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Henning Schrödere,a, Tomass Andersonsa, Alexander Brächerc, Roland Peschkec, Martina Beesea,b, Christoph

Kubisb, Mathias Sawalla, Robert Frankec,d, Klaus Neymeyra,b

aUniversität Rostock, Institut für Mathematik, Ulmenstrasse 69, 18057 Rostock, Germany
bLeibniz-Institut für Katalyse, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany

cEvonik Industries AG, Paul-Baumann Straße 1, 45772 Marl, Germany
dLehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany

ePLANET AI GmbH, Warnowufer 60, 18057 Rostock, Germany

Abstract

Gas chromatography (GC) is an important tool in analytical chemistry and large amounts of data are routinely pro-

duced. Despite the advances in the available software, the analysis of a dataset can still be time-consuming task, in

part due to the manual or semi-automated marking of peaks. An automation of this tedious task is proposed in this

work.
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1. Introduction

With the widespread availability and use of different chromatographic techniques comes the need to interpret

large amounts of experimental data. To extract valuable information from a chromatogram, the area and position of the

contributing peaks must be determined. We call this the Peak Extraction Task (PET). It can be solved easily if the peaks

are clearly separated. Therefore, we focus on chromatograms with a high number of at least partially overlapping

peaks that might be affected by baseline distortion. Due to their difficulty, these cases are typically analyzed manually

or semi-automatically, e.g., with peak suggestions that must be fine-tuned with a high expenditure of time. Although

the full automation of PET has been extensively researched [1, 2, 3, 4, 5], it often has poor applicability for highly

overlapping or baseline distorted peaks, or there is a large number of parameters to be manually tuned.

This paper presents the concepts of AutoGCA (Automatic Gas Chromatogram Analysis), a fully automated algo-

rithm for the PET. The novel aspects are the use of a fully asymmetric peak model, an automated noise level estimation

and baseline approximation. Despite the name, the concepts are applicable or at least transferable to general chro-

matographic applications. All source code is available online on GitHub https://github.com/henning1419/gcd

and is written in MATLAB. The significance and application of this work arose in cooperation with Evonik Industries

AG.

The motivation for automating tedious chromatogram evaluations is to save time of researchers and laboratory

staff, see [2] and more recently [1] as examples. Some methods in our work have been inspired by the work on

peak detection in multi-overlapping chromatographic signals by Vivó-Truyols et al. [4]. Some review papers also

consider a multitude of methods that are relevant for solving the PET. One such work is [6], which lists approaches

for background correction, peak detection, and peak properties, among others.

1.1. The experimental dataset

In this paper, AutoGCA is explained and evaluated with the help of an GC dataset of an oxo oil LS13 from

Evonik Oxeno GmbH & Co. KG, which is a paraffin-olefin-mixture. This oxo oil, being a distillation section from the

production of C13 oxo alcohols is manufactured in continuous production processes at Evonik’s largest production

location in Marl, Germany.

This complex mixture of predominantly branched C12 alkanes and alkenes are used as intermediates for the

production of solvents and as blending components for diesel fuels. A major challenge in the analysis of the GC data

of this product is the detection and separation of the large amount of isomers which is well in the three-digit range.
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This dataset is representative for some of the particular situations that were encountered in the development of

AutoGCA, for example, the dataset contains overlapping peaks including peaks on shoulders of other peaks and there

is a strong baseline drift in the last part of the dataset.

The manual evaluation was done with Agilent OpenLab CDS.

1.2. List of symbols

g chromatographic signal,

t retention time grid,

s, s̃ original signal segment and smoothed signal segment,

α peak width ratio parameter for baseline correction,

k index of the center of the largest peak in a segment,

ir, il indices (right and left) for the peak width calculation,

b baseline,

I interval between two adjacent supporting points of the baseline,

gB baseline-corrected chromatogram,

w windows for the noise level approximation,

η approximated noise level,

g(x; µ, σ) Gaussian with the center µ and standard deviation σ,

l(x; µ, σ) a nearly linear curve model,

p(x; µ, h, σL, σR, αL, αR) peak model with center µ, height h, standard deviationσL (left) and σR

(right) and ratio of the nearly linear curve αL (left) and αR (right),

r(i) the residual of a cluster segment after i fitted peaks.

2. The overview of the algorithm

For a given chromatogram, AutoGCA extracts the positions, areas, and other complementary features of the

underlying peaks. The general concept is outlined in Fig. 1 and explained in this section.
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Figure 1: A flowchart describing the AutoGCA algorithm.

Remark 2.1. It should be noted that in some cases precise parameter specifications are given. These have been

determined heuristically by analyzing various GC profiles and are fine-tuned to the problems that motivated AutoGCA.

