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Abstract

The multicomponent factorization of multivariate data often results in non-unique solutions. The so-called rotational
ambiguity paraphrases the existence of multiple solutionswhich can be represented by the area of feasible solutions
(AFS). The AFS is a bounded set which may consist of isolated subsets. The numerical computation of the AFS is
well understood for two-component systems and is an expensive numerical process for three-component systems. In
this paper a new fast and accurate algorithm is suggested which is based on the inflation of polygons. Starting with
an initial triangle located in a topologically-connected subset of the AFS, an automatic extrusion algorithm is used to
form a sequence of growing polygons which approximate the AFS from the interior. The polygon inflation algorithm
can be generalized to systems with more than three components. The efficiency of this algorithm is demonstrated for
a model problem including noise and a multi-component chemical reaction system. Further, the method is compared
with the recent triangle-boundary-enclosing scheme of Golshan, Abdollahi and Maeder (Anal. Chem. 2011, 83, 836–
841).

Key words: factor analysis, pure component decomposition, nonnegative matrix factorization, spectral recovery,
band boundaries of feasible solutions, polygon inflation.

1. Introduction

The resolution of multicomponent mixtures is a chal-
lenge in analytic chemistry which uses for its solu-
tion mathematical tools of nonnegative matrix factor-
izations. We consider the inverse problem to compute
from a spectral data matrix on a time× frequency grid
an approximate factorization into a concentration and an
absorptivity matrix. These matrices represent the con-
centration profiles in time and the absorption spectra of
the pure components underlying the chemical reaction
system. A serious obstacle of a pure component de-
composition procedure is the fact that in nearly all cases
a continuum of feasible solutions exists. This fact is
well-known from the analysis of relatively simple two-
component systems published by Lawton and Sylvestre
in 1971 [19]. For three-component systems Borgen and
Kowalski [5] provided valuable techniques on the pure
component recovery which were extended and deep-
ened by Rajkò and István [26] and also by Golshan, Ab-
dollahi and Maeder [10, 11]. Closely related to this is
the computation of minimal and maximal band bound-
aries by Tauler [29]. For general literature on the pure

component decomposition see Malinowski [21], Hamil-
ton and Gemperline [14] and Maeder and Neuhold [20].

In this paper the focus is on the numerical approx-
imation of the area of feasible solutions(AFS) for
three-component systems. The approach by Borgen and
Kowalski [5] allows to represents the AFS by a bounded
set in a 2D plane. For a three-component system the
AFS is expected to consist of at most three separated
subsets. Our work is also inspired by the recent work
of Golshan, Abdollahi and Maeder [10] in which the
boundary of the AFS is covered by a chain of equilat-
eral triangles.

1.1. The new polygon inflation algorithm

Our idea to approximate the AFS of a three-
component system is to inflate an initial triangle in the
interior of a topologically-connected subset by an adap-
tive algorithm. The inflation algorithm subdivides the
edges of the polygon recursively and adds new vertices
which are located on the boundary of the AFS. A local
error estimation is used to control the polygon refine-
ment.
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Figure 1: Approximation of the boundary of an Erlenmeyer flask. The initial triangle (left figure) and refined polygons with N = 4, 12, 125 vertices
are shown. The vertices are computed in an adaptive algorithm in a way that the approximation error is minimized. See Sections 3.4 and 3.5 for
the explanation of the parametersεb andδ: With εb = δ = 10−3 one gets 125 final vertices, forεb = δ = 10−4 a number of 309 vertices and for
εb = δ = 10−5 a number of 781 vertices.

The polygon inflation is illustrated in Figure 1 where
the shape of an Erlenmeyer flask, for demonstration pur-
poses, is approximated. A characteristic feature of the
algorithm is that it requires only few vertices to approx-
imate straight segments of the boundary. For curved re-
gions the resolution is increased automatically within
the adaptive process. The idea of a polygon inflation
can be generalized to higher dimensions. A 3D poly-
hedral construction can be used to treat four-component
systems and so on.

1.2. Organization of the paper

Section 2 introduces the Borgen-Kowalski approach
for representing the AFS by means of a planar plot
for three-component systems. Further, the triangle-
boundary-enclosing algorithm from [10] is explained.
In Section 3 the new polygon inflation algorithm is pre-
sented and its adaptivity and efficiency are discussed.
Numerical examples are presented in Sections 4 and 5
where the AFS is computed for the Rhodium-catalyzed
hydroformylation. The precision of the algorithm is an-
alyzed under variation of the control parameters and the
algorithm is compared with established methods.

