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Abstract

The multicomponent factorization of multivariate dataeofresults in non-unique solutions. The so-called rotation
ambiguity paraphrases the existence of multiple solutiginish can be represented by the area of feasible solutions
(AFS). The AFS is a bounded set which may consist of isolatédets. The numerical computation of the AFS is
well understood for two-component systems and is an expensimerical process for three-component systems. In
this paper a new fast and accurate algorithm is suggestethvugbased on the inflation of polygons. Starting with
an initial triangle located in a topologically-connectedset of the AFS, an automatic extrusion algorithm is used to
form a sequence of growing polygons which approximate th8 ABm the interior. The polygon inflation algorithm
can be generalized to systems with more than three comporiEm diciency of this algorithm is demonstrated for

a model problem including noise and a multi-component chahneaction system. Further, the method is compared
with the recent triangle-boundary-enclosing scheme o, Abdollahi and Maeder (Anal. Chem. 2011, 83, 836—
841).

Key words: factor analysis, pure component decomposition, nonnegatatrix factorization, spectral recovery,
band boundaries of feasible solutions, polygon inflation.

1. Introduction component decomposition see Malinowski [21], Hamil-
ton and Gemperline [14] and Maeder and Neuhold [20].
The resolution of multicomponent mixturesis a chal-  In this paper the focus is on the numerical approx-

lenge in analytic chemistry which uses for its solu- imation of the area of feasible solutiongAFS) for
tion mathematical tools of nonnegative matrix factor- three-componentsystems. The approach by Borgen and
izations. We consider the inverse problem to compute Kowalski[5] allows to represents the AFS by a bounded
from a spectral data matrix on a timdrequency grid set in a 2D plane. For a three-component system the
an approximate factorization into a concentration and an AFS is expected to consist of at most three separated
absorptivity matrix. These matrices represent the con- subsets. Our work is also inspired by the recent work
centration profiles in time and the absorption spectra of of Golshan, Abdollahi and Maeder [10] in which the
the pure components underlying the chemical reaction boundary of the AFS is covered by a chain of equilat-
system. A serious obstacle of a pure component de- eral triangles.
composition procedure is the fact that in nearly all cases
a continuum of feasible so!utions e>§ists. _This factis 1 1 The new polygon inflation algorithm
well-known from the analysis of relatively simple two-
component systems published by Lawton and Sylvestre Our idea to approximate the AFS of a three-
in 1971 [19]. For three-component systems Borgen and component system is to inflate an initial triangle in the
Kowalski [5] provided valuable techniques on the pure interior of a topologically-connected subset by an adap-
component recovery which were extended and deep-tive algorithm. The inflation algorithm subdivides the
ened by Rajkd and Istvan [26] and also by Golshan, Ab- edges of the polygon recursively and adds new vertices
dollahi and Maeder [10, 11]. Closely related to this is which are located on the boundary of the AFS. A local
the computation of minimal and maximal band bound- error estimation is used to control the polygon refine-
aries by Tauler [29]. For general literature on the pure ment.
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Figure 1: Approximation of the boundary of an Erlenmeyendlaghe initial triangle (left figure) and refined polygons wil = 4,12 125 vertices
are shown. The vertices are computed in an adaptive algoiitte way that the approximation error is minimized. SeeiSest3.4 and 3.5 for
the explanation of the parametesisands: With e, = ¢ = 1072 one gets 125 final vertices, fep = 6 = 104 a number of 309 vertices and for

ep = 6 = 1075 a number of 781 vertices.

The polygon inflation is illustrated in Figure 1 where

ignored, then the Lambert-Beer law expresses a linear

the shape of an Erlenmeyer flask, for demonstration pur- dependence betwe@&n C andA in the form

poses, is approximated. A characteristic feature of the
algorithm is that it requires only few vertices to approx-
imate straight segments of the boundary. For curved re-
gions the resolution is increased automatically within
the adaptive process. The idea of a polygon inflation

D=CA

The problem of a multivariate curve resolution tech-

nigue is to find for a given matri the correct non-

can be generalized to higher dimensions. A 3D poly- \aqative matrix factor€ andA, see [14, 21]. This is a

hedral construction can be used to treat four-component
systems and so on.

so-called inverse problem which is ill-posed in the sense
that a continuum of possible solutions exists [20]. The

following options are available:

1.2. Organization of the paper

Section 2 introduces the Borgen-Kowalski approach
for representing the AFS by means of a planar plot
for three-component systems. Further, the triangle-
boundary-enclosing algorithm from [10] is explained.
In Section 3 the new polygon inflation algorithm is pre-
sented and its adaptivity andfieiency are discussed.
Numerical examples are presented in Sections 4 and 5
where the AFS is computed for the Rhodium-catalyzed
hydroformylation. The precision of the algorithm is an-
alyzed under variation of the control parameters and the
algorithm is compared with established methods.

