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Abstract

Through visual inspection, scientists can easily judge the similarity of pairs of spectra from different sources, whether

they are experimental measurements, spectra libraries, or spectra calculations. Spectral similarity is recognized when

the peak patterns appear similar, even if the peak positions are shifted or the peak amplitudes are changed. However,

it is desirable to have an objective spectra distance measure that can be calculated in terms of a numerical distance

number. This work introduces a move-and-scale spectral matching algorithm based on the Wasserstein metric as a

distance measure between pairs of spectra. The focus is on situations where only part of a spectrum (e.g., the spectral

signature of a functional group in a molecule) is matched to a specific window of a full-spectrum range with a more

complex peak pattern. The spectral matching algorithm is used to assign calculated spectra by density functional

theory (DFT) to pure component spectra based on the peak group analysis (PGA) of FTIR spectroscopic data sets

from transition metal-catalyzed carbonylation reactions.
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1. Spectra similarity

Let two spectra f and g be represented by vectors in the n-dimensional space Rn. Their distance can be measured

by evaluating a norm of the difference f − g, e.g., the Euclidean norm ‖ f − g‖2 =
√

∑n
i=1( fi − gi)2 or the 1-norm

distance ‖ f − g‖1 =
∑n

i=1 | fi − gi|. Another distance measure is the acute angle

∡( f , g) = arccos
|
∑n

i=1 figi|

‖ f ‖2‖g‖2
.

A statistical measure is the covariance, namely cov( f , g) = E
[

( f − E[ f ])(g − E[g])
]

with the mean or expected value

E[·]. If the spectra are shifted against each other, then these and other distance measures may not be useful, which can

be easily understood by taking the standard basis vectors f = e1 and g = e2. These single-peak, single-channel spectra

differ in a peak displacement by one channel index. Moreover, f and g are orthogonal vectors. The norm evaluation

for f − g = e1 − e2 takes maximal values. The norm cannot even distinguish the minor shift from e1 to e2 compared

to the maximal shift from e1 to en since

‖e1 − e2‖p = ‖e1 − en‖p

for any p-norm, p = 1, 2, . . . ,∞.

Hence, calculating spectra distances or spectra similarities may not work in this way, even when the peak pattern

is very similar. A (partial) solution may consist of considering the cross correlation (or sliding dot product)

R f ,g(t1, t2) = E[ f (t1) · g(t2)].

so that shifts τ = t2 − t1 can be compensated. The shift is also called a lag or displacement. In signal processing,

machine learning and convolutional neural networks, the cross correlation is a popular measure of similarity that can

be implemented by a convolution [7]. See also other correlation measures as the Pearson correlation [25, 3, 29]. The

cross correlation can work well to measure the spectra similarity if the peak displacement is more or less constant for

the related pairs of peaks within the two spectra f and g. However, such an assumption cannot generally be justified

for experimental spectra. What is needed is a distance measure for pairs of spectra even when the displacement of

related peaks is not constant.

In general, the so-called spectral matching problem is defined as the challenge of identifying similar pairs of

spectra from different origins. Important fields of application are hyperspectral or multispectral images where similar

spectra for different pixels can help to identify materials or to detect material similarities. Such methods are used

in agriculture, mining, satellite surveillance, medical imaging, pharmaceutical industry and others. One reference
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Figure 1: Simplified scheme of rhodium-catalyzed hydroformylation with the catalytic cycle (2-6), the product aldehyde (7), catalyst decomposition

and dormant states above from (1) and catalyst formation to the right of (1), cf. [14, 34].

for spectral matching in hyperspectral satellite image processing is [30]. In chemistry, spectral matching can help

to identify spectra belonging to the same chemical species. For instance, [26] reports on applications to Raman

spectroscopy and automated match with a spectrum library. However, the application environments are often so

different that there can hardly be a standardized method for spectral matching.

