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Abstract

Multivariate curve resolution often suffers from solution ambiguity, with many nonnegative factorizations fitting the

data equally well. Building on the method of Laursen and Hobolth (2022), we present an efficient sampling algorithm

that can handle noisy data even containing negative entries. The algorithm iteratively updates factor columns via affine

combinations within a nested loop structure, effectively approximating the sets of feasible solutions, the feasible

bands, as well as the dual profiles. We apply the method to two in situ FTIR spectroscopic data sets tracking the

decomposition and activation of rhodium carbonyl complexes for the hydroformylation process. Performance and

accuracy are compared against established algorithms, demonstrating both robustness and computational efficiency.
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1. Introduction

Multivariate curve resolution (MCR) aims to extract

information about the underlying pure components from

a series of spectra recorded for a multicomponent sys-

tem [16, 17, 24]. For example, in chemical reaction sys-

tems, large amounts of data are typically available, but

overlapping peaks often prevent a clear decomposition

into pure component spectra and concentration profiles.

MCR methods apply techniques from linear algebra and

optimization to uncover this hidden structure. The un-

derlying model is the Lambert-Beer law in matrix form,

which approximates the absorption matrix D ∈ Rk×n as

the product of a concentration matrix C ∈ R
k×s and a

matrix of pure component spectra S T ∈ Rs×n, thus

D = CS T . (1)

Here, k is the number of mixed spectra, n is the num-

ber of frequency channels, and s is the number of pure

chemical species. Reconstructing C and S from D is

a nonnegative matrix factorization (NMF) problem [5].

Two major challenges arise when applying MCR to ex-

perimental data. First, finding a solution that satisfies

all imposed constraints [11, 14], and second, resolving

the ambiguity of the solution – the question of which

factorization is the correct one [21]. This ambiguity is

often referred to as rotational ambiguity [2, 6, 13, 31].

In this paper, we focus on the second issue, which has

been extensively studied using various approaches.

Prominent strategies include the signal contribution

function [4, 34], Borgen-Rajko plots [2, 23], triangle en-

closures [7], polygon inflation [27, 28], ray-casting [30],

and the sensor-wise NBANDS method [18, 20]. The

most recent method is the NMF-sampling algorithm by

Laursen and Hobolth [12], which explores ambiguity

by iteratively computing many NMFs or MCR solu-

tions. This algorithm works for any number of chemical

species and is similar to the particle swarm approach in

[32]. It is both simple and effective. In [12], the algo-

rithm is applied to cancer data, where noise and negative

entries are negligible and thus not addressed.

For spectroscopic data, however, inappropriate han-

dling of noise and small negative entries can distort the

analysis. While this may not severely affect the compu-

tation of a single factorization, it often leads to unrealis-

tic estimates when analyzing ambiguity – either gener-

ating overly large sets of feasible solutions and feasible

bands or overly sharp constraints on fingerprint regions.

In such cases, reliable interpretation becomes impossi-

ble.

In general, for noisy data, it is often not possible to

satisfy both CS T = D and C, S ≥ 0 simultaneously, so

these constraints must be relaxed. Even when seeking

a best approximation of D, one of these conditions usu-

ally remains unmet. Existing MCR methods for noisy

data either tolerate small negative entries in the factors

or accept deviations from the best rank-s approximation

CS T ≈ D, but none allow both. The same limitation

applies to ambiguity analysis methods.

In this paper, we extend the sampling algorithm to re-

lax the non-negativity constraints, enabling its effective

use on noisy spectroscopic data. Although this exten-

sion increases computation cost, the algorithm remains

faster than any existing method for systems with four or

more components.

The paper is organized as follows: Section 2 briefly

introduces applied techniques for factor reconstruction

and ambiguity analysis. Section 3 describes the original
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sampling algorithm for noise-free data, and Section 4

presents our extension to accommodate small negative

values. Section 5 reports numerical results for experi-

mental catalytic data.