2. On the representation of feasible solutions

2.1. The spectral recovery problem

Let D € R be the spectral data matrix which con-
tains in its rowsk spectra (taken &times from a chem-
ical reaction system) and where each spectrum contains
absorption values at frequencies. If the reaction sys-
tem containss active species witls < min(k, n), then
the concentration matri€ € RS contains column-

1. One can try to recover the desired pure component
decomposition by using regularization techniques
andor kinetic models [2, 7, 9, 13, 16, 24, 27].
However, these regularization techniques entail the
risk that improper solutions are picked out.

2. In appropriate cases the non-uniqueness can be re-
duced by a local rank analysis together with an ap-
plication of the theorems of Manne [22]. Further,
partial knowledge of spectra, e.g. of the reactants,
or the knowledge of certain concentration profiles
allows to apply the complementarity and coupling
theorems from [28]. These and other arguments
can result in a uniqgue decomposition or at least in
some unique factors.

3. If no adscititious information on the reaction sys-
tem is to be included in the factor analysis, then a
computation of the set of all possible solutions ap-
pears to be appropriate. See [1, 8, 10, 19, 29] for
the AFS for two- and three-component systems.

Here we follow this third and most general approach and

wise the concentration profiles of these species. Theaim at a computation of the AFS. Moreover, the AFS

absorptivity matrixA € RS holds row-wise the spec- can be considered as an own object of research. Numer-

tra of theses species. If nonlinearities and noise are ical methods for its computation appear to be desirable.
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2.2. Alow-dimensional representation of the AFS

The starting point for the computation of the AFSis a
singular value decomposition (SVD) of the spectral data
matrix D € R¥", Its SVD readsD = UXVT with or-
thogonal matriceb), V and the diagonal matriX which
contains the singular values on its diagonal. ID is
a ranks matrix, then it holds thab = USVT = USV'
withU = U(,1:9 e RS £ =3%(1:51:5) € RS
andV = V(;,1:s) € R™S,

The so-called abstract factdd€ andV' are usually
poor approximations of the matric€sandA. A proper
regular transformation by € RS allows to solve the
reconstruction problem according to

c=U03T1 A=TV". (1)
Any pair of nonnegative matricdd¥T-1 and TV is
called a feasible solution. A feasible solution guaran-
tees a correct reconstruction side= (UET-1)(TV').

However, these factors may have no chemical meaning.

For a two-component system Lawton and Sylvestre

[19] have represented the range of feasible solutions.
For a three-component system the situation is more

complicated but the purpose is still the same. All reg-
ular matricesT are to be found so tha andA in (1)
are nonnegative matrices. The @@ents of T are the
key for a low-dimensional representation of the AFS,
see the seminal work of Borgen and Kowalski [5], the
important contributions [4, 8, 26, 25] as well as the re-
cent paper [10]. The approach is explained next.

The Perron-Frobenius theory [23] guarantees that the

first singular vectoNV(:, 1) of V can be assumed to be
a component-wise nonnegative vector; possibly a multi-
plication with—1 is to be applied to give a component-
wise non-positive vector the desired orientation. With
(1) theith pure component spectruAdi,:), i = 1,2, 3,
reads

Al =taVE DT + VG 2) +63V(EL3)T.  (2)

A point (a, 8) € R? is calledvalid if and only if there
exists at least one regular matrix

s:( )eRM

so thatT is invertible and bothA = TV' andC =
UXT-! are nonnegative matrices. Hence the AFS can
be expressed as the set

M= {(e.p) € R?: rank(T) =3, CCA20}. (5)

Under some mild assumptions the adtis bounded.

The rows ofS anda, 8 are coupled in the following
sense: If & B) € M, then the rowsS(i,:), i = 1,2,
of S are also contained itM. The reason is that an
orthogonal permutation matrik € R®® can be inserted
in the admissible factorization

D=CA=UST TV = (GETIP" ) (PTV").
~——
P

S11
1

S12

S22 (4)

The permutation of the rows df is accompanied with
the associated permutation of the columnsTot and
the nonnegativity of the factors is preserved. Furthier
andT~!PT = (PT)! are a pair of transformation matri-
ces with permuted rovisolumns in a way thatd, S2)
can substituted, 8) and vice versa.