1.1. An application background in organometallic catalysis

The authors were motivated to consider the spectral matching problem through interdisciplinary collaboration

aimed at understanding and optimizing the homogeneous catalyzed hydroformylation process of olefins, see, for ex-

ample, references [15, 16, 4, 14, 17, 20]. Transition metal carbonyl complexes with changing further ligands operate

in catalytic cycles and connected pathways. Specific complexes appear during catalyst formation, in dormant states

and during catalyst decomposition, e.g., through the formation of polynuclear metal-carbonyl complexes. While the

chemical feedstocks and the reaction products are present at high concentrations, the catalyst species occur at con-

centrations several orders of magnitude lower. A detailed understanding of the catalytic reactions is of high economic

interest, as carbonylation reactions have a high mass throughput in chemical industrial production and related high

costs of the catalyst. IR and Raman spectroscopy are ideally suited for analyzing the catalytic processes in real time

[5]. In situ IR spectroscopic data for the monitoring and characterization of catalyst complexes and intermediates

are obtained using high-pressure transmission IR flow cells. Figure 1 shows a simplified scheme of some of relevant

steps of the homogeneously rhodium-catalyzed hydroformylation (oxo) process. This process transforms alkenes

with syngas (CO/H2) into aldehydes. The experimental work is accompanied by an IR spectroscopic data analysis

using chemometric multivariate curve resolution methods. We use the Peak Group Analysis (PGA), which is very

well-suited for the analysis of IR data from catalytic carbonylation processes. PGA provides a sequence of potential

pure component spectra from the time series of mixture spectra as described in [27, 28]. The PGA results contain

only a small degree of inherent factor ambiguity [24]. An in-depth understanding of the hydroformylation process

requires subsequent structure elucidation steps of the molecular structures of identified catalytic species. Quantum

mechanical methods using density functional theory (DFT) calculations are employed to identify thermodynamically

favorable configurations of certain catalytically relevant organometallic transition metal complexes and to calculate

their vibrational frequencies and band intensities in the carbonyl region. However, DFT often does not precisely

reproduce the spectra of pure components as measured experimentally for pure chemical species (if available) or as

output by a chemometric method. Depending on the chemical neighborhood, temperature, and pressure conditions in

the experimental setup, as well as the restrictions of the quantum mechanical method (e.g., chosen functional, basis

set, vibrational scaling factor), a considerable offset must be expected between the peak positions and the relative

shifts of the peaks within a spectral window [1, 13]. This makes a spectral matching algorithm a highly valuable tool.

1.2. The spectral matching problem

Understanding the formation of a cobalt(II) biphosphine catalyst for the hydroformylation process [20] is a re-

search challenge that leads us to consider the following generalized problem of finding the best spectral matches

between three DFT spectra denoted by DFT1, DFT2 and DFT3, see Appendix A for the details on the DFT calcu-

lations, and three PGA spectra (PGA1, PGA2 and PGA3). These six spectra are shown in Fig. 2. The DFT spectra

without applying a vibrational scaling factor cover the wavenumber range 2000–2300 cm−1 whereas the PGA spec-

tra cover the wider range 1505–2150 cm−1 and have many more peaks. The dominant peaks of the PGA spectra,

together with a few other peaks within an enclosing frequency window, exhibit some similarity to the DFT spectra.
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Figure 2: Top row: Three DFT-caculated IR spectra (on C=O vibration in Co(II) complexes). The short red lines indicate the windows used for

spectral matching; see Sec. 3.2 for details. Lower row: Three approximate pure component spectra recovered by PGA from experimental FTIR

mixture data. The aim is to find a one-to-one spectral matching.

However, there are a considerable wavenumber offset and a different spread of the wavenumber axis, as well as only

similar peak height ratios. Solving the spectral matching problem for these spectra should provide objective measures

of similarity.

1.3. Overview

Section 2 introduces the Wasserstein metric and explains its relation to optimal transport problems. Sec. 3 intro-

duces an environment in which a move-and-scale algorithm can be used to solve the spectral matching problem with

the Wasserstein metric. Demonstrations for sequences of DFT and PGA spectra accompany all algorithmic steps.