2. On the representation of feasible solutions

2.1. The spectral recovery problem

Let D ∈ R
k×n be the spectral data matrix which con-

tains in its rowsk spectra (taken atk times from a chem-
ical reaction system) and where each spectrum contains
absorption values atn frequencies. If the reaction sys-
tem containss active species withs ≤ min(k, n), then
the concentration matrixC ∈ R

k×s contains column-
wise the concentration profiles of these species. The
absorptivity matrixA ∈ R

s×n holds row-wise the spec-
tra of theses species. If nonlinearities and noise are

ignored, then the Lambert-Beer law expresses a linear
dependence betweenD, C andA in the form

D = CA.

The problem of a multivariate curve resolution tech-
nique is to find for a given matrixD the correct non-
negative matrix factorsC andA, see [14, 21]. This is a
so-called inverse problem which is ill-posed in the sense
that a continuum of possible solutions exists [20]. The
following options are available:

1. One can try to recover the desired pure component
decomposition by using regularization techniques
and/or kinetic models [2, 7, 9, 13, 16, 24, 27].
However, these regularization techniques entail the
risk that improper solutions are picked out.

2. In appropriate cases the non-uniqueness can be re-
duced by a local rank analysis together with an ap-
plication of the theorems of Manne [22]. Further,
partial knowledge of spectra, e.g. of the reactants,
or the knowledge of certain concentration profiles
allows to apply the complementarity and coupling
theorems from [28]. These and other arguments
can result in a unique decomposition or at least in
some unique factors.

3. If no adscititious information on the reaction sys-
tem is to be included in the factor analysis, then a
computation of the set of all possible solutions ap-
pears to be appropriate. See [1, 8, 10, 19, 29] for
the AFS for two- and three-component systems.

Here we follow this third and most general approach and
aim at a computation of the AFS. Moreover, the AFS
can be considered as an own object of research. Numer-
ical methods for its computation appear to be desirable.
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2.2. A low-dimensional representation of the AFS

The starting point for the computation of the AFS is a
singular value decomposition (SVD) of the spectral data
matrix D ∈ R

k×n. Its SVD readsD = UΣVT with or-
thogonal matricesU,V and the diagonal matrixΣ which
contains the singular valuesσi on its diagonal. IfD is
a rank-s matrix, then it holds thatD = UΣVT = ŨΣ̃Ṽ

T

with Ũ = U(:, 1 : s) ∈ R
k×s, Σ̃ = Σ(1 : s, 1 : s) ∈ R

s×s

andṼ = V(:, 1 : s) ∈ Rn×s.
The so-called abstract factors̃UΣ̃ andṼ

T are usually
poor approximations of the matricesC andA. A proper
regular transformation byT ∈ R

s×s allows to solve the
reconstruction problem according to

C = ŨΣ̃T−1, A = TṼ
T
. (1)

Any pair of nonnegative matrices̃UΣ̃T−1 and TṼ
T

is
called a feasible solution. A feasible solution guaran-
tees a correct reconstruction sinceD = (ŨΣ̃T−1)(TṼ

T
).

However, these factors may have no chemical meaning.
For a two-component system Lawton and Sylvestre

[19] have represented the range of feasible solutions.
For a three-component system the situation is more
complicated but the purpose is still the same. All reg-
ular matricesT are to be found so thatC andA in (1)
are nonnegative matrices. The coefficients ofT are the
key for a low-dimensional representation of the AFS,
see the seminal work of Borgen and Kowalski [5], the
important contributions [4, 8, 26, 25] as well as the re-
cent paper [10]. The approach is explained next.

The Perron-Frobenius theory [23] guarantees that the
first singular vectorV(:, 1) of V can be assumed to be
a component-wise nonnegative vector; possibly a multi-
plication with−1 is to be applied to give a component-
wise non-positive vector the desired orientation. With
(1) the ith pure component spectrumA(i, :), i = 1, 2, 3,
reads

A(i, :) = ti1V(:, 1)T + ti2V(:, 2)T + ti3V(:, 3)T . (2)

SinceV(:, 1) , 0 these spectra can be scaled so that
ti1 = 1 for i = 1, 2, 3. ThenT has still six degrees of
freedom namelyti2 andti3 with i = 1, 2, 3. The problem
is forced to two dimensions by looking only for those
α := t12 andβ := t13 so that

T =



1 α β

1 s11 s12

1 s21 s22

 . (3)

for propers11, s12, s21 ands22 results in a feasible solu-
tion.

A point (α, β) ∈ R2 is calledvalid if and only if there
exists at least one regular matrix

S =

(
s11 s12

s21 s22

)
∈ R2×2, (4)

so thatT is invertible and bothA = TṼ
T

and C =
ŨΣ̃T−1 are nonnegative matrices. Hence the AFS can
be expressed as the set

M =
{
(α, β) ∈ R2 : rank(T) = 3, C,A ≥ 0

}
. (5)

Under some mild assumptions the setM is bounded.
The rows ofS andα, β are coupled in the following

sense: If (α, β) ∈ M, then the rowsS(i, :), i = 1, 2,
of S are also contained inM. The reason is that an
orthogonal permutation matrixP ∈ R3×3 can be inserted
in the admissible factorization

D = CA= ŨΣ̃T−1TṼ
T
= (ŨΣ̃T−1PT

︸ ︷︷ ︸
(PT)−1

) (PTṼ
T
).