2.3. Thetriangle-boundary-enclosing approach of Gol-
shan, Abdollahi and Maeder

In 2011 Golshan, Abdollahi and Maeder [10] intro-
duced a new approach for the numerical approximation
of the boundary of the AFS. This technique is based on
an inclusion of the boundary by small equilateral trian-
gles. The algorithm constructs in an initialization phase
a first triangle which has at least one vertex in the inte-
rior of M and has also at least one vertex which is notin
M. Thus the boundary of the AFS has a nonempty inter-
section withM. Next this triangle is reflected along one
of its edges in a way that the new triangle has once again
a vertex in and a vertex not iM. This procedure is
continued until the band of triangles includes the entire

SinceV(;,1) # 0 these spectra can be scaled so that boundary of a connected subset of the AFS, see Figure

tpy = 1 fori = 1,2,3. ThenT has still six degrees of
freedom namely;; andtjz with i = 1, 2, 3. The problem
is forced to two dimensions by looking only for those
a = tjp andg = ty3 so that

1 «
1 s;1
1 s

B
S12
$2

T= 3)

for propers: 1, Si2, S21 and s, results in a feasible solu-
tion.
3

2. The accuracy of this triangle-boundary-enclosing ap-
proach depends on the edge length of the triangles. For
smaller triangles the accuracy of the boundary approxi-
mation increases together with total number of triangles
which are used to cover the boundary.

3. The polygon inflation algorithm

The geometric idea of the polygon inflation algorithm
is introduced in Section 1.1. Next we describe the algo-
rithm and its mathematical fundamentals.



Figure 2: Enclosure of a boundary segment by a chain of eqtala
triangles.

3.1. The target function for approximating the AFS

For the computation of the AFS a procedure to clas-
sify points @,8) € R? asvalid, if («,8) € M, or as
non-validin the other case. A procedure for this classi-
fication is developed next. Let> 0 be a small nonneg-
ative real number. Thene is used as a lower bound for
the acceptable relative negativeness of the fa€ard
Ain the following way

minj Cji
max; |Cji| -

e, AL 2123 (6)
max; |Aj
The acceptance of small negative component ahd
A allows to stabilize the computational process in the
case of noisy data.

Let f be a target function which depends on the six
degrees of freedom being 8 andS € R?<?, see (3) and
(4), so that

f  RxRxR®>? SR

with

f(a,B,S) = 23: Zk: min(0, ———

i=1 j=1

3 n
2
+ ZZmln(O ||A( )”w + &)

i=1 j=1

+l13 = TTH2.

+ 8)2

IIC( )Ilm
(7)

ThereinC andA are formed according to (1) € R3S

is the 3x 3 identity matrix,|| - ||, is the maximum vector
norm and| - || is the Frobenius matrix norm [12]. Fur-
therT™ is the pseudo-inverse df. The last summand
1 TT+||§ equals zero ifl is an invertible matrix and
is positive if T is singular; thereforé = O guarantees a
regularT. The functionf is used to fornt as follows
(8)

FIR°>SR, F(ap)= Jnin, (@4, ).

FunctionF given in (8)
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Figure 3: The AFS for the model problem from Section 4. Top:
F(a, B) on (@, B) € [-2, 2]x[-2, 2]. Bottom: The AFS withe, = 1074,
see (11).

Computationally a pointd, 8) is considered as valid if
and only ifF(a, B) < &t With & = 10719, Hence,

= {(@.8) € B2 F(a.p) < eual).- 9)

Figure 3 illustrated for the model problem which is
presented in Section 4 on the domaing) € [-2, 2] x
[-2,2].

The evaluation of requires the solution of a least-
squares problem within 4 parameters and with 8(
n + 3) variables. Our functiof given in (8) is some-
what diferent from the pure sum of squares ssq
[ID - C+A+||§ as used in [1, 10, 30]; there®, andA,
are derived fronC andA by removing any negative en-
tries. However, we prefer to use (8) for the reason of its
numerical stability and as (8) requires a minimization of
a sum of onlyO(k + n) squares. In contrast to this, the
minimization of ssq includes the much larger number
of O(k - n) summands of squares. Here, the number of
components is fixed te = 3. If the approach is gener-
alized to largers, then the computational costs increase
linearly in s.