Finally, Sec. 4 presents a second spectral matching problem from rhodium-catalyzed hydroformylation, along with its

solution using the Wasserstein distance-based spectral matching algorithm with move-and-scale.

2. The Wasserstein distance

The Wasserstein distance, also known as Wasserstein metric, is a distance measure defined between probability

density functions µ and ν, see Wasserstein [32] and Kantorovich [12] (English translation of the 1939 original in

Russian). There are few applications of the Wasserstein metric to shape-matching problems and spectral similarity

in chemistry, see [22, 19, 23]. To prepare the ground for the spectral matching problem, we consider the probability

density functions to have finite support in the interval [a, b] ⊂ R. Furthermore, let Fµ and Fν be their cumulative

distribution functions, namely

Fµ(x) = P(µ ≤ x) (1)

so that Fµ(x) is the probability of µ taking a value less than or equal to x. Then the Wasserstein distance of µ and ν is

given by (see also [31])

dW(µ, ν) =

∫ b

a

|Fµ(x) − Fν(x)|dx. (2)

The Wasserstein metric can be interpreted in terms as a solution to an optimal transport problem. It measures the cost

of transforming the density function µ into the density function ν, where the density functions are imagined as piles

of sand and the least amount of sand is moved the shortest distance. See Fig. 3 for an illustration and Villani [33] for

more on the optimal transport problem. Instead of Eq. (2) one could also use

dp(µ, ν) =

(∫ b

a

|Fµ(x) − Fν(x)|pdx

)1/p
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Figure 3: Two sand piles. The cost of transporting the sand to reshape the pile on the left into the pile on the right correlates with the similarity of

the two piles. Very different piles correspond to high costs. (The image has been generated by ChatGPT.)

for any natural number p or the Kolmogorov-Smirnov distance (p = ∞)

dKS(µ, ν) = sup
x∈[a,b]

|Fµ(x) − Fν(x)|.

However, the Kolmogorov-Smirnov distance is sensitive only to the largest difference, and distances measured by

other values of p, except p = 1, are not interpretable in the sense of optimal transport theory. Therefore, we use p = 1

as given by the Wasserstein distance (2) .

The Wasserstein metric can also be evaluated for any pair of (integrable) nonnegative functions f and g on the

same domain after normalization by the 1-norm. With this normalization, µ = f /‖ f ‖1 and ν = g/‖g‖1 are probability

density functions. To this end, we evaluate

dW ( f /‖ f ‖1, g/‖g‖1),

which measures the similarity of the functions. Again, this distance can be interpreted as the transport cost of trans-

forming one normalized function into the other normalized one. The descriptive interpretation of sand piles remains

still valid.

The Wasserstein metric can also be applied to discrete functions represented by nonnegative vectors f , g ∈ R
n.

Let f , g ≥ 0 satisfy the normalization constraints

1 = ‖ f ‖1 =

n
∑

i=1

fi, and 1 = ‖g‖1 =

n
∑

i=1

gi.

Furthermore, let x ∈ Rn be the associated vector of equidistant arguments of the discrete functions f and g and δx =

x2−x1. Then the counterpart of the cumulative distribution function (1) is the cumulative sum of f = ( f1, . . . , fn)T ∈ Rn

cumsum( f ) = ( f1, f1 + f2, f1 + f2 + f3, . . . , f1 + f2 + . . . + fn).

and the discrete Wasserstein distance of f and g with the joint vector of arguments x ∈ Rn reads

dW ( f , g) = δx‖cumsum( f ) − cumsum(g)‖1 = δx

n
∑

i=1

|(cumsum( f ))i − (cumsum(g))i| (3)

The Wasserstein metric could be implemented in Matlab as follows (the argument vector x is assumed to have equidis-

tant values) :

function wst=wasserstein(x,f,g);

f=f/norm(f,1);

g=g/norm(g,1);

wst=(x(2)-x(1))*norm(cumsum(f)-cumsum(g),1);