Since the source code is available online, adjustments can be made to adapt the method to different scenarios.
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2.1. Normalization along the retention time axis

The AutoGCA algorithm requires only the chromatographic signal g ∈ R
n and the corresponding retention time

grid t ∈ Rn as inputs. In a first step a simple linear interpolation is used to downscale g to 400 data points per minute of

retention time. This value is chosen to ensure that even narrow peaks of interest are preserved by a sufficient number

of data points, but also reduces the computational time of all subsequent steps. In addition, subsequent algorithmic

steps can be based on this normalized input and parameter values can be fine-tuned, see Remark 2.1. For simplicity,

the corrected signal is also denoted g.

2.2. Baseline correction

A fundamental problem in the analysis of chromatograms is the drift of the baseline, see Fig.2. This can also be

interpreted as low frequency noise, which must be subtracted. It differs from classical noise, which is characterized by

high-frequency stochastic signals, see [7]. Baseline correction is a well-studied field with many established methods.

Considerations of baseline drift correction for GC datasets date back to the work of Wilson and McInnes [8] in 1965.

Since then, several approaches have been successfully implemented and compared, e.g. [7, 9]. Various reviews have

also been written on the subject, see for example [8, 10] or more recently [11]. Baseline correction is often part of

more general reviews, such as [6].

Automated GC profile analysis requires a robust correction method that ensures accurate results by preventing

distortion of peak areas. This is particularly challenging in areas with many overlapping peaks, because automated

methods often tend to overestimate baselines, thereby cropping some areas of the peaks. We propose a method that

determines a smooth curve that, firstly, lies predominantly below the signal g and secondly, is as close to the signal

as possible, except in areas with peaks or peak clusters. Our algorithm is based on the assumption that the baseline

of two adjacent narrow signal segments containing only a few peaks, can be determined by connecting the minimal

points within each signal segment. The challenge is to reliably determine such segments.

The algorithm starts with the entire signal g and recursively divides it into segments. Each segmentation step

involves smoothing the signal, detecting the largest peak, and checking whether further division is necessary. For

each signal segment s with a number of len(s) data points, a termination criterion is evaluated first: If len(s) · α < 22

with α = 0.43 (see Remark 2.1) holds, further segmentation is stopped. If this criterion is not met, the width of the

largest peak is determined. The signal segment s is smoothed with a Savitzky-Golay filter (window width 40, degree

3) to obtain s̃. The maximum of s̃ indicates the center of the largest peak at index k. To determine the peak width:

• for the right (decreasing) flank, increment i from k until the condition s̃i < s̃i+1 (increasing trend between two

adjacent points) has happened 80 times, resulting in ir.

• for the left flank, decrement i from k analogously to find il.

If (ir − il)/len(s) ≥ α holds, the current segment is characterized as a peak. Otherwise, the peak is considered as

narrow and it is assumed that the segment can be subdivided into two segments, see Fig. 3 (top). The division index

is determined by, firstly, subtracting a linear interpolation of s̃ based on its start and end points, resulting in s̄, and

secondly, finding the minimum value within the centered 33% range of s̄, see Fig. 3 (center). This process is repeated

recursively until segments are too small or are characterized as a peak.

The minima in each segment as well as the first and last point define a list of supporting points, see Fig. 3 (bottom).

They are used to calculate a piecewise cubic Hermite interpolating polynomial b. To ensure that the baseline is

predominantly below the signal, the ratio
∫

I
min(s − b, 0) dt
∫

I
s − b dt

is calculated for each interval I between two adjacent supporting points. If it is greater than 0.1, then this interval is

subdivided as described above and the Hermite splines are recalculated. Finally, the baseline is subtracted from the

signal and the corrected chromatogram, denoted by gB, is used for further calculations.
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Figure 2: The dataset from Sec. 1.1 and the calculated baseline in red.

2.3. Noise level approximation

Unlike the baseline, the high-frequency noise in the signal does not usually produce very distorted results. How-

ever, it can still be difficult to distinguish between the noise and very small peaks. This has been recognized in the

literature and approaches based on classical measures such as the median absolute deviation are presented in [2].

There they are used in a similar fashion - to validate peaks.

In AutoGCA, however, we assume that there exists a sufficiently long segment in gB that does not contain any

peaks. This is true in most applications. In any possible window w of gB with the length of 501 data points (see

Remark 2.1) the distance between the maximum and the minimum values of w is calculated. The approximated noise

level η is then defined as 1.3 times the minimum over all these distances. The prefactor results from the observation

that the subsequent steps perform better if the noise is slightly overestimated. This noise intensity approximation is

used not only to ignore peaks below the noise level, but also in several other parts of AutoGCA to achieve robustness

in numerical methods or to define termination criteria.