3.2. Orientation of the AFS

The orientation of the AFSV depends on the ori-
entation of the singular vectors. The orientation of a



singular vector means that the sign of a singular vector SO”S"UC“O” of the initial triangle
is not uniquely determined in the sense that the simul- '

taneous multiplication of thigh left singular vector and 03

the ith right singular vector with-1 does not change %\4\

the productUxV'. However, the orientation of the first Q02

left singular vector and the first right singular vector can

be fixed in advance by the Perron-Frobenius theory as 01 p

these two vectors are sign-constant and can therefore o WPZ

be assumed in a component-wise nonnegative form. In 3

other words the SVIJEVT with U € RF3 v € R™3 N A

is equivalent to the SVIVEVT with
R Figure 4: Computation of an initial triangle iM. Dotted line:
U(,1:3)=U(,1:3)-diag(1 p1, p2), Boundary of a subset o¥1. Bold line: the initial triangle. Asterisk:

- . Initial point (9, 3®) = (0.2438 0.0235).
V(. 1:3)= V(. 1: 3)- diag(L pr. p2) '

andpy, p2 € {-1, 1}. The signs ofy; are associated with

§ H > 0 forP < 0 for Py, Fi 4 f
a reflection of the AFS along the or theg-axes. encey = 0 for P, andy < O for P, see Figure 4 for

the construction. TheRs is one point of intersection of
the mid-perpendicular of the line segméhP, having

3.3. Initialization: Generation of a first triangle
the form

Here we refer to the typical case that the AFS consists
of three separated subsets. However, the algorithm can
also be applied to all other cases. Further the AFS is
assumed to be a bounded set; we plan to give a formal
proof for this fact in a forthcoming paper. Here the AFS
M is related to feasible matrices representing the pure
component spectra. If the AFS for the concentration . . . .
factorC is of interest, then the whole procedure can be 3.4. The polygon inflation: Adding of vertices
applied to the transposed data mamik. Thg edges of the initial trigr)gle ano! also the edges

The algorithm starts with the construction of an ini- Of refined polygons are subdivided by introducing new
tial triangle which is a first coarse approximation of a Vertices in away that the refined polygon is a better ap-
topologically-connected subset of the AFS. Therefore Proximation of the AFS. Next the adding of a new ver-
an admissible factorizatioB = CA with nonnegative (€ is explained. Therefore, let the-gon P with the
factorsC and A is needed. This factorization can be Vertices Pi,..., Pm) be given. TherP is inflated to an

computed by any nonnegative matrix factorization tool (M + 1)-gonP” with the vertices®;, ..., Py, ). If the
[17]. According to (2) the first rowA(L, ;) reads edge betweeR; andP;.1 is selected for the refinement,
then the new verteR!, , is a point of intersection of the

mid-perpendicular of the edd®P;.1 and the boundary

— 1 55
Xx=M+7yv, M= §(P1+ P2), v L PiPa.

Without loss of generality < O can be assumed, see
Figure 4.

AL, ) = V(1) + OV, 2)T + OV, 3).

Hence (1,(0)’/3(0)) € M are determined by OM. The refined pOIygon has the vertices
T(l, :) = (t]_]_, 112, t13) = A(l, :) -V (P’ , Plz, P P;m—l) = (P]_, Py, ...,P, Pi’+1’ Pii1, ..., Pm)
and If P approximates a topologically connectednvex
20 = o o _ hs subsetM, then the new verte®; ; is located not in

i

tyg the interior ofP so that the new polygoR’ containsP

as a subset. In case of a concave boundary element the
new polygonP’ may have a smaller area th& The
mid-perpendicular of the edd®&P;,, has the form

t11

This interior point ¢©,8©) is the basis for the con-
struction of the three verticeBy, P,, P3 of the ini-
tial triangle on the boundar§ M of M. Since M is
a bounded setP; and P, can be determined on the
straight line along the-axis through ¢, @) having
the form with

M+yu, yeR (20)

_ a© 1 1 -
X={pgo |*7| o |- M =3P +Pi), v Ll PPua.
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Figure 5: Adding of the verteRy, which is located on the intersection
of the mid-perpendicular througPs andPg and the boundary o#.

The point of intersection of the straight line (10) and
oM s not unique (there are two or more points of inter-
section); the new verteR' , is determined in a way that
the Euclidean distance td is minimized and that the
polygon is not dissected into two parts (to avoid to find
a new vertex on the opposite side of the polygon, i.e.
P/, .M dissectd). Figure 5 illustrates the refinement of
a 6-gontoa 7-gon.

The accuracy of a new vertex depends on the func-
tion F which is to be minimized along the straight line
(10). Numerically we use the relatively slow converg-
ing bisection method for the root finding because of its
simplicity and robustness. The iteration is stopped if a
final accuracyy is reached so that

Pl eM, r;;jaHPi’Jrl -, <&  (11)
The number of iterations depends ep and on the
length||P; — Pi,1]|]> of the edge. In our numerical cal-
culations between 3 iterations (fep = 1072) and 8
iterations (forep, = 107°) were needed to determine a

/
vertexPHl.