2.1. Distance to a shifted signal

To illustrate this distance measure, consider two identical asymmetrical triplet signal groups within the frequency

interval [0, 30]. One group is centered at 10, and the other is centered at 12, see Fig. 4. Each peak is modeled by a

Gaussian. The discrete representations of the two signal groups are given by vectors f , g ∈ R400.
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Figure 4: Left: Two identical asymmetrical triplet signals, but the second is shifted to higher frequencies by 2. Center: The cumulative sums of f

and g. Right: Difference of the two cumulative sums. Its 1-norm equals the Wasserstein distance.
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Figure 5: The two triplet signals, where g is shifted by 2 to higher frequencies and mirrored. Right: Difference of the cumulative sums of f and g

whose 1-norm equals dW ( f , g) = 2.1905.

Calculating the 1-norm of the difference of the two cumulative sums yields the Wasserstein distance

dW( f , g) = δx‖cumsum( f ) − cumsum(g)‖1 = 2.

This is an easily interpretable result because transporting the normalized triplet f to the normalized triplet f (shifted

by 2) has exactly the cost 2.

2.2. Distance to a shifted and flipped signal

Next, we study the Wasserstein distance for the example from Sec. 2.1, but with one of the asymmetrical triplet

signals mirrored. The profiles f and g are shown in Fig. 5. The amplitude pattern of g has been flipped. The numerical

evaluation of the Wasserstein distance results in dW( f , g) = 2.1905. The distance measure works well and is sensitive

to changes in the peak pattern, since the transport cost of moving f to the center argument 12 is 2. Furthermore, the

small surplus in the left peak of f can be transported to the right peak of g at a cost of 0.1905. However, this transport

cost is dominated by the cost of transporting the triplet to its shifted position. Changes in the peak amplitude pattern

result in a much smaller transport cost.

Since the effect of shifting on dW is much larger than correcting the mirrored peak pattern, shifts can make correct

solution to the peak assignment problem impossible. Therefore, the next goal is to split off the impact of shifts in

Wasserstein distance calculations.

5



0 10 20 30

0.2

0.4

0.6

0.8

1

0 10 20 30
0

0.2

0.4

0.6

0.8

5 10 15 20 25

5

10

15

20

0.2

0.4

0.6

0.8

5 10 15 20 25

0.5

1

1.5

2

2.5

3

Triplet signal f A more complex spectrum g

Moving window of f Wasserstein distances versus shift

W
in

d
o
w

ed
d

W

Shift

Figure 6: Upper row: A triplet signal f (left) and a more complex spectrum g (right). Lower row: The triplet signal window [12, 18] of f is moved

through the frequency range of g (left plot). The Wasserstein distance within the shifted window of f to g is plotted versus the shift parameter

(lower right plot). The smallest distance is min dW,window = 0.0524. For σ = 10 the two triplets match. The non-smooth course of the Wasserstein

distances curve is influenced by the fact that in the active window the restriction of g is always normalized with respect to the 1-norm as part of the

Wasserstein distance calculation.

3. A move-and-scale Wasserstein distance measure

3.1. Moving window approach

As explained in Sec. 2.2, Wasserstein distances between pairs of similar spectra can be dominated by the displace-

ment of signals or groups of signals along the frequency axis. In other words, it can be much more costly to transport

a signal to a displaced position in another spectrum than it is to reshape one spectrum into a similar one locally. For

the given spectral matching problem, the second type of cost is important. To split off the first type of cost, we define

a window that encompasses the signals for which the spectral matching problem is to be solved. Then, we move the

window through the entire spectral range of the second spectrum. For each shift, the Wasserstein distance is calculated

only within the window.

This procedure is illustrated in Fig. 6. We start with a triplet signal f and a more complex spectrum g, which not

only contains the displaced triplet, but also other peaks. The triplet f is contained within the spectral window [12, 18].