The permutation of the rows ofT is accompanied with
the associated permutation of the columns ofT−1 and
the nonnegativity of the factors is preserved. FurtherPT
andT−1PT = (PT)−1 are a pair of transformation matri-
ces with permuted rows/columns in a way that (si1, si2)
can substitute (α, β) and vice versa.

2.3. The triangle-boundary-enclosingapproach of Gol-
shan, Abdollahi and Maeder

In 2011 Golshan, Abdollahi and Maeder [10] intro-
duced a new approach for the numerical approximation
of the boundary of the AFS. This technique is based on
an inclusion of the boundary by small equilateral trian-
gles. The algorithm constructs in an initialization phase
a first triangle which has at least one vertex in the inte-
rior ofM and has also at least one vertex which is not in
M. Thus the boundary of the AFS has a nonempty inter-
section withM. Next this triangle is reflected along one
of its edges in a way that the new triangle has once again
a vertex in and a vertex not inM. This procedure is
continued until the band of triangles includes the entire
boundary of a connected subset of the AFS, see Figure
2. The accuracy of this triangle-boundary-enclosing ap-
proach depends on the edge length of the triangles. For
smaller triangles the accuracy of the boundary approxi-
mation increases together with total number of triangles
which are used to cover the boundary.

3. The polygon inflation algorithm

The geometric idea of the polygon inflation algorithm
is introduced in Section 1.1. Next we describe the algo-
rithm and its mathematical fundamentals.
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Figure 2: Enclosure of a boundary segment by a chain of equilateral
triangles.

3.1. The target function for approximating the AFS

For the computation of the AFS a procedure to clas-
sify points (α, β) ∈ R

2 asvalid, if (α, β) ∈ M, or as
non-validin the other case. A procedure for this classi-
fication is developed next. Letε ≥ 0 be a small nonneg-
ative real number. Then−ε is used as a lower bound for
the acceptable relative negativeness of the factorsC and
A in the following way

min j C ji

maxj |C ji |
≥ −ε,

min j Ai j

maxj |Ai j |
≥ −ε, i = 1, 2, 3. (6)

The acceptance of small negative components ofC and
A allows to stabilize the computational process in the
case of noisy data.

Let f be a target function which depends on the six
degrees of freedom beingα, β andS ∈ R2×2, see (3) and
(4), so that

f : R × R × R2×2→ R

with

f (α, β,S) =
3∑

i=1

k∑

j=1

min(0,
C ji

‖C(:, i)‖∞
+ ε)2

+

3∑

i=1

n∑

j=1

min(0,
Ai j

‖A(i, :)‖∞
+ ε)2

+ ‖I3 − TT+‖2F .

(7)

ThereinC andA are formed according to (1),I3 ∈ R3×3

is the 3×3 identity matrix,‖ · ‖∞ is the maximum vector
norm and‖ · ‖F is the Frobenius matrix norm [12]. Fur-
therT+ is the pseudo-inverse ofT. The last summand
‖I3 − TT+‖2F equals zero ifT is an invertible matrix and
is positive ifT is singular; thereforef = 0 guarantees a
regularT. The functionf is used to formF as follows

F : R2→ R, F(α, β) = min
S∈R2×2

f (α, β,S). (8)

−2
0

2

−2

0

2
10

−4

10
−2

10
0

10
2

αβ

F
(α
,β

)

FunctionF given in (8)

−1.5 −1 −0.5 0 0.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

α

β

Area of feasible solutions

Figure 3: The AFS for the model problem from Section 4. Top:
F(α, β) on (α, β) ∈ [−2, 2]×[−2, 2]. Bottom: The AFS withεb = 10−4,
see (11).

Computationally a point (α, β) is considered as valid if
and only ifF(α, β) ≤ εtol with εtol = 10−10. Hence,

M =
{
(α, β) ∈ R2 : F(α, β) ≤ εtol

}
. (9)

Figure 3 illustratesF for the model problem which is
presented in Section 4 on the domain (α, β) ∈ [−2, 2] ×
[−2, 2].

