
1

2
fc1,v1

(x) +
5

2
fcl ,vl

(x) +
∑

i∈[n]\{1,l}
λi fci ,vi

(x)

B,C

≤ 1

20
+

5

2
+

5(n − 2)

2 · 30m
<

158

60
< 3 = 3 · fdl ,wl

(x) ≤ fm(x).

Part 2: [x∗, x∗ + m − n + 1]

To begin the second part of the proof, we define

y0 = x∗ +
1

2
, y2 = x∗ +

3

2
, . . . , y2m−2n = x∗ + m − n − 1

2
(B.7)

y1 = x∗ + 1, y3 = x∗ + 2, . . . , y2m−2n−1 = x∗ + m − n − 1. (B.8)
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Note that all yk ∈ [c1 − v1, c1 + v1].

We use the same procedure as in the first part of the proof. Let y be a point as defined by Eqs. (B.7). By design,

the distance from y to any peak center except for c1 is at least 1
2
. We can conclude that

fm(y) = fd1,w1
(y) +

n∑

j=2

µ j fd j ,w j
(y)

B,C

≤ 1

10
+

1

10
<

1

4

F

≤ 1

2
fc1,v1

(y) ≤ fn(y).

Let y be a point as defined by Eqs. (B.8). Again, there exists an l such that y = dl, and the distance from y to the

centers of other peaks is at least 1
2
. This implies that

fn(y) =
1

2
fc1 ,v1

(y) +

n∑

i=2

5

2
fci ,vi

(y)

C
<

1

2
+

1

12
< 1 = fdl ,wl

(y) ≤ fm(y).

Note that fn(x4n−4) < fm(x4n−4) and fm(y0) < fn(y0).

Part 3: [x∗ + m − n + 1,∞)

To conclude the proof, our goal is to demonstrate the existence of some xr ∈ R where fn(xr) < fm(xr). Utilizing

condition (IV), we have

lim
x→∞

fn

f0,w1

(x) = lim
x→∞

n∑

i=1

λi fci ,vi
(x)

f0,w1
(x)
= lim

x→∞

n∑

i=1

λi fci ,1 (x · vi)

f0,w1/vi
(x · vi)

(IV)
=

n∑

i=1

λi · ϑw1/vi
<

n∑

i=1

λivi

w1

<
3mn

w1

.

The preceding arguments show that as x approaches infinity, the function
fn

fd1 ,w1

(x) approaches a value
ρ

w1
< 1. Conse-

quently, there exists some xr > x∗ + m − n + 1 at which the following inequality holds true

fn

fd1 ,w1

(xr) < 1 ≤ fm

fd1,w1

(xr).

Conditions (1) and (3), along with statement A, imply that fc,w(x) ≥ 0. Therefore, fn(xr) < fm(xr).

Ultimately, we have identified a set of (4n − 3) + (2m − 2n + 1) + 1 = 2m + 2n − 1 points, namely

x0 < . . . < x4n−4 < y0 < . . . < y2m−2n < xr

at which fn < fm and fm > fn alternate, implying there are at least 2m + 2n − 2 points x ∈ X with fn(x) = fm(x).

Appendix B.3. Proof of Lemma 3.3

Let m, n ∈ N and let pi = (ci, vi) and q j = (d j,w j) be parameter tuples. Further, let λi, µ j ∈ R for i ∈ [n], j ∈ [m].

Note that assuming positive coefficients λi, µ j does not improve the upper bound in this proof. Therefore, we define

λn+ j = −µ j and pn+ j = q j. For some x ∈ X we consider the following equation

n∑

i=1

λiGpi
(x) =

m∑

j=1

µ jGq j
(x)

m+n∑

i=1

λiGpi
(x) =

m+n∑

i=1

p
(0)

0,i
(x)eq

(0)
i

(x)
= 0.
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In the above equation, q
(0)

i
(x) denotes the corresponding quadratic polynomial and p

(0)

d,i
denotes the corresponding

polynomial of degree d. The upper index p( j) denotes the iteration step.

If we multiply both sides of the equation by e−q
(0)

1
(x) we obtain

m+n∑

i=2

p
(0)

0,i
(x)eq

(1)
i

(x)
+ p

(0)

0,1
(x) = 0.

Let us define the left-hand side as a differentiable function f (x) and examine the zeros of its derivative f ′(x)

f ′(x) =

m+n∑

i=2

p
(1)

1,i
(x)eq

(1)

i
(x)
= 0.