This window is then moved through the frequency range [0, 30] of g. The process is started with the initial window

[12, 18] after moving its center to the far left of the full interval [0, 30]. We calculate the Wasserstein distances for

each shift parameter by evaluating only within the shifted window. The curve of Wasserstein distances versus the shift

parameter is shown in the lower-right subplot of Fig. 6. The minimum of this curve is min dW,window = 0.0524. This

minimum is attained when the shift parameter is 10 and the center frequency of the triplet in f is initially fixed at the

origin. All of this confirms a successful spectral matching of the two triplet signals.

As shown in the top row of Fig. 6, we note that the Wasserstein distance of the pure triplets f and g, equals

dW( f , g) = 5 with respect to the full frequency interval [0, 30]. This much larger distance confirms the usefulness of

the moving window approach, which uses a much smaller windowed Wasserstein distance of min dW,window = 0.0524.

To verify that the moving window approach can split off the impact of signal displacement, while remaining

sensitive to small changes in the signal shape, we modify the scenario depicted in Fig. 6 in a way that the triplet is

mirrored as discussed in Sec. 2.2. Fig. 7 shows the results. The minimum of the windowed Wasserstein distance curve

is now min dW,window = 0.1941. This distance is approximately 0.14 greater than the minimum in the first experiment.

The higher transport costs can be traced back to the small changes in the amplitude pattern. The difference value is

also consistent with the changes from Figure 4 to 5 (where the sensitivity of the Wasserstein distance under the same

amplitude pattern mirroring is tested for the two triplet signals without displacement).

3.2. Application of the moving window approach to DFT-PGA data from Sec. 1.1

To apply the moving window approach to the spectral data from the hydroformylation process, see Sec. 1.1, we

must first establish a situation to which the moving window approach is applicable. We observe that the DFT spec-
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Figure 7: The model problem shown in Fig. 6 is modified in a way that the triplet in the spectrum g is mirrored. The smallest windowed Wasserstein

distance is then min dW,window = 0.1941.

tra cover the wavenumber range [2000 − 2300] cm−1 and the PGA spectra are given on the wider range [1505 −

2150] cm−1. Furthermore, while the DFT spectra each show only a single compact group of peaks, the PGA spectra

show many more peaks. Therefore, the first step is to define frequency windows that encompass the majority of these

peaks. The endpoints of these windows are marked by short red lines in the upper row of Fig. 2. Within these win-

dows, we determine the maximal distances between the peak centers of the dominant peaks within the peak clusters.

The peak center frequencies and the associated distances ∆1,∆2,∆3 are as follows:

DFT1: 2114 cm−1 2144 cm−1 ∆1 = 30 cm−1

DFT2: 2114 cm−1 2166 cm−1 ∆2 = 52 cm−1

DFT3: 2121 cm−1 2166 cm−1 ∆3 = 34 cm−1

Guided by the concept that the dominant peaks in the DFT spectra are somehow correlated with the dominant

peaks in the PGA spectra (see the lower row of Fig. 2, we determine the distances ∆̃1, ∆̃2, ∆̃3 between the neighboring

dominant peaks in the dominant signal clusters of the PGA spectra. The results are as follows:

PGA1: 1943 cm−1 2042 cm−1 ∆̃1 = 99 cm−1

PGA2: 1784 cm−1 1888 cm−1 ∆̃2 = 104 cm−1

PGA3: 1727 cm−1 1784 cm−1 ∆̃3 = 57 cm−1

When we compare the peak center distances ∆i in the DFT spectra with the peak center distances ∆̃i in the PGA

spectra, we see that the quantum mechanical DFT calculations tend to underestimate the experimentally observed

peak distances. Consequently, the moving window approach in Sec. 3.1 cannot successfully match the three DFT

spectra windows to the dominant peak groups of the PGA spectra due to its construction . Instead, the moving window

approach must allow the DFT spectra to be spread (scaled with respect to the abscissa). By comparing the distances

∆i with the distances ∆̃i, we conclude that the unknown scaling factors must cover a range of at least 1.7 to 3.5.