The evaluation ofF requires the solution of a least-
squares problem within 4 parameters and with 3(k +
n + 3) variables. Our functionF given in (8) is some-
what different from the pure sum of squares ssq=
‖D − C+A+‖2F as used in [1, 10, 30]; thereinC+ andA+
are derived fromC andA by removing any negative en-
tries. However, we prefer to use (8) for the reason of its
numerical stability and as (8) requires a minimization of
a sum of onlyO(k + n) squares. In contrast to this, the
minimization of ssq includes the much larger number
of O(k · n) summands of squares. Here, the number of
components is fixed tos = 3. If the approach is gener-
alized to largers, then the computational costs increase
linearly in s.

3.2. Orientation of the AFS

The orientation of the AFSM depends on the ori-
entation of the singular vectors. The orientation of a
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singular vector means that the sign of a singular vector
is not uniquely determined in the sense that the simul-
taneous multiplication of theith left singular vector and
the ith right singular vector with−1 does not change
the productUΣVT . However, the orientation of the first
left singular vector and the first right singular vector can
be fixed in advance by the Perron-Frobenius theory as
these two vectors are sign-constant and can therefore
be assumed in a component-wise nonnegative form. In
other words the SVDUΣVT with U ∈ R

k×3, V ∈ R
n×3

is equivalent to the SVD̂UΣV̂T with

Û(:, 1 : 3)= U(:, 1 : 3) · diag(1, p1, p2),

V̂(:, 1 : 3)= V(:, 1 : 3) · diag(1, p1, p2)

andp1, p2 ∈ {−1, 1}. The signs ofpi are associated with
a reflection of the AFS along theα- or theβ-axes.

3.3. Initialization: Generation of a first triangle
Here we refer to the typical case that the AFS consists

of three separated subsets. However, the algorithm can
also be applied to all other cases. Further the AFS is
assumed to be a bounded set; we plan to give a formal
proof for this fact in a forthcoming paper. Here the AFS
M is related to feasible matrices representing the pure
component spectra. If the AFS for the concentration
factorC is of interest, then the whole procedure can be
applied to the transposed data matrixDT .

The algorithm starts with the construction of an ini-
tial triangle which is a first coarse approximation of a
topologically-connected subset of the AFS. Therefore
an admissible factorizationD = CA with nonnegative
factorsC and A is needed. This factorization can be
computed by any nonnegative matrix factorization tool
[17]. According to (2) the first rowA(1, :) reads

A(1, :) = V(:, 1)T + α(0)V(:, 2)T + β(0)V(:, 3)T.

Hence (α(0), β(0)) ∈ M are determined by

T(1, :) = (t11, t12, t13) = A(1, :) · V

and

α(0) =
t12

t11
, β(0) =

t13

t11
.

This interior point (α(0), β(0)) is the basis for the con-
struction of the three verticesP1, P2, P3 of the ini-
tial triangle on the boundary∂M of M. SinceM is
a bounded set,P1 and P2 can be determined on the
straight line along theα-axis through (α(0), β(0)) having
the form

x =

(
α(0)

β(0)

)
+ γ

(
1
0

)
.
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Figure 4: Computation of an initial triangle inM. Dotted line:
Boundary of a subset ofM. Bold line: the initial triangle. Asterisk:
Initial point (α(0), β(0)) = (0.2438, 0.0235).

Henceγ ≥ 0 for P1 andγ ≤ 0 for P2, see Figure 4 for
the construction. ThenP3 is one point of intersection of
the mid-perpendicular of the line segmentP1P2 having
the form

x = M + γ̃υ, M =
1
2

(P1 + P2), υ ⊥ P1P2.

Without loss of generalitỹγ ≤ 0 can be assumed, see
Figure 4.

3.4. The polygon inflation: Adding of vertices

The edges of the initial triangle and also the edges
of refined polygons are subdivided by introducing new
vertices in a way that the refined polygon is a better ap-
proximation of the AFS. Next the adding of a new ver-
tex is explained. Therefore, let them-gon P with the
vertices (P1, . . . ,Pm) be given. ThenP is inflated to an
(m+ 1)-gonP′ with the vertices (P′1, . . . ,P

′
m+1). If the

edge betweenPi andPi+1 is selected for the refinement,
then the new vertexP′i+1 is a point of intersection of the
mid-perpendicular of the edgePiPi+1 and the boundary
∂M. The refined polygon has the vertices

(P′1,P
′
2, . . . ,P

′
m+1) = (P1,P2, . . . ,Pi ,P

′
i+1,Pi+1, . . . ,Pm).

If P approximates a topologically connectedconvex
subsetM, then the new vertexP′i+1 is located not in
the interior ofP so that the new polygonP′ containsP
as a subset. In case of a concave boundary element the
new polygonP′ may have a smaller area thanP. The
mid-perpendicular of the edgePiPi+1 has the form

M + γυ, γ ∈ R (10)

with

M =
1
2

(Pi + Pi+1), υ ⊥ PiPi+1.
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Figure 5: Adding of the vertexP′6 which is located on the intersection
of the mid-perpendicular throughP5 andP6 and the boundary ofM.