2. Factor computation and analysis by the SVD

The bilinear model (1) allows to apply linear algebra

techniques to reconstruct the factors. Many MCR ap-

proaches use the singular value decomposition (SVD),

which factorizes D into UΣVT with U ∈ R
k×k and

V ∈ Rn×n being orthonormal matrices and Σ ∈ Rk×n be-

ing a zero-filled diagonal matrix with the singular values

σi in decreasing order on its diagonal. This extracts the

chemically meaningful information of D. The singu-

lar values indicate the number of components, s, as for

noise-free data without rank-deficiency holds σs > 0,

but σs+1 = 0.

2.1. Factor reconstruction using the SVD

The matrices U and V contain negative entries and

the SVD itself is not an MCR-solution, except for the

special case s = 1. If U and V are reduced to their first s

columns and Σ is reduced to its first s columns and rows,

then this truncated SVD is a rank-s best approximation

of the data [33] that forms a basis for the columns of C

and S . Hence, in a second step a transformation

C = UΣT−1, S T = TVT (2)

is applied and a proper regular T ∈ R
s×s results in an

MCR-solution [16, 17]. In this case, only T needs to be

computed instead of the full factors C and S . This can

be done by solving a proper minimization problem with

penalty terms for negative entries and singular matrices

T .

2.2. Ambiguity analysis using the SVD

The ambiguity analysis can be done directly profile

based [18, 20, 34] or indirectly using the SVD in a low-

dimensional representation. The indirect approach re-

sults in the so-called area of feasible solutions (AFS).

This approach is more complicated and outside the

scope of this work. For more details, see the references

[6, 7, 31]. Here, we only provide a brief introduction.

Without considering the scaling of the factors and their

order, we assume that T from (2) is of the type where

all entries in its first column equal 1 and we focus only

on the first row of T . Thus T has the form

T =

(

1 xT

1 W

)

(3)

with x ∈ R
s−1, W ∈ R

s−1×s−1 and 1 = (1, . . . , 1)T ∈

R
s−1. The spectral AFS is the set of all x so that a W

exists that result in a regular T and nonnegative profiles

in C and S , thus

MS =
{

x : exists W so that rank(T ) = s, C, S ≥ 0
}

.

The step from the AFS to the profiles is simple. The

elements x ofMS are low-dimensional representations

of nonnegative profiles disregarding a chemical mean-

ing. For an x ∈ MS , the associated profile is just

a = (1, xT )VT . The concentrational AFS, MC, is de-

fined analogously, but it also includes the singular val-

ues. For an element y ∈ MC the associated profile is

c = UΣ(1, yT )T .

In the context of the AFS, two important sets are

the outer polytope F and the inner polytope I, see

[2, 10, 23]. The outer polytope F = {x ∈ R
s−1 :

(1, xT )VT ≥ 0} is a superset of MS with respect to a

nonnegative profile in the first column of S if we ap-

ply the reconstruction given by (2) and (3). The inner

polytope is the convex hull of the low-dimensional rep-

resentations of all rows of D, see [31]. Combining both

sets allows for a geometric interpretation of the factor

reconstruction as follows: An x ∈ R
s−1 is feasible if

and only if it is in the outer polytope F and there exist

s − 1 further points in the outer polytope such that the

simplex spanned by these points includes the inner poly-

tope [2, 10, 23]. The low-dimensional representation of

S is in the V-space and the representation of C is in the

U-space. A simplex represents a complete factorization

and vice versa. The vertices in V-space represent the

profiles in S and the facets represent the profiles in C. If

the vertices are in the outer polytope, applies S ≥ 0 and

if the facets do not intersect the inner polytope, applies

C ≥ 0. In Sec. 4.4, we will use the outer and the inner

polytope and the geometric relationship for an explana-

tion.