2.4. Clustering

The use of a clustering step is justified similarly to [4], because it allows parallel execution of peak fitting, the

most time-consuming part of the algorithm. Initially, gB is divided into a number of 300 equidistant segments. The

mean value over each segment is subtracted from the data so that the mean of the segment is zero. Then it is checked

whether the segment contains values outside the interval
[

−η, η
]

with the noise level approximation η of Sec. 2.3. If

so, this segment and the two preceding and two following segments are assumed to contain peaks. After application

to all segments, all remaining non-peak segments are neglected in the following steps. Furthermore, this defines

independent clusters of subsequent segments of gB, in a sense that peak fitting can be performed in parallel, which

can drastically reduce the computation time.

2.5. Peak model

The modeling of a peak in various chromatographic applications and more generally in the natural sciences is a

long-standing problem. The underlying peak model is crucial for our approach to automate peak extraction. There

are classical peak models such as Gaussian, Lorentzian, Voigt or the Exponentially Modified Gaussian (EMT) among

others, see e.g. [12, 13]. However, these models are severely limited when certain effects such as tailing or fronting

occur. Thus, our goal is to pragmatically approximate the actual peak and not necessarily to find a single peak model
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Figure 3: Visualization of the splitting stages to determine the baseline support points. Top: The localization of the signal maximum (orange cross)

and the subsequent approximation of the peak width (gray area) are shown. The approximated peak is considered narrow, because the ratio of its

width to the total section length is small enough. This induces the splitting of the segment. Center: The determination of the final position of the

segment split is shown. The gray line marks the original signal, while the blue line is corrected by subtracting a linear interpolant. The green area

marks the centered 33% of the segment where splitting is allowed. Finally, the red dashed line marks the minimum of the blue signal within the

green area and thus the final splitting location. Bottom: Plot of the resulting non-equidistant baseline support points of the portion of the signal

with large peaks.
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that is physically correct. The two main ideas for the reconstruction of complex peak shapes are to use a simple model

that accounts for possible peak asymmetry, and to use superpositions of several of these simple models.

A simple and asymmetric peak model: The peak is divided at the center into its left and right parts, which are then

considered separately in terms of their parameters. Only the peak height is shared between the two sides. Each flank is

a convex combination of a Gaussian g(x; µ, σ) and a nearly linear curve l(x; µ, σ). The latter is obtained by smoothing

the function

f (x; µ, σ) =



















1 |x − µ| ≤ 1
8
σ

0 |x − µ| ≥ 17
8
σ

17
16
− sgn(x) x

2σ
else

with a moving average with a window size of 0.05 · σ. Thus, the final peak model p with center µ is given by

p(x; µ, h, σL, σR, αL, αR) =

{

h((1 − αL)g(x; µ, σL) + αLl(x; µ, σL)) x ≤ µ

h((1 − αR)g(x; µ, σR) + αRl(x; µ, σR)) x > µ
,

see also Fig. 4. The linear part especially addresses the problem of fronting and tailing. This peak model only

overcomes some of the limitations of such simple models, but still cannot approximate general peak shapes.

Superpositions: For experimental data, a peak is modeled as the sum of several subpeaks, each of which conforms

to the proposed peak model, see Fig. 4. This allows a wide variety of peaks to be modeled while maintaining the

relative simplicity of the underlying optimization problem, as each of the subpeaks can be fitted individually and then

added to form the final peak.
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Figure 4: Left: A model of the left flank of a peak model, showing the almost linear curve (red), Gaussian (blue) and their convex combinations.

Right: Two subpeaks approximating a more complex peak.

2.6. Peak detection, fitting and combination

Peak detection is a multidisciplinary problem and the approaches are transferable to different applications, e.g.

a comparison of methods in mass spectrometry [14] includes methods for smoothing, baseline correction and peak

finding criterion that are also useful in chromatography. In particular, derivatives are often used to detect peaks [15, 3]

in a variety of applications. Some practical approaches to automating peak detection are given in, e.g., [2, 4, 5, 16].

We have adopted a more classical residual approach. Starting with the complete cluster segment r(0) of gB, initial

parameter estimates are determined for the largest peak. These parameters are then refined by optimization. The

resulting peak profile p is subtracted from the cluster segment, updating the residual profile to r(i+1) = r(i) − p. The

process is repeated until the maximum of the residual profile is less than 3η, the relative model fit error ‖r(i+1)‖2
2
/‖r(0)‖2

2

is below 0.001 or other constraints are met, e.g. the maximum number of peaks or the maximum number of failed

optimization attempts (see Remark 2.1).