The point of intersection of the straight line (10) and
∂M is not unique (there are two or more points of inter-
section); the new vertexP′i+1 is determined in a way that
the Euclidean distance toM is minimized and that the
polygon is not dissected into two parts (to avoid to find
a new vertex on the opposite side of the polygon, i.e.
P′i+1M dissectsP). Figure 5 illustrates the refinement of
a 6-gon to a 7-gon.

The accuracy of a new vertex depends on the func-
tion F which is to be minimized along the straight line
(10). Numerically we use the relatively slow converg-
ing bisection method for the root finding because of its
simplicity and robustness. The iteration is stopped if a
final accuracyεb is reached so that

P′i+1 ∈ M, min
x<M

∥∥∥P′i+1 − x
∥∥∥

2
< εb. (11)

The number of iterations depends onεb and on the
length‖Pi − Pi+1‖2 of the edge. In our numerical cal-
culations between 3 iterations (forεb = 10−2) and 8
iterations (forεb = 10−5) were needed to determine a
vertexP′i+1.

3.5. Adaptive edge selection in the refinement process

An adaptive process is used to determine those edges
of the polygon whose subdivision promises to improve
the approximation of the AFS in the best way. Next a
selection strategy is introduced together with a termina-
tion criterion.

The central quantity which steers the refinement pro-
cess is the change-of-area of the polygon which arises
if an edge is subdivided. So if an edgePiPi+1 is sub-
divided, then each of the new edges gets a equally

weighted gain-of-area

∆i =
1
4
‖Pi − Pi+1‖2

∥∥∥M − P′i+1

∥∥∥
2

(12)

as an attribute. In the next step an edgeℓ is selected for
which

ℓ = arg max
j
∆ j

in order to determine an edge which promises a maxi-
mal gain-of-area on the basis of its subdivision history.
If there is no unique indexℓ, then the algorithm starts
with the smallest index. As for the initial triangle no
subdivision history is available, all three initial edges
are subdivided at the beginning.

The refinement process is stopped if the largest
achievable gain-of-area drops below some final accu-
racyδ. The actual value ofδ may depend on the prob-
lem. We often useδ = εb.

3.6. Noisy data

The polygon inflation algorithm works well for non-
perturbed as well as for noisy data. The parameterε

in (7) controls the allowance of relative negative con-
tributions inC andA and, in our experiments, appears
to cause a favorable numerical stability with respect to
perturbations.

However, the noise level must be limited in a way
that the first three singular vectorsV(:, i), i = 1, 2, 3, still
contain the essential information on the system. If this is
not guaranteed, then the expansion (2) cannot guarantee
for a proper reconstruction ofC andA. Then even no
regular transformationT may exist so thatC andA are
nonnegative matrix factors.

3.7. Efficiency of the polygon inflation

Three characteristic traits of the polygon inflation al-
gorithm are compiled next and are compared with the
triangle inclusion method.

1. The polygon inflation algorithm which uses the
function (7) has to minimize sums of onlyO(k+n)
squares. In contrast to this the function ssq in-
cludesO(kn) squares in [10]. (Note that by the
definition of the Landau symbol it holds thatO(k+
n) = O(s(k + n)) wheres is the number of compo-
nents which equals 3 throughout this paper.)

2. Negative entries ofC andA larger than−ε are not
completely ignored in the polygon inflation algo-
rithm but affect the minimum ofF, see (8). To
show that the ssq function from [10] and the func-
tion F (8) result in very similar AFSs, we applied
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ε M1 M2 M3

0 0 0 0
5 · 10−3 1.6 · 10−4 9.3 · 10−5 1.4 · 10−4

1 · 10−2 5.2 · 10−4 2.8 · 10−4 4.0 · 10−4

5 · 10−2 2.1 · 10−4 2.2 · 10−4 1.5 · 10−4

Table 1: Comparison of the AFS computed with the functionF by
(8) and the AFS with ssq according to [10]. The Hausdorff distance
of the two AFSs is tabulated for someε. The accuracy of the bound-
ary approximation is bounded byεb = 10−4. ThereinMi is the ith
topologically connected subset ofM.

these algorithms to the model problem from Sec-
tion 4 and used the Hausdorff metric as a measure
of distance between these sets. The Hausdorff dis-
tance between to setsA andB is

δ(A, B) = max
(
max
a∈A

D(a, B),max
b∈B

D(b,A)
)

whereD(x,Y) = miny∈Y (‖x− y‖2) is the distance
of a point x from the setY. Numerical values of
the Hausdorff distances are listed in Table 1; the
distances are very small and the sets coincide ifǫ =