3. A sampling algorithm to approximate the set of

feasible solutions

In [12], Laursen and Hobolth published a simple but

efficient algorithm for approximating the set of feasible

solutions. This algorithm works for any number of com-

ponents s. The sampling algorithm starts with an initial

nonnegative factorization, D = CS T , and constructs a

sequence of nonnegative matrix factorizations of D by

changing one column of each factor per iteration. Since

many factorizations are calculated, the algorithm pro-

vides a precise approximation of the feasible bands for

the factorization problem. In [12] the transformation

from one factorization to the next one is applied to factor

C. Due to the typical focus on factor S in chemomet-

rics, we do not adopt the formulas directly, but rather

apply everything to the other factor. The idea remains

unchanged.

The algorithm essentially uses two nested loops. In

the outer loop, the algorithm modifies all s columns of

factor S and thereby also the entire factor C. In the

inner loop, an index runs from 1 to s and the algorithm

changes all columns once. (4).
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3.1. Changing one column in factor S

For each iteration of the inner loop, the algorithm

modifies one column of S . We consider the change

of the ith column in S . The new factor S ′ equals S

for all columns, except column i. We select randomly

j ∈ {1, . . . , s} \ {i} and compute the new column S ′(:, i)

as affine linear combination of S (:, i) and S (:, j). Thus,

for column i holds

S ′(:, i) = (1 − λ)S (:, i) + λS (:, j). (4)

Let C′ be the new concentration factor. With respect to

nonnegative factors C′ and S ′, the variable λ has to be in

an interval [λmin, λmax]. For noise-free data, it is possible

to compute the limits directly [12]. After computing the

interval, a certain λ ∈ [λmin, λmax] is selected randomly

by a β-distribution.

In the inner loop, i ranges from 1 to s. For each i, the

algorithm computes three possible profiles for the col-

umn S (:, i), namely the two profiles associated to λmin

and λmax as well as the new profile S ′(:, i). Depending

on the data and the current simplex some profiles may

coincide. For a complete execution of the inner loop,

there are 3s profiles in total.

The change from S to S ′ is in matrix notation

C′ = C(Mi j)
−T , S ′ = S Mi j

with the matrix Mi j ∈ R
s×s defined elementwise as

Mi j(λ)
∣

∣

∣

uv
=































1 − λ if u = v = i,

1 if u = v , i,

λ if u = j, v = i,

0 ow.

(5)

and
(

Mi j(λ)
)−1

being elementwise

Mi j(λ)
−1

∣

∣

∣

uv
=































1
1−λ

if u = v = i,

1 if u = v , i,
λ
λ−1

if u = j, v = i,

0 ow.

3.2. Boundaries for the variable λ

To ensure nonnegativity for the new factors the vari-

able λ has to be in [λmin, λmax] with

λmin = max
ℓ∈I

S ℓi

S ℓi − S ℓ j

, λmax = min
ℓ∈I′

Cℓ j

Cℓi +Cℓ j

(6)

for I = {ℓ : S ℓ j > S ℓi} and I′ = {ℓ : Cℓi + Cℓ j > 0}.

The interpretation of this change in the low-dimensional

representation with the SVD is as follows: In the V-

space the vertex associated with S (:, i) of the represent-

ing simplex shifts in the direction of the vertex asso-

ciated with S (:, j). The inner and the outer polytope

limit the variable λ. The inner polytope specifies λmax

and the outer polytope specifies λmin. Fig.1 visual-

izes this geometric interpretation for an example with

s = 3. The transformation S ′ = S Mi j can also be

applied directly to the low-dimensional representation.

Let S T = TVT with ones in the first column of T . Then

S ′ = S Mi j = VT T Mi j = VT̃ T and T̃ has only ones in its

first column.

3.3. Additional profiles for the dual factor

The change of column i in S as in (4) changes only

column j in C. Thus the computation of three feasible

columns for S (:, i) results in three profiles for C(:, j).

For one step of the outer loop i goes from 1 to s and the

algorithm computes a total of 3s new profiles. For factor

C the total number of computed nonnegative profiles is

the same but as j is selected randomly with j , i per

iteration there are not necessarily three new profiles per

column.