3.5. Adaptive edge selection in the refinement process

An adaptive process is used to determine those edges

of the polygon whose subdivision promises to improve
the approximation of the AFS in the best way. Next a
selection strategy is introduced together with a termina-
tion criterion.

The central quantity which steers the refinement pro-
cess is the change-of-area of the polygon which arises
if an edge is subdivided. So if an edgeP;,; is sub-
divided, then each of the new edges gets a equally

6

weighted gain-of-area

1 /
A = 1P = Praallz [M = Py, (12)
as an attribute. In the next step an edde selected for
which

¢ = arg maxj;
i

in order to determine an edge which promises a maxi-
mal gain-of-area on the basis of its subdivision history.
If there is no unique indexX, then the algorithm starts
with the smallest index. As for the initial triangle no
subdivision history is available, all three initial edges
are subdivided at the beginning.

The refinement process is stopped if the largest
achievable gain-of-area drops below some final accu-
racys. The actual value of may depend on the prob-
lem. We often usé = &y,

3.6. Noisy data

The polygon inflation algorithm works well for non-
perturbed as well as for noisy data. The parameter
in (7) controls the allowance of relative negative con-
tributions inC and A and, in our experiments, appears
to cause a favorable numerical stability with respect to
perturbations.

However, the noise level must be limited in a way
that the first three singular vectovs:, i),i = 1, 2, 3, still
contain the essential information on the system. If this is
not guaranteed, then the expansion (2) cannot guarantee
for a proper reconstruction @& andA. Then even no
regular transformatio may exist so tha€ andA are
nonnegative matrix factors.

3.7. Hjiciency of the polygon inflation

Three characteristic traits of the polygon inflation al-
gorithm are compiled next and are compared with the
triangle inclusion method.

1. The polygon inflation algorithm which uses the
function (7) has to minimize sums of onf}(k + n)
squares. In contrast to this the function ssq in-
cludesO(kn) squares in [10]. (Note that by the
definition of the Landau symbol it holds th@gk +

n) = O(s(k + n)) wheresis the number of compo-
nents which equals 3 throughout this paper.)
Negative entries df andA larger than-¢ are not
completely ignored in the polygon inflation algo-
rithm but dfect the minimum ofF, see (8). To
show that the ssq function from [10] and the func-
tion F (8) result in very similar AFSs, we applied



& | M; Mo M3

0 0 0 0
5.10°%| 1.6-10* 93-10° 14.10*
1.-102 | 52-10* 28-10% 4.0-10*
5.102|21-10* 22-10% 15.10*

Table 1: Comparison of the AFS computed with the functioty
(8) and the AFS with ssq according to [10]. The Hau§ddistance
of the two AFSs is tabulated for songe The accuracy of the bound-
ary approximation is bounded by, = 107, ThereinM; is theith
topologically connected subset 6.

these algorithms to the model problem from Sec-
tion 4 and used the Hausdbmetric as a measure
of distance between these sets. The Hausd®-
tance between to sefsandB is

6(A,B) = max(TE%xD(a, B), r&%xD(b, A))

whereD(x,Y) = minyey (IX - Vi) is the distance
of a pointx from the setY. Numerical values of
the Hausddf distances are listed in Table 1; the
distances are very small and the sets coincideif
0.

. The polygon inflation algorithm results in a piece-
wise linear interpolation of the boundary 8 by
polygons. The local approximation error of a lin-
ear interpolation behaves likg(h?) if the nodes of

the interpolant are assumed to be exact. In contrast

to this the enclosure of the boundary by a chain of
equilateral triangles with the edge-lendithesults

in a final accuracy which is bounded by the width
O(h) of this chain.

Further, the local adaptivity of the polygon infla-
tion scheme even requires a small number of re-
finement steps if the boundary is locally more or
less a straight line. A critical nonsmooth region
of the boundary can be resolved to any desired
accuracy. This adaptive resolution of the bound-
ary results in a costffective computational proce-
dure. In contrast to this number of triangles needed
for the triangle inclusion algorithm increases as
O(1/h) in the edge length of the triangles.

3.8. Selection of parameters
Parameters of the polygon inflation algorithm are:

1. The parametes in (6) controls the degree of ac-
ceptable negative entries in the column<Coand
the rows of A. Negative matrix elements are not
penalized in (7) if their relative magnitude is larger
than—e. This parameter should be increased with

7

growing perturbations in the spectral data. In our
experience 0< ¢ < 0.05 seems to be working
properly. For model problems and in absence of
any errorss = 0 can be used. By construction in-
creasing: enlarges the AFS.