For the optimization, we use a weighted combined objective function based on a tight peak range and broad peak

range to address multiple peaks that are close to each other. Fitting only a single peak would typically lead to over-

and underestimation at the locations of neighboring peaks. In the tight range, the model should fit the current r(i)

exactly. In the broad range, it is sufficient if the model is smaller than r(i). We solve the optimization problem with the

nonlinear least squares solver lsqnonlin in MATLAB, based on the trust-region-reflective algorithm [17].
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Finally, we apply a rule-based approach to decide whether the fitted peaks should be combined into subsets de-

scribing more chemically meaningful peaks. A final simultaneous fitting of all peaks often results in slightly better

quality, but also adds a significant amount of computational time.

3. Results: AutoGCA versus manual GC analysis

The results of AutoGCA are illustrated here using the example dataset described in Sec. 1.1. The total computation

time of the algorithm was 57.1 seconds on a desktop computer with a 13th generation Intel Core i9 processor. Most

of this time was used for peak fitting, which took 55.5 seconds. Six parallel MATLAB workers from the Parallel

Computing Toolbox were used to reduce the computation time. The total computation time without parallelization

was 92.2 seconds. The result of AutoGCA is both an integral table and a more detailed description of the peaks, see

Fig. 5. The final result explains 97.7% of the area under the curve of the dataset.
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Figure 5: Some of the peaks resulting from an AutoGCA analysis of the dataset in Sec. 1.1 shown in different colors. The wide cyan line in the

background shows the baseline corrected raw data.

For comparison, this dataset was evaluated by two experienced chemical analysts, designated User A and User

B. The manual evaluation of the dataset took approximately 10 minutes for each analyst, and only the time interval

[48, 170] minutes of the data set was evaluated. The peaks in Table 1 refer only to peaks in this time interval and only

the peak locations in the resulting integration tables were compared. The matching of peaks based on their location

between the different results of AutoGCA, User A and User B was performed with a retention time tolerance of 0.07

minutes. Only the two closest peaks between two evaluations were matched and no peak area information was used.

Interestingly, the results of the two manual evaluations do not agree very well. This can be explained by the

challenging nature of the dataset. For example, the peak at 94.8 minutes (light blue in Fig. 5) was recognized as a

single peak by AutoGCA and User B, but User A split it into two separate peaks. The results in Table 1 show that

AutoGCA is in reasonably good agreement with the users. The results for small peaks have the most discrepancies

with the manual evaluation.

In Fig. 6 the evaluations are compared in more detail by showing the matched peaks in black and peaks unique to

only one of the evaluations in a different color. It can be seen that some discrepancies can be explained by different

splitting of peaks. Sometimes the peak centers were too far apart to be considered the same peak. Also, AutoGCA

uses a different baseline than the one used in the manual evaluation, which explains some differences in the peak areas.
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Figure 6: A comparison of the results: The dataset (top) as well as the detected peaks and their areas.
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Rate of detection for peaks

Peak prediction by Peak reference by
Peak size

All Small Medium Large

AutoGCA User A 81.4% 62.3% 86.0% 95.0%

AutoGCA User B 85.0% 72.7% 88.4% 90.0%

User A AutoGCA 89.1% 88.9% 74.0% 79.2%

User B AutoGCA 75.3% 66.7% 71.7% 85.7%

User A User B 90.6% 87.0% 90.0% 87.5%

User B User A 73.4% 56.0% 84.9% 100.0%

AutoGCA Both by User A and by User B 77.1% 57.1% 86.0% 90.0%

Both by User A and by User B AutoGCA 93.1% 93.6% 82.2% 85.7%

AutoGCA All peaks by users 89.3% 77.9% 88.4% 95.0%

Table 1: The rate of peaks from the prediction evaluation that were also found in the reference evaluation. Only the position of the peak center was

taken into account. “Both by User A and by User B” refers only to those peaks which both users found in agreement. “All peaks by users” refers to

peaks found by User A, User B or both. All peaks were heuristically divided into three groups according to their area, with medium peaks ranging

from 4000 pA·min to 45000 pA·min.

4. Conclusion

The analysis of gas chromatogram peaks by personnel in industrial processes is often a time-consuming task.

Especially when this analysis is a recurring task, an automated procedure seems to be welcome. This report covers

several areas of study and presents novel methods for automating the analysis of GC data. In particular, automated

peak integration of a challenging GC dataset can be achieved with similar precision to a time-consuming manual

evaluation. Furthermore, an automated analysis always produces the same results, but a manual evaluation can vary

from person to person. While automation of each of the required steps has been researched individually, a combined

and practical automated approach is lacking in traditional software solutions. The proposed AutoGCA method has

been successfully applied in industrial process analysis at Evonik Oxeno GmbH & Co. KG. We hope that this report

demonstrates the potential time savings that can be achieved by automating routine procedures in analytical chemistry

and serves to motivate the development of an in-depth integrated industrial solution based on the ideas of AutoGCA.
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