3.4. Stopping criterion

Let C(i), S (i), i = 0, 1, 2, . . . be the factors of the com-

puted feasible factorizations. We collected the factors

in the sets

Cm =
{

C(0),C(1), . . . ,C(m)}, Sm =
{

S (0), S (1), . . . , S (m)}

and define, with m being the number of computed fac-

tors, a measure for the range of feasible profiles in C

as

avg〈Cm〉 =
1

ks

k
∑

i=1

s
∑

j=1

(

max
ℓ=0,...,m

C
(ℓ)

i j
− min
ℓ=0,...,m

C
(ℓ)

i j

)

.

In [12] Laursen and Hobolth suggest to use the change

in the range of profiles in factor C for the stopping cri-

terion. Every τ = 1000 iterations of the outer loop a

check is made whether

avg〈Cm〉 − avg〈Cm−τ〉 < ǫ

applies, where ǫ > 0 is a suitable control parameter. For

spectroscopic data the stopping condition

avg〈Cm〉 − avg〈Cm−τ〉

avg〈Cm−τ〉
+

avg〈Sm〉 − avg〈Sm−τ〉

avg〈Sm−τ〉
< ǫ

might be better.

3.5. No skipping between AFS segments

The AFS can be a connected subset with a whole

around the origin, or it can consist of several subsets

(segments). In the case of separated subsets, the ques-

tion is whether it is possible that the vertices of the sim-

plex can change between the segments. Due to the al-

gorithm’s construction, that only one column of S is

modified per iteration in the inner loop, the new profile

remains in the same subset of the AFS. This is in con-

trast to other methods based on the signal contribution

function [34] or the approach of sensorwise N-bands. In

these methods, the transformation from one factor to an-

other is done by a regular matrix T ∈ R
s×s without the

special structure of Mi j from the sampling algorithm.

This means that the algorithm is stable in this respect

and does not require additional control or subsequent

sorting of the points. This benefits the implementation.
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Figure 1: Visualization of the sampling algorithm in the low-dimensional representation for a model problem from FACPACK. Left: The current

S defines a simplex (simplex with solid ochre lines). One vertex of the simplex is changed in the direction of another vertex by the variable λ as

in (4). Nonnegativity constraints for C and S limit λ. If the vertex of S (:, i) is changed by S (:, j) with i , j, then the condition S ′(:, i) ≥ 0 defines

the lower limit for λ namely λmin and the condition C′(:, j) ≥ 0 defines λmax with S ′ and C′ being the modified factors. In the left plot the points

associated with λmin and λmax are labeled as xmin and xmax. Right: the profiles associated to the points in the left graphic. The black dotted lines

marks the index associated with the limiting line of F in the left graphic.
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Figure 2: The density function of the β-distribution for different pa-

rameters p, q > 0.

3.6. Selection of the new profile using the β-distribution

The new column S ′(:, i) is computed as in (4) by the

variable λ using the β-distribution. The β-distribution is

defined on the interval [0, 1] and has the density func-

tion

f (z) =
1

B(p, q)
zp−1(1 − z)q−1

with control parameters p, q > 0 as well as B(p, q) =
∫ 1

0
up−1(1 − u)q−1du. The parameter p mainly controls

the behavior in the left half, between 0 and 0.5, while q

mainly controls the behavior in the right half, between

0.5 and 1. Small values of p and q, e.g. p, q < 1, favor

values close to the boundaries 0 and 1 rather than close

to 0.5. See Fig. 2 for some selections of p and q.

Small values of p, q result in a good sampling

progress, because the new columns are close to one of

the extreme profiles and the associated points in the low-

dimensional representation are close to the boundaries

of the AFS. The same number of computed factors re-

sults in a better approximation of the set of possible pro-

files. Conversely, the algorithm achieves a good approx-

imation in fewer steps, and the stopping criterion is met

within less iterations, see Fig. 3 for a comparison.