0.
3. The polygon inflation algorithm results in a piece-

wise linear interpolation of the boundary ofM by
polygons. The local approximation error of a lin-
ear interpolation behaves likeO(h2) if the nodes of
the interpolant are assumed to be exact. In contrast
to this the enclosure of the boundary by a chain of
equilateral triangles with the edge-lengthh results
in a final accuracy which is bounded by the width
O(h) of this chain.
Further, the local adaptivity of the polygon infla-
tion scheme even requires a small number of re-
finement steps if the boundary is locally more or
less a straight line. A critical nonsmooth region
of the boundary can be resolved to any desired
accuracy. This adaptive resolution of the bound-
ary results in a cost-effective computational proce-
dure. In contrast to this number of triangles needed
for the triangle inclusion algorithm increases as
O(1/h) in the edge lengthh of the triangles.

3.8. Selection of parameters

Parameters of the polygon inflation algorithm are:

1. The parameterε in (6) controls the degree of ac-
ceptable negative entries in the columns ofC and
the rows ofA. Negative matrix elements are not
penalized in (7) if their relative magnitude is larger
than−ε. This parameter should be increased with

growing perturbations in the spectral data. In our
experience 0≤ ε ≤ 0.05 seems to be working
properly. For model problems and in absence of
any errorsε = 0 can be used. By construction in-
creasingε enlarges the AFS.

2. The parameterεb in (11) controls the quality of
the boundary approximation of the AFS. We used
εb ≤ 10−3 and sometimesεb ≤ 10−4. The influ-
ence of this parameter on the shape and size of the
computed AFS is negligible.

3. The parameterδ defines a stopping criterion for the
adaptive polygon refinement. If the largest gain-of
-area (12) is smaller thanδ, then the refinement can
be stopped. We often setδ = εb and state that the
shape and size of the computed AFS is not sensi-
tive for changes ofδ.

3.9. Two remarks on the numerical implementation

3.9.1. Numerical optimization
Each step of an iterative minimization ofF by (8)

includes the solution of a nonlinear optimization prob-
lem. For a poorly conditioned problem the numerical
solutions will scatter around the exact solution. Hence,
a new vertexP′i+1 might be located in the interior of the
AFS in the following sense

min
x<M

∥∥∥P′i+1 − x
∥∥∥

2
≥ εb.

With such an inaccurate vertex the further refinement
steps can result in a nonsmooth boundary which may
even contain needles directing towards the inside of the
AFS. To avoid such misplaced boundary points, we use
the powerful optimization procedure NL2SOL [6] and
start the iterative minimization with a good initial guess.
A reasonable initial guess can be a convex combination
of the numerical solutions which have previously been
gained for nearby points. Further, we apply some deci-
sion tree before accepting points as valid. Nevertheless,
misplaced boundary points can be detected by looking
for obtuse angles along the edges of the polygon. Then
suspicious vertices may be removed and the optimiza-
tion can be restarted.

3.9.2. Weakly separated subregions of the AFS
If parts of the boundary of two isolated subregions

of the AFS are in close proximity, then the numerical
algorithm tends to agglutinate these regions to a joint
connected subset. However, for most of the practical
problems the subsets of the AFS appear to be well sep-
arated.
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4. A three-component model problem

Next the polygon inflation algorithm is applied to a
three-component model problem. The total computa-
tion time and the number of evaluations of points (α, β)
concerning their membership inM is recorded. Further,
the accuracy parameters and the noise level are varied.
The results are compared with the triangle enclosing al-
gorithm.

4.1. The model problem

We consider the consecutive reactions

X
K1−−→ Y

K2−−→ Z

with the vector of kinetic constantsK = (K1,K2) =
(1, 0.1) and with initial concentrationsc(0) = (1, 0, 0).
Along the time interval [0, 30] a number ofk = 1000
equidistant nodes is used. The pure component spectra
on [0, 50] are set to

a1(λ) = exp(− λ
2

1000
),

a2(λ) = exp(− (λ − 25)2

1000
),

a3(λ) = exp(− (λ − 50)2

1000
).

The discretization usesn = 1500 equidistant nodes. The
resulting spectral data matrixD ∈ R

1000×1500 is formed
according to

Di j = Ci1A1 j +Ci2A2 j +Ci3A3 j .

Figure 6 shows the factorsC and A together with the
product matrixD.