. The parametety, in (11) controls the quality of
the boundary approximation of the AFS. We used
ep < 1072 and sometimes, < 10™*. The influ-

ence of this parameter on the shape and size of the
computed AFS is negligible.

The parameterdefines a stopping criterion for the
adaptive polygon refinement. If the largest gain-of
-area (12) is smaller thaf) then the refinement can
be stopped. We often sét= g, and state that the
shape and size of the computed AFS is not sensi-
tive for changes oé.

3.9. Two remarks on the numerical implementation

3.9.1. Numerical optimization

Each step of an iterative minimization &f by (8)
includes the solution of a nonlinear optimization prob-
lem. For a poorly conditioned problem the numerical
solutions will scatter around the exact solution. Hence,
a new verteXP , might be located in the interior of the

i+1
AFS in the follgwing sense

[(Q/I&] ||Pil+1 - X”z 2 &p.
With such an inaccurate vertex the further refinement
steps can result in a nonsmooth boundary which may
even contain needles directing towards the inside of the
AFS. To avoid such misplaced boundary points, we use
the powerful optimization procedure NL2SOL [6] and
start the iterative minimization with a good initial guess.
A reasonable initial guess can be a convex combination
of the numerical solutions which have previously been
gained for nearby points. Further, we apply some deci-
sion tree before accepting points as valid. Nevertheless,
misplaced boundary points can be detected by looking
for obtuse angles along the edges of the polygon. Then
suspicious vertices may be removed and the optimiza-
tion can be restarted.

3.9.2. Weakly separated subregions of the AFS

If parts of the boundary of two isolated subregions
of the AFS are in close proximity, then the numerical
algorithm tends to agglutinate these regions to a joint
connected subset. However, for most of the practical
problems the subsets of the AFS appear to be well sep-
arated.



4. A three-component model problem

Next the polygon inflation algorithm is applied to a
three-component model problem. The total computa-
tion time and the number of evaluations of pointsg)
concerning their membership ¥l is recorded. Further,
the accuracy parameters and the noise level are varied
The results are compared with the triangle enclosing al-
gorithm.

4.1. The model problem
We consider the consecutive reactions
x &y 7

with the vector of kinetic constants = (Ky, Ky) =
(1,0.1) and with initial concentrationg(0) = (1,0, 0).
Along the time interval [030] a number ok = 1000

subset of the AFS does not imply strong variations in
the associated solutions. This is most evident for the
componentX andZ (the associated indexes dre- 1
andi = 3). The variability of the concentration pro-
files more strongly depends on the variability of the left
singular vector&J (;,i),i = 1,2, 3, of D.
4.3. Variation of the accuracy parametetse, and
noisy data

Next a direct comparison is given of the triangle in-
clusion algorithm [10] with the polygon inflation algo-
rithm from Section 3. Therefore the boundary accuracy
parameteey, see (11), is set te, = 102,103,107
and the parameter on the acceptance on relative nega-
tiveness is set ta = 5- 1072 and 5- 1073, see (6).
In our implementation of the triangle inclusion algo-
rithm the parametes, is the side-length of the equi-
lateral triangles. BotbMc and Ma are computed and

equidistant nodes is used. The pure component spectrgy, required number of program callsBf(funcalls) is

on [0,50] are set to

2

1(1) = exp(- ).
aul) = exp- L2
au() = expt- L0

The discretization uses= 1500 equidistant nodes. The
resulting spectral data matrl € R190%1500 s formed
according to

Dij = CilAlj + CizAzj + Ci3A31,

Figure 6 shows the factoiG and A together with the
product matrixD.

4.2. The AFS forC and A

Figure 7 shows the results of a computation of the
AFS by means of the polygon inflation algorithm for
the concentration factorMlc) and also for the spectral
factor (Ma). The setsMc and M4 are each composed
of three isolated and topologically connected subsets.
The associated ranges of possible solutions for the con-
centration profiles are shown in Figure 8. A separate
concentration profile is drawn for each vertex of the
three polygons which approximate the AFS. Addition-
ally, a concentration profile is drawn for each node of a