4. NMF sampling for noisy data

Noise is often an unavoidable ingredient in the anal-

ysis of experimental data. The sampling algorithm can

easily be adapted for use with noisy data. Before intro-

ducing the necessary modifications, we briefly discuss

how to compute meaningful approximations to the set

of feasible profiles in the presence of noise.

Depending on the spectroscopic technique and the ex-

periment itself, noise can cause various difficulties. For

example, noise can generate negative entries in the data

due to a background subtraction. It can also prevent

a precise approximation of the data by a low-rank fac-

torization, as well as a factorization or best approxima-

tion by nonnegative factors. Figure 4 shows the difficul-

ties that can arise when computing a factorization in the

low-dimensional representation for spectroscopic data,

even though the data has a very high signal-to-noise ra-

tio and a good low-rank approximation.

4.1. Options to handle noise

Computing the range of feasible profiles respectively

the area of feasible solutions for noisy data is challeng-

ing and different approaches are available [6, 7, 19, 20,

27]. Three options are:

1. Compute initial factors C and S T that result in a

best approximation or at least in a small error ‖D−

4
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Figure 3: Application of the sampling algorithm to a three component data set from FACPACK with k = 21 and n = 101 for different control

parameters of the β-distribution. The algorithm is applied with 3000 iterates of the outer loop. Left: the progress using the measure avg〈Sm〉 with

Sm being the set of feasible profiles for S with the first m iterations of the outer loop. Center and right: low-dimensional representation of the

sampling results after 3000 iterations of the outer loop. Higher values for p, q result in more points in the interior of the AFS segments and values

close to 0 in more points close to the boundaries. Thus the progress is better for small values of p, q.

CS T ‖, set all negative entries in the factors to 0 and

work with the new product as

D̃ = C+S T
+ with C+ = max(C, 0), S + = max(S , 0).

By construction, the matrix D̃ has no negative en-

tries and a factorization with nonnegative factors of

rank s. However, the problem with this approach

is the strong dependence on the initial factors for

the further analysis. If either one profile in C or S

has major negative entries in at least one window

including a fingerprint, then the new product, D̃,

is significantly changed in this area and the subse-

quent ambiguity analysis may be meaningless.

2. Compute a proper initial factorization as in ap-

proach 1 but use the error

ǫ :=
∥

∥

∥D −C+S T
+

∥

∥

∥

2

as a bound/reference to classify other factoriza-

tions as feasible or not. So a computed factoriza-

tion by C′ and S ′ is classified as feasible, if

∥

∥

∥D −
(

C′
)

+

(

S ′+
)T

∥

∥

∥

2
< (1 + δ)ǫ

with an initially defined small control parameter

δ > 0. Typically the Frobenius-Norm ‖A‖F =

ssq(Ai j)
2 is used for this application [8, 17]. A

disadvantage of this approach is that the Frobenius

norm of a k × n-matrix must be computed for each

factorization. This is computationally expensive.

3. Basically different to the first two approaches is the

idea to allow small deviation from the nonnegativ-

ity constraints in the form that a factorization is

classified as feasible if for all ℓ = 1, . . . , s holds

mini(Ciℓ)

maxi(Ciℓ)
≥ −ε,

min j(S jℓ)

max j(Y jℓ)
≥ −ε (7)

with a small control parameter ε ≥ 0. This ap-

proach is as flexible as approach 2, but it has the

following advantage: If we compute C and S with

the help of an SVD or as C = C(old)M−1 and

S = S (old)MT with a regular matrix M, then this

transformation does not change the error, so it is

not necessary to compute it for each iteration.

4.2. Extension of the sampling algorithm for noisy data

Next, we extend the NMF-sampling to noisy data, fo-

cusing on spectroscopic data with sharp peaks and pos-

sibly several non-absorbing areas. Approach 1 has the

advantage that the algorithm requires no adaptation, but

the results depend strongly on the initial factorization

and on whether (wrongly computed) signals in negative

direction are cut. The disadvantage of approach 2 is its

high computational cost to evaluate whether a profile is

feasible or not. In this paper, we use the approach 3,

constructing the profiles with a truncated SVD and ac-

cepting relatively small negative entries in the profiles.