3.3. A move-and-scale spectral matching algorithm

Next, we enhance the moving window approach of Sec. 3.1 by additional scaling of the window and determining

the best match based on the smallest Wasserstein distance between the scaled, moved window of the spectrum f and

the same window of g. This yields the following move-and-scale algorithm:

Move-and-scale algorithm:

1. Move the DFT signal group window I through the frequency range of the PGA spectra. If the parameter α

denotes the shift, then α + I is the shifted window.

2. Calculate the minimum of dW in the respective windows for scaling factors σ in the range 1.0 to 4.0.

3. Determine the minimal Wasserstein distance dW with respect to the moved and scaled window.

Thus, the spectral matching problem for the sequences of spectra fi and gi, i = 1, . . . , s, can be solved by executing

7
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Figure 8: The Wasserstein distance curves are plotted versus the shift parameter α for the nine combinations of three DFT spectra, DFTi, for i=1,2,3,

and the three PGA spectra, PGA j, j=1,2,3. For each shift parameter the minimal Wasserstein distance is plotted for optimal scaling parameters in

the interval [1, 4].

the two-level minimization:

min
α

min
σ

dW ( fi(α + σI), Pα+σI(g j)), i, j = 1, . . . , s, (4)

I window of fi,

α shift parameter to move the window to α + I,

σ scaling parameter ∈ [1, 4] to move-and-scale the window to α + σI,

f1, . . . , fs first set of spectra, e.g., the DFT spectra,

g1, . . . , gs second set of spectra, e.g., the PGA spectra,

Pα+σI(g j) Restriction operator to evaluate g j on the moved and scaled window.

3.4. Application of the move-and-scale algorithm to the DFT-PGA data from Sec. 1.1

The move-and-scale algorithm is applied to the three DFT spectra, DFTi, i=1,2,3, and the three PGA spectra,

PGA j for j=1,2,3. These six spectra are plotted in Fig. 2. The minimal Wasserstein distances for the nine possible

combinations (i, j) can be represented in terms of a 3 × 3 matrix DW , which is given by

DW =





















0.2443 0.3576 0.1762

0.1073 0.2355 0.1935

0.2328 0.2019 0.1057





















. (5)

The associated Wasserstein distance curves versus the shift parameter α are plotted in Fig. 8. Only the inner opti-

mization, see Eq. (4), with respect to the scaling parameter σ is executed for these curves. The minimum of the curve

corresponds to the outer minimization in Eq. (4) with respect to the shift parameter σ.

The move-and-scale algorithm provides the following solution to the spectral matching problem.

1. The minimal entry of the distance matrix is (DW)33 = 0.1057, indicating that the spectrum DFT3 belongs to the

PGA3 spectrum. For a chemical interpretation of this result see [20].

2. As the third DFT spectrum DFT3 has been paired with a certain PGA spectrum, consider only DFTi, for

i = 1, 2, and search for the smallest matrix element in the first and second rows of DW . This is the element

(DW )21 = 0.1073. This means that DFT2 matches to PGA1.

3. Only one combination remains, namely that DFT1 matches PGA2. However, the minimal distance 0.3576 is

relatively large. This matching is artificial and is not within the scope of interpretation in [20].

The best spectral matches for the optimal parameters α and σ are shown in Fig. 9. The figure shows all combina-

tions (DFTi, PGA j) for i, j = 1, 2, 3. The PGA spectra are plotted in blue, but in red in the active window α + σI for
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Figure 9: Plot of the best fits with respect to the optimal shift parameter α and the optimal scaling parameter σ. All combinations (DFTi, PGA j)

for i, j = 1, 2, 3 are shown. The PGA spectra are plotted in blue and red in the active window α + σI, for which the best match is attained. The

moved and scaled DFT function for the optimal parameters is plotted in green in the same window where the PGA spectrum is shown in red. Once

again, the important, chemically relevant spectral match (DFT3, PGA3) exhibits high similarity between the green and red profiles.

which the best match is attained. The moved and scaled DFT function for the optimal parameters is plotted in green

in the same window in which the PGA spectrum is shown in red. The important, chemically relevant spectral match

(DFT3, PGA3) shows a high similarity between the green and red profiles, cf. [20].