recorded, see Table 2. Further, the computation time
on a standard PC with a 2.4GHz Intel CPU with 16 GB
RAM is tabulated. The program code has been writ-
ten in C and some FORTRAN libraries are used. For
the triangle inclusion algorithm the number of funcalls
is equal to the number of vertices of the triangles en-
closing the boundary of the AFS. In the polygon infla-
tion algorithm multiple funcalls are needed to find a new
vertex on the boundary of the AFS by means of the bi-
section algorithm. However, its total number is always
smaller than that for the triangle inclusion approach. If
the accuracy parametey is decreased by one power
of 10, then in our implementation of the triangle inclu-
sion scheme the number of funcalls increases with the
factor of about 10; in contrast to this the number of fun-
calls increases with the factor of less thafi0 for the
polygon inflation scheme. All these results appear to
be stable if the data are slightly perturbed or if the con-
trol parameters for relative negativeness are increased.
Figure 9 shows the AFS for the spectral facfoif the
control parameters for relative negativeness are set to
€ € {0.05,0.04,0.03,0.02 0.01, 0}.

5. Rhodium-catalyzed hydroformylation

The kinetics of the hydroformylation of 3,3-
dimethly-1-butene with a rhodiufmi(2,4-di-tert-
butylphenyl)phosphite catalyst in-hexane has been

guadratic mesh which falls into the AFS. One observes studied in detail in [18]. The in situ FTIR spectroscopic
that the area (in the sense of an integral) of connecteddata from this publication are reused for a computation
subsets of the AFS is not directly associated with the of the AFS; for additional information on the reaction
size of the area which is enclosed by the series of con- conditions and on the experimental HP FTIR apparatus
centration profiles. In other words, a large connected see [18].
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Concentration profiles - matri@ Absorption spectra - matrid
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Figure 6: The matrix factor€ and A with dash-dotted line for the componextdashed line folY and solid line forZ. The right figure shows the
productabsorption dat®.
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Figure 7: Left: The area of feasible solutioic for the concentration factd@®. Right: The area of feasible solutiofda for the spectral factof.
For the concentration profiles the solution with the smallgegrated absolute value of the curvature and for whidi one reactant is nonzero at
time zero have been marked by a small circle. The three agedgpoints in the AF3/1, are also marked with a circle.

Feasible concentration profil&s Feasible concentration profilys Feasible concentration profil&s

0 10 20 30

t

10 20 30

t

Figure 8: Feasible concentration profi@g, i) for the three components= 1 for X, i = 2 for Y andi = 3 for Z according to the three topologically
connected subsets of the AR3c in the left side of Figure 7. The area of a connected subséteoAES is not correlated with the variability of
the range of feasible solutions for the associated comppokrSection 4.2.

with & = 10712 with e =5-107°
Triangle inclusion Polygon inflation Triangle inclusion Polygon inflation
£p funcalls | time[s] || funcalls | time[s] | vertices || funcalls | time[s] || funcalls | time[s] | vertices

Factor 102 1166 13 352 4 65 1218 13 409 4 81
A 1078 11566 83 1314 12 197 12168 89 1346 11 205
10 || 115658 660 3413 26 411 121685 685 4001 32 479

factor 1072 2334 19 1541 12 81 2733 22 626 7 117
¢ 1038 23258 153 1966 18 229 27229 178 1666 16 233
104 232477 1341 4465 44 467 272897 1609 4541 44 507

Table 2: The number of program calls of F (funcalls) in order to compute (9) is tabulated for varying &, together with the required
computing time. The termination is controlled by § = &p, see Section 3.5. The ratios of required computing time and funcalls is not
constant as for computations with higher accuracy better initial values are available. Then convergence can be achieved with only a
small number of iterations.
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Sequence of absorption spectra
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Figure 10: Hydroformylation of 3,3-dimethly-1-butene. rige of
FTIR spectra which is determined by three components (olatipl
complex and hydrido complex). See Figure 2 in [18] for angrssi
ment of the peaks to the components as well as for the expetame
and spectroscopic details.

Figure 9: Some dierent areas of feasible solutions for the factor
for perturbed data and withe {0.05,0.04,0.03,0.02 0.01, 0}.

5.1. The FTIR data
for its computation; the polygoM, contains 417 ver-
tices with 3487 funcalls.

In Ma only a very small subset, marked by (c), is
responsible for the absorption spectrum of the hydrido
complex. The corresponding spectrum appears to be
nearly unique, see right lower spectrum in Figure 12;
an explanation can be derived from the relative concen-
trations at the end of the reaction and from the isolation
of certain peaks in the spectrum of the hydrido complex
compared to the spectra of the other components.