The main modification regarding the sampling algo-

rithm and approach 3 for working with noisy data is that

we cannot compute the boundaries λmin and λmax as in

(6). These computations focus on strictly nonnegative

profiles, which may not even exist for noisy data and

a reconstruction via the SVD. For accepting relatively

small negative entries as in (7) we must approximate

λmin and λmax using the bisection method. Although the

computational costs are much higher than using the ex-

plicit computation for noise-free data, they are still ac-

ceptable. Algorithm 1 shows a pseudo-code element for

the sampling.

4.3. Quick computation of the limits for λ

Next, we explain the decisive difference to the origi-

nal sampling. The interval for λ is slightly extended so

that the condition from (7) holds. Note that when com-

puting λmin and λmax, we do not consider the complete

factors. Due to the special construction of Mi j(λ), only

one column of C respectively only one column in S is

checked, as only one column is modified. In particular

with Mi j(λ) as in (5) the only non-rescaling change from

S to S ′ is in S ′(:, i) and the only change from C to C′ is

in C′(:, j). Thus, only these columns limit the variable λ.
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Figure 4: The in situ FT-IR data from a mixture of rhodium carbonyl complexes reveals the problem of even small perturbations when computing a

factorization with rigorously nonnegative constraints. Upper plots: the data as well as a factorization with Rh(acac)(CO)2 (blue), Rh4(CO)12 (red)

and Rh6(CO)16 (yellow). The data has a very high signal-to-noise ratio and the factorization is a very good approximation of the data. Lower plots:

nevertheless a nonnegative factorization based on the first 3 singular values and vectors is not possible. The gray lines represent the nonnegativity

constraints and the black crosses are the data points. No triangle exists that is in the outer polygon and includes all data points. The black dashed-

lines are approximations to the outer polygons with respect to relatively small negative entries in the columns of C respectively S not larger than

0.01.

The restriction min(C′(:, j))/max(C′(:, j)) ≥ −ε defines

λmax and the restriction min(S ′(:, i))/max(S ′(:, i)) ≥ −ε

defines λmin. Theoretically, to approximate λmax, we

must also check whether the factorization degenerates,

meaning the associated simplex in the low-dimensional

representation excludes the inner polytope completely.

These are rare cases and not relevant in practice. The bi-

section method with small steps prevents this scenario.

The rest of the algorithm can remain unchanged. In Al-

gorithm 1 this situation is handled by checking whether

in the low-dimensional representation the new simplex

still includes the origin.

4.4. The inner polytope as a byproduct

The approximation of the inner polytopes, IS and

IC , is very simple for noise-free data. They are the con-

vex hulls of

ai =
(UΣ)T (2 : s, i)

Ui1σ1

, i = 1 . . . , k,

respectively

b j =
VT (2 : s, j)

V j1

, j = 1, . . . , n.

With the help of the inner polytopes it is possible to

compute the outer polytopes using duality [9, 22, 25].

For example, the vertices of FS are dual to the facets of

IC .

The situation is fundamentally different for noisy

data. If we consider relatively small negative entries in

the factors as in (7), one can approximate the outer poly-

tope numerically using inverse polygon inflation [29] or

ray casting [30], but with large effort for s = 4 and

huge effort for s > 4. Subsequently, duality enables

the computation of approximations of the inner poly-

topes. Using the sampling algorithm, one can compute

a very good approximation of the inner polytopes as a

byproduct. Let S̃ be the set of all computed simplexes

for factor S in low-dimensional representation, and let

IS be the inner polygon in V-space. It holds

IS ⊇
⋂

S̃ ∈S̃

S̃

and since S̃ contains a wide range of possible factors

the intersection of all S̃ ∈ S̃ is a good approximation to

IS with respect to small negative entries in S .