4.2. The AFS for C and A

Figure 7 shows the results of a computation of the
AFS by means of the polygon inflation algorithm for
the concentration factor (MC) and also for the spectral
factor (MA). The setsMC andMA are each composed
of three isolated and topologically connected subsets.
The associated ranges of possible solutions for the con-
centration profiles are shown in Figure 8. A separate
concentration profile is drawn for each vertex of the
three polygons which approximate the AFS. Addition-
ally, a concentration profile is drawn for each node of a
quadratic mesh which falls into the AFS. One observes
that the area (in the sense of an integral) of connected
subsets of the AFS is not directly associated with the
size of the area which is enclosed by the series of con-
centration profiles. In other words, a large connected

subset of the AFS does not imply strong variations in
the associated solutions. This is most evident for the
componentsX andZ (the associated indexes arei = 1
and i = 3). The variability of the concentration pro-
files more strongly depends on the variability of the left
singular vectorsU(:, i), i = 1, 2, 3, of D.

4.3. Variation of the accuracy parametersε, εb and
noisy data

Next a direct comparison is given of the triangle in-
clusion algorithm [10] with the polygon inflation algo-
rithm from Section 3. Therefore the boundary accuracy
parameterεb, see (11), is set toεb = 10−2, 10−3, 10−4

and the parameter on the acceptance on relative nega-
tiveness is set toε = 5 · 10−12 and 5· 10−3, see (6).
In our implementation of the triangle inclusion algo-
rithm the parameterεb is the side-length of the equi-
lateral triangles. BothMC andMA are computed and
the required number of program calls ofF (funcalls) is
recorded, see Table 2. Further, the computation time
on a standard PC with a 2.4GHz Intel CPU with 16 GB
RAM is tabulated. The program code has been writ-
ten in C and some FORTRAN libraries are used. For
the triangle inclusion algorithm the number of funcalls
is equal to the number of vertices of the triangles en-
closing the boundary of the AFS. In the polygon infla-
tion algorithm multiple funcalls are needed to find a new
vertex on the boundary of the AFS by means of the bi-
section algorithm. However, its total number is always
smaller than that for the triangle inclusion approach. If
the accuracy parameterεb is decreased by one power
of 10, then in our implementation of the triangle inclu-
sion scheme the number of funcalls increases with the
factor of about 10; in contrast to this the number of fun-
calls increases with the factor of less than

√
10 for the

polygon inflation scheme. All these results appear to
be stable if the data are slightly perturbed or if the con-
trol parameters for relative negativeness are increased.
Figure 9 shows the AFS for the spectral factorA if the
control parameters for relative negativeness are set to
ε ∈ {0.05, 0.04, 0.03, 0.02,0.01,0}.

5. Rhodium-catalyzed hydroformylation

The kinetics of the hydroformylation of 3,3-
dimethly-1-butene with a rhodium/tri(2,4-di-tert-
butylphenyl)phosphite catalyst inn-hexane has been
studied in detail in [18]. The in situ FTIR spectroscopic
data from this publication are reused for a computation
of the AFS; for additional information on the reaction
conditions and on the experimental HP FTIR apparatus
see [18].
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Figure 6: The matrix factorsC andA with dash-dotted line for the componentX, dashed line forY and solid line forZ. The right figure shows the
product/absorption dataD.
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Figure 7: Left: The area of feasible solutionsMC for the concentration factorC. Right: The area of feasible solutionsMA for the spectral factorA.
For the concentration profiles the solution with the smallest integrated absolute value of the curvature and for which only one reactant is nonzero at
time zero have been marked by a small circle. The three associated points in the AFSMA are also marked with a circle.
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Figure 8: Feasible concentration profilesC(:, i) for the three componentsi = 1 for X, i = 2 for Y andi = 3 for Z according to the three topologically
connected subsets of the AFSMC in the left side of Figure 7. The area of a connected subset of the AFS is not correlated with the variability of
the range of feasible solutions for the associated component, cf. Section 4.2.

with ε = 10−12 with ε = 5 · 10−3

Triangle inclusion Polygon inflation Triangle inclusion Polygon inflation
εb funcalls time [s] funcalls time [s] vertices funcalls time [s] funcalls time [s] vertices

Factor
A

10−2 1166 13 352 4 65 1218 13 409 4 81
10−3 11566 83 1314 12 197 12168 89 1346 11 205
10−4 115658 660 3413 26 411 121685 685 4001 32 479

factor
C

10−2 2334 19 1541 12 81 2733 22 626 7 117
10−3 23258 153 1966 18 229 27229 178 1666 16 233
10−4 232477 1341 4465 44 467 272897 1609 4541 44 507

Table 2: The number of program calls of F (funcalls) in order to compute (9) is tabulated for varying εb together with the required
computing time. The termination is controlled by δ = εb, see Section 3.5. The ratios of required computing time and funcalls is not
constant as for computations with higher accuracy better initial values are available. Then convergence can be achieved with only a
small number of iterations.
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5.1. The FTIR data

We use a spectroscopic data set which contains char-
acteristic absorptions from three components, namely
the olefin, the acyl complex and the hydrido complex.
A total number ofk = 1045 spectra is used and each
spectrum containsn = 664 spectral channels within the
wavenumber interval [1960, 2120]cm−1. The sequence
of spectra is shown in Figure 10. The spectroscopic data
matrix D ∈ R1045×664 is the basis for the computation of
the AFS for a three-component system.