The scaling factors σ associated with the best match between the ith DFT spectrum and the jth PGA spectrum are

stored in the matrix

Σ =





















1.69 4.00 2.19

1.60 1.91 2.15

1.83 3.90 1.84





















. (6)

For example, the best spectral match (DFT3, PGA3) corresponds to σ = 1.84, as illustrated in Fig. 9.

The following modifications to the objective function, based on the Wasserstein metric, have been implemented

to stabilize the numerical calculations:

1. Window-width scaling: The Wasserstein distances are multiplied by the factor 1000/(width of scaled window).

The window width is expressed in wavenumbers. This factor compensates for the impact of the window width

σ for which the optimization (4) is performed. (The simple example of the standard basis vectors e1, en ∈ R
n

shows that the Wasserstein distance dW(e1, en) = n − 1 scales linearly with the window width n.)

2. Norm-g scaling: The Wasserstein distances are multiplied by the factor 1/‖Pα+σI(g)‖1, which is the 1-norm of

the restriction of g to the spectral window α+σI. This scaling favors regions of g with a higher signal intensity

for successful spectral matching. It also prevents regions with a low signal intensity from being competitive for

successful spectral matching, since the Wasserstein distance measure uses the normalized function g/‖g‖1.

4. A second experimental data set from rhodium catalyzed hydroformylation

A second experimental data set from a study on P-ligand free rhodium catalyzed hydroformylation is considered

[18]. The precursor complex [Rh(acac)(CO)2] (1 ·10−3 mol L−1) dissolved in dodecane was treated with synthesis gas

(CO/H2 = 1 : 1, P = 20 bar) at ϑ = 100 ◦C which induced the consecutive formation of Rh4(CO)12 and Rh6(CO)16.

Three DFT spectra were calculated (Gaussian, PBE, DGDZVP) for the three species Rh(acac)(CO)2 (short DFT1),

Rh4(CO)12 (short DFT2) and Rh6(CO)16 (short DFT3). No vibrational scaling factor was applied. PGA analysis ex-

tracted three spectra PGA j, j = 1, . . . , 3, from experimental FTIR data. For this dataset, visual inspection immediately

suggests the spectral matching of DFTi with PGAi for i = 1, . . . , 3 even though most of the peaks show a nonnegligble

frequency displacement.
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Figure 10: Top row: Three DFT-computed IR spectra (Gaussian, PBE, DGDZVP) for different Rh complexes. The short red lines indicate the

selected window for the application of the move-and-scale algorithm. Lower row: Three approximate pure component spectra recovered by PGA

from experimental FTIR mixture data. Spectral matches within each of the three columns are immediately suggested by visual inspection.

Fig. 11 shows the Wasserstein distance curves versus the shift parameter α in the same way as in Fig. 8. Additional

scaling of the Wasserstein distances, as introduced at the end of Sec. 3.4, is unnecessary for this dataset. This explains

why the distance values are larger compared to Sec. 3.4.

The associated 3 × 3 matrix of minimal Wasserstein distances reads

DW =





















2.44 11.21 6.43

15.76 5.20 15.36

51.19 15.83 4.35





















.

Thus, the solution of the spectral matching problem is as follows: The minimal distance is attained at (i, j) = (1, 1)

with the pair (DFT1,PGA1). The next smallest distance is found for the pair (DFT3,PGA3) with (i, j) = (3, 3). Finally,

(i, j) = (2, 2) leads to (DFT2,PGA2). Any non-diagonal pair (DFTi,PGA j) with i , j has a much larger Wasserstein

distance, clearly confirming the diagonal pairs. Finally, the matrix of optimized scaling factors, cf. Eq. (6), is as

follows

Σ =





















1.115 1.000 1.010

1.000 1.0750 1.1950

1.000 1.000 1.0350





















.