4.5. Finding AFS from the sampling results

Obtaining the AFS from point-set that result from the

sampling algorithm is not trivial. The main difficulty is

that the isolated AFS subsets are generally not convex,

so a convex hull would result in an AFS subset approx-

imation that is too large. The inner boundary consists

of segments of conic sections, see [1], and it is more

difficult to approximate this shape.
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Set m := 1

while m < maxiter do

for i = 1 : s do
Select j ∈ {1, . . . , s} randomly with j , i

Approximate λmax using bisection as the

maximum so that C′ = C(Mi j(λ))
−1 fulfills

min C′ (:, j)

max C′ (:, j)
≥ −ε and in the low-dimensional

representation the new simplex still includes

the origin

Approximate λmin as the minimum so that

S ′ = S Mi j(λ) fulfills
min S ′(:,i)

max S ′(:,i)
≥ −ε using

bisection

Select λ ∈ [λmin, λmax] using the β-distribution

Add the new columns to the list of possible

columns for C and S

Add the new points in U- and V-space to the

list of feasible points

Continue with S := S ′ and C := C′

end

if mod(m,M) = 0 then
Check the stopping criterion

end

Set m := m + 1
end

Algorithm 1: Pseudo-code element for the sam-

pling algorithm with respect to small negative en-

tries in C and S .

We propose two approaches to approximate the AFS

using the results of the sampling algorithm. First, the re-

sults of the algorithm provide inner and outer polytopes

as byproducts. Then analytical approaches can be used

to calculate the inner boundary curve and the AFS from

the inner and outer polytopes, as discussed in [1, 23].

Alternatively, the AFS can be calculated directly

from the sampling results using an α-shape, a general-

ization of the convex hull. The concept of an α-shape of

a finite set of points was introduced by Edelsbrunner et

al. [3] and is a common tool for shape reconstruction in

computational geometry. In this work, we use the Mat-

lab function alphaShape, which helps to reconstruct

the AFS shape from the low-dimensional representation

of the sampled profiles. The α-shape depends on the

chosen α value. Fig. 5 shows the results for a set of

points from one of the subsets of the concentration AFS

in Fig. 6. An optimal value of α seems to be five times

the smallest value of α value that produces an α-shape

with only one region.

5. Numerical results

5.1. Application to in situ FTIR spectroscopic data with

three components

First, we apply the sampling algorithm to in situ FTIR

spectroscopic data from a P-ligand free rhodium catal-

ysis. In the process, Rh(acac)(CO)2 was progressively

transformed to Rh4(CO)12 and Rh6(CO)16 under typical

hydroformylation conditions: 100◦C, 20 bar of CO/H2,

CO/H2=1:1, with dodecane as solvent and an initial

Rh(acac)(CO)2 concentration of 1 · 10−3 mol L−1, see

[15] for more details. Although the system has a high

signal-to-noise ratio, it contains small negative entries.

Additionally, there is also an asymmetrical distribution

of negative entries in U- and V-space as

min

(

min D(:, i)

max D(:, i)

)

= −86.5,

min

(

min D(i, :)

max D(i, :)

)

= −4.41 · 10−3.

The mixed data as well as the pure factors are shown

in Fig. 4. The data contains k = 208 spectra with

n = 1453 wavenumbers in the range [1800, 2150]cm−1

and absorptions from the s = 3 species Rh(acac)(CO)2,

Rh4(CO)12 and Rh6(CO)16.

The control parameters are:

- ε = 0.01, to accept relatively small negative entries

in C and S ,

- p = q = 0.05 for the β-distribution,

- ǫ = 10−4 and maxiter = 4000 for the stopping

criterion of the sampling.

The algorithm stops after 3000 iterations of the outer

loop. Thus, it computes 9000 profiles per column of S .

The numbers of computed columns of the dual factor C

are slightly different. In this cases the algorithm com-

putes 9036 feasible profiles for C(:, 1), 9051 for C(:, 2),

and 8913 for C(:, 3). The numbers differ because the

affected dual factor depends on the randomly selected

j , i, with j ∈ {1, . . . , s}. The computation took 13.9 s

on an Intel i7 CPU with 2.9 GHz, 8 cores, and 64 GB of

RAM. The algorithm was executed entirely as a Matlab-

file. Computing both AFS sets with polygon inflation

implemented in C took 9.22 s. The results for the AFS

sets, as well as the band boundaries for the profiles, are

shown in Fig. 6.