This corresponds with a very small range of possi-
5.2. Computation of the AFS and ranges of feasible so- ple concentration profiles for the olefin, see left upper

lutions plotin Figure 12. All other ranges for the concentration

As explained in Section 3.3 a first nonnegative factor- proflles and spectra are also shown in Figure 12. As

izationD = CAis to be computed for the initialization. n Seption 4.2 a separate concentration profilg.or spec-
This can be done by standard factorization tools like the trumis drawn for eagh vertex of the AFS' Additionally,
PCD code [24] or by the MCR-ANLS algorithm [15], a concentration pr'oflle or speptrqm is plottgd for each
the SPECFIT code [3] or even by the NNMF code [17] C\‘/’.Shet‘ of a ﬂ“ﬁdﬁ‘ﬁ:c meSht‘r’]"h'fh > 't‘?cate.c:h'rt‘hthe A':lf"
written in Matlab. For the given spectroscopic data the It .”: eacl %?h ebsmlo? esl S0 lfjt'ﬁn ;V.' te sma -d
permissibility of small negative entries in the fact@s 33 n egrah 0 b €a slo u Z\t/)a uebold I'e IScrete secon
andA appears to be important; we use= 0.01 in (6). erivative has been plotted by a bold line.

Further, the boundary approximation parameter (11) is

settogp = 1074, The termination parameterds= 1074, 6. Conclusion

see Section 3.5.

Figure 11 shows the two areas of feasible solutions A new fast numerical scheme for the adaptive approx-
Mc and Ma. No a priori information has been used for imation of the AFS for three-component systems by a
the decomposition, e.g., no mass balance for rhodium sequence of polygons has been introduced. Piecewise
is taken into account. The total computation times (the linear interpolation of the boundary of the AFS results
same hardware as in Section 4 is used) ar@ 8dconds  in a local approximation error which behaves lR?)
for Mc and 250 seconds foMa. The polygonMc is if his the distance of adjacent vertices. Further, local
spanned by 479 vertices and 3897 funcalls are neededadaptivity allows to reduce the number of vertices which

10

We use a spectroscopic data set which contains char-
acteristic absorptions from three components, namely
the olefin, the acyl complex and the hydrido complex.
A total number ofk = 1045 spectra is used and each
spectrum contains = 664 spectral channels within the
wavenumber interval [196@120]cntt. The sequence
of spectra is shown in Figure 10. The spectroscopic data
matrix D € R1045664 s the basis for the computation of
the AFS for a three-component system.
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0.4*",‘(3)‘!‘ ] 0.6 2
02} ‘ot ] V
04 v (@
or N ] v
AN 02t 1t
Q._p.2f o\\ .. i Q Y
-0.4f \\ ‘\s\ ] of
\\\ \\\ .
-0.6f v (o) 1 -0.2 '
A P 1
-0.8 N 1 -0.4f N
-1 -0.5 0 0.5 1 -0.8
(04

Figure 11: Hydroformylation of 3,3-dimethly-1-butene fviin analysis of a three-component subsystem consistitige @l¢fin, the acyl complex
and the hydrido complex. Left: The area of feasible solutidc for the concentration factor. Right: The area of feasibleitsms Ma for the

spectral factor.

In Mc the concentration profiles with the smallest integratedits value of the curvature have been marked by a circle. tfitee associated
points in the AFSMp are also marked by a circle. Each of three separated suliséts and Mp are associated with a specific component. The
subset (a) represents the olefin, (b) represents the acyllerrand (c) marks the hydrido complex.
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Figure 12: Ranges of the feasible concentration profilagé€ttupper figures) and ranges of feasible spectra (three figuees). Left figures:

the olefin 3,3-dimethly-1-butene. Middle figures: the aayinplex. Right figures: the hydrido complex. All the ordiratef figures are scaled
relatively so that no absolute values on the concentrati@bsorption should be extracted. No additional inforntatim the reaction system has
been used for the decomposition; especially no mass batandedium is taken into account.
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are needed to approximate the boundary whenever the[13] H. Haario and V.M. Taavitsainen. Combining soft andchar

boundary is smooth. Numerical calculations show con-

siderable saving in the computation time for the new

polygon inflation scheme. For instance for the problem

from Section 5 with a 104% 664 data matrixMc and
M, can be computed in only 50 seconds.

The polygon inflation technique can be generalized to
a polyhedron inflation scheme in order to approximate

the AFS in case of as-component system with > 4.

Local adaptive refinement of the faces of the polyhedron

[14]

[15]

[16]

can be applied in a way comparable to three-component;; 7
systems. Finally, we would like to comment that the

non-uniqueness of the solutions in an AFS can be re-
duced if any supplemental information on the system is [t
available; see [28] for some complementarity and cou-

pling theorems.
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