5.2. Computation of the AFS and ranges of feasible so-
lutions

As explained in Section 3.3 a first nonnegative factor-
izationD = CA is to be computed for the initialization.
This can be done by standard factorization tools like the
PCD code [24] or by the MCR-ANLS algorithm [15],
the SPECFIT code [3] or even by the NNMF code [17]
written in Matlab. For the given spectroscopic data the
permissibility of small negative entries in the factorsC
andA appears to be important; we useε = 0.01 in (6).
Further, the boundary approximation parameter (11) is
set toεb = 10−4. The termination parameter isδ = 10−4,
see Section 3.5.

Figure 11 shows the two areas of feasible solutions
MC andMA. No a priori information has been used for
the decomposition, e.g., no mass balance for rhodium
is taken into account. The total computation times (the
same hardware as in Section 4 is used) are 24.3 seconds
forMC and 25.0 seconds forMA. The polygonMC is
spanned by 479 vertices and 3897 funcalls are needed

2000 2050 2100
200

400
600

800
1000

0

0.02

0.04

0.06

0.08

0.1

wavenumber [1/cm]
time [min]

Sequence of absorption spectra

Figure 10: Hydroformylation of 3,3-dimethly-1-butene. Series of
FTIR spectra which is determined by three components (olefin, acyl
complex and hydrido complex). See Figure 2 in [18] for an assign-
ment of the peaks to the components as well as for the experimental
and spectroscopic details.

for its computation; the polygonMA contains 417 ver-
tices with 3487 funcalls.

In MA only a very small subset, marked by (c), is
responsible for the absorption spectrum of the hydrido
complex. The corresponding spectrum appears to be
nearly unique, see right lower spectrum in Figure 12;
an explanation can be derived from the relative concen-
trations at the end of the reaction and from the isolation
of certain peaks in the spectrum of the hydrido complex
compared to the spectra of the other components.

This corresponds with a very small range of possi-
ble concentration profiles for the olefin, see left upper
plot in Figure 12. All other ranges for the concentration
profiles and spectra are also shown in Figure 12. As
in Section 4.2 a separate concentration profile or spec-
trum is drawn for each vertex of the AFS. Additionally,
a concentration profile or spectrum is plotted for each
node of a quadratic mesh which is located in the AFS.
Within each plot the smoothest solution with the small-
est integral of the absolute value of the discrete second
derivative has been plotted by a bold line.

6. Conclusion

A new fast numerical scheme for the adaptive approx-
imation of the AFS for three-component systems by a
sequence of polygons has been introduced. Piecewise
linear interpolation of the boundary of the AFS results
in a local approximation error which behaves likeO(h2)
if h is the distance of adjacent vertices. Further, local
adaptivity allows to reduce the number of vertices which
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Figure 11: Hydroformylation of 3,3-dimethly-1-butene with an analysis of a three-component subsystem consisting of the olefin, the acyl complex
and the hydrido complex. Left: The area of feasible solutionsMC for the concentration factor. Right: The area of feasible solutionsMA for the
spectral factor.
InMC the concentration profiles with the smallest integrated absolute value of the curvature have been marked by a circle. Thethree associated
points in the AFSMA are also marked by a circle. Each of three separated subsets of MC andMA are associated with a specific component. The
subset (a) represents the olefin, (b) represents the acyl complex and (c) marks the hydrido complex.
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Figure 12: Ranges of the feasible concentration profiles (three upper figures) and ranges of feasible spectra (three lower figures). Left figures:
the olefin 3,3-dimethly-1-butene. Middle figures: the acyl complex. Right figures: the hydrido complex. All the ordinates of figures are scaled
relatively so that no absolute values on the concentration of absorption should be extracted. No additional information on the reaction system has
been used for the decomposition; especially no mass balanceon rhodium is taken into account.
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are needed to approximate the boundary whenever the
boundary is smooth. Numerical calculations show con-
siderable saving in the computation time for the new
polygon inflation scheme. For instance for the problem
from Section 5 with a 1045× 664 data matrixMC and
MA can be computed in only 50 seconds.

The polygon inflation technique can be generalized to
a polyhedron inflation scheme in order to approximate
the AFS in case of ans-component system withs ≥ 4.
Local adaptive refinement of the faces of the polyhedron
can be applied in a way comparable to three-component
systems. Finally, we would like to comment that the
non-uniqueness of the solutions in an AFS can be re-
duced if any supplemental information on the system is
available; see [28] for some complementarity and cou-
pling theorems.
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