5.2. Application to a model problem with an AFS with

a punctiform and a straight

The sampling algorithm works also stable for degen-

erated data. For the following example with k = 101,

n = 51, and s = 3, the spectral and the concentra-

tion AFS consist of an isolated point, a straight, and

a bounded area. We apply the algorithm with ε =

2 · 10−7 and detect the AFS. In the concentration AFS,

the straight is a narrow area, due to small deviations

from the strict condition C, S ≥ 0. The results are pre-

sented in Fig. 7.

5.3. Application to in situ FTIR spectroscopic data with

four components

Finally, we apply the algorithm to in situ FTIR

spectroscopic FTIR data from a sequential dosage ex-

periment. The experiment started with a solution of

Rh(acac)(CO)2 (2.5 · 10−3 mol L−1 in Me-THF) under

inert conditions (80◦ C, 1 bar Ar). Upon introduction of

20 bar of CO/H2 (1:1), Rh(acac)(CO)2 was constantly

converted to Rh6(CO)16. After reaching a steady state,
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Figure 5: The α-shapes for one AFS segment in U-space for the results presented in Fig. 6. The α value is too small in the left plot (α = 0.13585),

optimal in the middle plot (α = 0.67924) and too large in the right plot (α = ∞), where the α-shape is the convex hull.

the Biphephos ligand (with intended concentration of

5.0·10−3 mol L−1) was added, leading to the transforma-

tion of Rh6(CO)16 to HRh(CO)2(PP) complex. The data

contains k = 979 mixed spectra. In each spectrum we

only consider the interval [1900, 2300]cm−1 with n =

1660 wavenumbers. In this range, s = 4 species have

absorptions: the rhodium complexes Rh(acac)(CO)2,

Rh6(CO)16, HRh(CO)2(PP) and CO. The original data

contains also information from other species but, in or-

der to demonstrate the effectiveness of the algorithm,

we select a frequency range with only four absorbing

species.

First, we compute a factorization using the Auto-

mated Peak Group Analysis [26]. The data, as well

as the concentration profiles and the pure component

spectra are shown in Fig. 8. Next, we apply the sam-

pling algorithm, allowing for negative entries up to an

amount of ε = 0.026. The algorithm terminates after

m = 3000 runs of the outer loop. Fig. 9 shows the re-

sults in U- and V-space, as well as the band boundaries

for the concentrations and pure component spectra of

the four species. The computation took 22.8 seconds

on the same computer as used in Sec. 5.1. Computing

the AFS sets by ray-casting from FACPACK using 5000

rays took 27.8min on the same computer.

6. Conclusion and outlook

For the analysis of spectroscopic data, fast compu-

tations of pure component decompositions and assess-

ment of their ambiguity are desirable. In recent years,

much attention has been given to accurately approxi-

mating the AFS. However, for rapid and exploratory

analyses, especially in high-dimensional data and sys-

tems with more than three components, sampling offers

an effective alternative. While the resulting AFS sets

may lack precision at some vertices, these algorithms

are sufficiently accurate when the random factorizations

are well controlled.

The key advantage of the applied type of sampling

is that it avoids computationally expensive optimization

steps, which typically dominate the runtime of methods

like grid search, polygon inflation, ray-casting, and the

sensor-wise N-bands algorithm. The extension of the

sampling method from [12] to handle noisy data adds

a powerful tool to the collection of techniques for ap-

proximating AFS sets and feasible bands. Its structure is

well suited to parallel computing, providing additional

time savings in practice. A future integration into the

FACPACK software is planned.
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Figure 9: The approximated AFS-sets as well as the feasible band boundaries for the four-component in situ FT-IR spectroscopic data from Sec. 5.3.
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