The algorithm was permitted to use window scaling factors in the range σ ∈ [1, 1.3]. The results show that the optimal

scaling factors fall within the range 3.5% to 11.5%. Fig. 12 shows the 3× 3 plot of the optimal fits for (DFTi, PGA j).

for i, j = 1, 2, 3. The PGA spectra are plotted in blue and the DFT spectra within their specific spectral windows are

drawn in red. As originally anticipated, the diagonal pairs clearly show the best spectral matches for the given sets of

spectra.

5. Conclusion

The Wasserstein metric is an approach to solving the spectral matching problem that interprets spectra as piles

of transportable media. The method calculates the transport cost to transform the profiles into each other. In the

suggested move-and-scale spectral matching algorithm, we combine the Wasserstein metric with a two-level opti-

mization in order to determine optimal shifts to correct frequency displacements of the spectra, as well as optimal

scaling parameters to deal with pairs of spectra with different scaling of the frequency axis.

We have also tested other approaches to solving the spectral matching problem. One is the dynamic time warping

method, which measures the similarity of time-dependent functions with differences in peak speed. Time and speed

can be substituted with other parameter dependencies. Alternatively, one can calculate cross-correlations for the scaled

and moved windows. A related approach is Fourier transform correlation, which determines the cross-correlation in

the frequency domain and that is therefore not sensitive to shifts in the spectral range. However, we found that the

move-and-scale approach based on the Wasserstein metric is the most successful one.
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Figure 11: Wasserstein distance curves versus the shift parameter α for the nine combinations of three DFT spectra, DFTi for i=1,2,3 and the three

PGA spectra, PGA j, j=1,2,3. The minimal Wasserstein distance is plotted for each shift parameter and all scaling parameters in the interval [1, 4].
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Figure 12: Plot of the best spectral matches for (DFTi, PGA j) for i, j = 1, 2, 3. The PGA spectra are shown in blue and the moved and scaled DFT

spectra within their respective spectral windows are shown in red. Since the scaling factors are restricted to σ ∈ [1, 1.3], some of the non-diagonal

pairs may show better matches for σ > 1.3. However, the algorithm is not allowed to work with such large deformations since smaller shifts and

scaling factors already allow for convincing spectral matching of the diagonal pairs.
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A. Details on the DFT computations for the cobalt catalyst

All DFT calculations were performed using Gaussian 16 [6]. The M06-L [37] functional was employed for

its proven accuracy in reproducing experimental IR spectra of related cobalt carbonyl complexes [2]. Geometry

optimizations were carried out at two levels of theory. The first level of theory (BS1 1) used the LANL2DZ [10] basis

set for Co and the 6-31G(d,p) basis set for all other atoms. The second level (BS1 2) employed the LANL2DZ basis

set for Co and the 6-31+G(d,p) basis set with diffuse functions for other atoms.

Single-point energy corrections were performed on the optimized structures at the M06-L/BS2 level, where BS2

denotes the def2-TZVP [35, 36] basis set for Co and the 6-311++G(d,p) basis set for other atoms. The Gibbs free

energies are expressed as M06-L/BS2//BS1 1 or M06-L/BS2//BS1 2, depending on the optimization level. Thermo-

dynamic corrections were applied under two sets of conditions: 413.15 K and 49.3 atm (50 bar), and 433.15 K and

49.3 atm (50 bar).

The Shermo program [21] was used, implementing Grimme’s quasi-rigid rotor harmonic oscillator (quasi-RRHO)

method [8] to account for vibrational entropy corrections. The initial geometries of the 19e− cobalt complexes were

derived from published geometry structures [11]. The doublet spin state was confirmed by electron paramagnetic

resonance (EPR) for [Co(acac)(dppBz)]+, and DFT calculations also indicated that the quartet state is thermodynam-

ically less stable than the doublet state [9]. Therefore, only the low-spin doublet state was considered and discussed

in this study.
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