Note that we now have one less summand. We proceed by multiplying by the inverse of the first remaining exponential

term e−q
(1)

2
(x) resulting in

m+n∑

i=3

p
(1)

1,i
eq

(2)

i
(x)
+ p

(1)

1,2
= 0.

The function g(x) on the left-hand side shares its zeros with f ′(x) and is also smooth. Thus, we differentiate twice and

examine the number of solutions of

g′′(x) =

m+n∑

i=3

p
(2)

3,i
(x)eq

(2)
i

(x)
= 0.

After each iteration step, the number of summands decreases by one, allowing us to repeat the procedure. Upon

iterating the process k times, we obtain

(

d

dx

)2k−1

r(x) =

m+n∑

i=k+1

p
(k)

(2k−1,i)
(x)eq

(k)
i

(x)
= 0.

To eliminate the next term, we can multiply the above equation by e−q
(k)

k+1
(x) and observe that the resulting function has

the same set of zeros as the previous one. Differentiating 2k more times lets the polynomial p
(k)

(2k−1,k+1)
(x) vanish and

the resulting polynomial factors of the other terms have a degree of 2k − 1 + 2k
= 2k+1 − 1.

After m + n − 1 steps we ultimately arrive at

(

d

dx

)2m+n−2

z(x) = p
(m+n−1)

(2m+n−1−1,m+n)
(x)eq

(m+n−1)
m+n (x)

= 0

This equation has at most 2m+n−1 − 1 solutions, indicating that z(x) has at most 2m+n−1 − 1 + 2m+n−2 zeros by Rolle’s

theorem. Iterating backwards yields that the original function f has at most





m+n−1∑

i=1

2i




− 1 = 2m+n − 2

zeros.

Appendix B.4. Proof of Lemma 3.4

We conduct this proof similarly to the proof of Lemma 3.3 but omit some details.

For i ∈ [n] and j ∈ [m] let PVpi
(x) and PVq j

(x) be pseudo-Voigt functions and let αi, β j ∈ R, with parameters

pi = (ci, vi, λi), q j = (d j,w j, µ j). Assuming non-negativeαi, β j currently does not improve the upper bound. Therefore

we define αn+ j = −β j and pn+ j = q j. For some x ∈ X we consider the equation

m+n∑

i=1

αiλie
− ln(2)

(x−ci )2

vi + α(1 − λi)
v2

i

v2
i
+ (x − ci)2

= 0.
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Multiplying both sides by
∏n+m

i=1 v2
i
+ (x − ci)

2 results in





m+n∑

i=1

p
(0)

(2m+2n,i)
(x)eq

(1)

i
(x)



 + r(x) = 0

with p
( j)

d,i
being the corresponding polynomial of the degree d at step j of the iteration, q

( j)

i
being the corresponding

quadratic polynomial at step j and r(x) being a polynomial of degree 2m + 2n − 2. We may define the left-hand side

as a function f (x) and examine the zeros of its derivative

(

d

dx

)2m+2n−1

f (x) =

m+n∑

i=1

p
(1)

(4m+4n−1,i)
(x)eq

(1)
i

(x)
= 0.

This is the initial step of our iteration. In step j, we multiply the equation by e−q
( j)

k
(x) and differentiate the resulting

function ((m + n) · 2k+1) times, akin to the proof of Lemma 3.3.

Upon completing m + n − 1 steps we arrive at

p
(m+n)

((m+n)2m+n+1−1,m+n)
(x)eq

(m+n)
m+n (x)

= 0.

This equation has at most (m + n) · 2m+n+1 − 1 zeros. By utilizing Rolle’s theorem, we can determine an upper limit

for the number of zeros of the initial equation by adding up the number of differentiations performed throughout the

process. The total number of differentiations performed is

m+n−1∑

k=1

[

(m + n)2k+1
]

+ 2m + 2n − 1 =





m+n−1∑

k=0

2k




2(m + n) − 1

= (2m+n+1 − 2)(m + n) − 1.

Adding the two numbers yields a maximum number of
(

2m+n+2 − 2
)

(m + n) − 2

intersections between m and n pseudo-Voigt functions.

Appendix C. Illustrations and minor proofs

In this appendix we want to give some illustrations of the notions of practical and minimal ambiguity. In addition,

we constructively prove that kPV (1, 1) ≥ 6 and prove the small remark made when defining Voigt functions in Eq. (3).

Appendix C.1. Practical and Theoretical Ambiguity

For distinct parameter tuples (ci,wi), Cor. 2.8 implies that the function s(x) can be uniquely decomposed by

s(x) =

n∑

i=1

αiPVci,wi,λi
(x)

in an exact, analytical sense. If we were to define the practical ambiguity of spectral hard models, it would be a case

where there is some ε > 0 for which the following inequality holds for all x ∈ [a, b]
∣
∣
∣
∣
∣
∣
∣
∣

n∑

i=1

αiPVci,vi ,λi
(x) −

m∑

j=1

β jPVd j,w j ,µ j
(x)

∣
∣
∣
∣
∣
∣
∣
∣

< ε.

In this setting there is no practical uniqueness, even if ε is chosen arbitrarily small, due to the continuity of pseudo-

Voigt (and other) model functions with respect to their parameters. Thus, different parameters can always be chosen

that are very close to the original ones.

Furthermore, Fig. C.2 demonstrates practical ambiguities with significantly different parameters. Since the maxi-

mum deviation at any point is 0.0026, assuming there is a noise level of 1%, both solutions would be indistinguishable

in these plots and practically ambiguous with ε = 0.01.
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Appendix C.2. Construction of Minimal Ambiguous Spectra

We again consider Fig. C.2. Both fits of the spectrum have identified the leftmost peak almost identically. There-

fore, we can construct another spectrum with an ambiguous hard model and fewer model functions, as shown in

Fig. C.3.

Appendix C.3. A Different Representation of Voigt Functions

We demonstrate that the Voigt function resulting from Vc,d,v,w(x) = Gc,v ∗ Ld,w where c, d ∈ R, and v,w ∈ R>0 can

be represented using the format defined in (3). First, for c′, d′ ∈ R we have

Gc,v(x + c′) = exp

(

− ln(2) · (x + c′ − c)2

v2

)

= Gc−c′,v(x)

Ld,w(x + d′) =
w2

w2 + (x + d′ − d)2
= Ld−d′,w(x).

Second, we get

(Gc,v ∗ Ld,w)(x) =

∫

R

Gc,v(y)Ld,w(x − y)dy

=

∫

R

Gc,v(y + c)Ld,w(x − y − c)dy

=

∫

R

G0,v(y)Lc+d,w(x − y)dy

= (G0,v ∗ Lc+d,w)(x).

This proves that including an additional center parameter for the Gaussian does not generalize the definition of the

Voigt function.

Appendix C.4. Proof that kPV (1, 1) ≥ 6

Let us define the two functions f (x) = 1 ·PV0,1,1/2(x) and g(x) = 13
25
·PV0,2,3/4(x). Next, we evaluate these functions

at the following points.

x1 = 0:

We have f (0) = 1 > g(0) = 13
25

.

x2 = 2:

We have

f (2) =
1

32
+

1

10
<

1

5

<
13

50
=

39

200
+

13

200
= g(2).

x3 = 8:

We have

170 >
1

2
+ 169 =

22 · (24)2 · 25

216
+ 169 >

3 · 132 · 17

216
+ 169

1

130
>

39

100
· 2−16

+
13

1700

f (8) = 2−65
+

1

130
>

39

100
· 2−16

+
13

100
· 1

17
= g(8).
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Figure C.2: Two groups of 4 pseudo-Voigt functions (black and blue) with distinct parameters. The sums of the two groups (red) have a maximum

deviation of 0.0026 and an average deviation of 0.00072. Note that the leftmost peak is nearly identical in both sets.
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Figure C.3: Two groups of 3 pseudo-Voigt functions (black and blue) with distinct parameters. This spectrum is derived from Fig. C.2 by

subtracting the leftmost peak. The sums of the two groups (red) now have a slightly larger maximum deviation of 0.0039 and an average deviation

of 0.0015.

20



Finally, we consider the asymptotic behaviour where

lim
x→∞

f (x)

g(x)
= lim

x→∞

1
2
· exp

(

− ln(2)x2
)

+
1
2

1
1+x2

39
100

exp
(

− ln(2) x2

4

)

+
13

100
4

4+x2

= lim
x→∞

1
2(1+x2)

52
100(4+x2)

= lim
x→∞

100(4 + x2)

104(1 + x2)
=

25

26
< 1.

From this limit, we can conclude that there exists some x4 > x3 such that f (x4) < g(x4). Using the symmetry of both

functions, we know that the sequence f (−x4) < g(−x4), f (−x3) > g(−x3), . . . , f (x4) < g(x4) alternates. Both functions

are continuous and according to the intermediate value theorem, there must be at least six points where f (x) = g(x).

Therefore, kPV (1, 1) ≥ 6.
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