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Abstract

The area of feasible solutions (AFS) of a multivariate curveresolution method is the continuum of feasible solutions
under the given constraints. In the current paper the AFS is computed only on the condition of nonnegative solutions.
This work is a continuation of a paper (J. Chemometrics 28:106-116, 2013) on the polygon inflation algorithm for
AFS computations. In this second part various properties ofthe AFS are analyzed. First, its boundedness is proved,
which is a necessary condition for its numerical computation. Second, it is shown that the origin is never contained
in the area of feasible solutions. This fact is the basis for the inverse polygon inflation algorithm, which allows to
compute specific types of an AFS containing a hole.

The numerical computation of the AFS is a complicated and computationally expensive process. The construc-
tion of proper objective functions for the AFS-optimization problem appears to be decisive. The paper contains a
comparative analysis of two objective functions and describes the ideas of the newFAC-PACK toolbox for MatLab.
This freely available toolbox contains a numerical implementation of the polygon inflation and of the inverse polygon
inflation algorithm.

Key words: factor analysis, pure component decomposition, nonnegative matrix factorization, area of feasible
solutions, polygon inflation.

1. Introduction

The area of feasible solutions (AFS) represents the
continuum of all solutions of multivariate curve reso-
lution techniques under pre-given constraints. In this
paper we consider the AFS only for nonnegativity con-
straints on the spectral factor and on the concentration
factor. The AFS allows to gain an overview on the pos-
sible solutions from which an MCR method extracts one
final solution by using soft and hard models. However,
the reliability of the solution depends on the correctness
of the models. A stable and precise numerical compu-
tation of the AFS is a time-consuming process, which is
made more difficult by noisy data.

The computation of the AFS for a two-component
system goes back to Lawton and Sylvestre [1] in 1971.
Borgen and Kowalski [2] have extended AFS computa-
tions to three-component systems in 1985. For further
important contributions see [3, 4, 5, 6] and the refer-

ences therein. We use the termarea of feasible solutions
regardless of the dimension or number of components of
the system since we understand the term not in the sense
of a two-dimensional surface area but more in the sense
of a region or territory.

In 2011 Golshan, Abdollahi and Maeder provided a
new idea for the numerical approximation of the bound-
ary of the AFS by a chain of equilateral triangles [7]. An
alternative solution for such a numerical approximation
of the AFS by a sequence of adaptively refined polygons
has been suggested in the first part of this paper [8].

To our knowledge some topological properties of the
AFS have never been analyzed. For instance, it is not
clear that the AFS is (under some mild assumptions)
a bounded set. Boundedness, however, is a necessary
prerequisite for a successful numerical approximation.
Often the AFS consists of three clearly separated sub-
sets. It can also be a single topologically connected set
with a hole; see Figure 1 for two typical areas of feasi-
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ble solutions. These different topologies require adapted
computational strategies. All this justifies the following
objectives:

1. analyze some theoretical properties of the Borgen
and Kowalski approach to the AFS and their im-
pact on properties of the AFS,

2. compare the two objective functions for the
triangle-enclosure algorithm and the polygon infla-
tion algorithm,

3. find approximation schemes which allow to ap-
proximate the AFS for typical cases in which the
AFS consists of three separated segments or only
one segment with a hole,

4. present a fast and stable numerical method for the
computation of such one-segment AFS,

5. show how the AFS can be reduced if additional in-
formation on the factors is available.

The paper is organized as follows. In Section 2 some
mathematical properties of the AFS are analyzed. Sec-
tion 3 is devoted to a comparative analysis of two ob-
jective functions which are key tools for the numerical
AFS approximation. In Section 4 the new inverse poly-
gon inflation scheme, which allows to compute an AFS
with a hole, is introduced. The inverse polygon infla-
tion algorithm is a central part of the newFAC-PACK
toolbox in MatLab for AFS computations. In Section 5
techniques are presented which allow to reduce an AFS
by means of additional information on the factors. All
this is accompanied by various numerical examples in
sections 3, 4 and 5.

1.1. Data sets

Within this paper the algorithms and new concepts
are tested for the three data sets:

1. Rhodium catalyzed hydroformylation, see [9, 8].
A number ofk = 1045 FT-IR spectra withn = 664
spectral channels is used. There ares= 3 indepen-
dent components namely the olefin, the acyl com-
plex and the hydrido complex. The AFS is shown
in Figure 1 (left) and in Figure 6.

2. Formation of hafnacyclopentene, see [10, 11, 12].
A number ofk = 500 UV/Vis spectra withn = 381
spectral channels is given. The AFS for this system
with s = 3 independent components is shown in
Figures 1 (right) and 7.

3. ButiPhane ligands and hydrogenation activity, see
[13]. A number ofk = 82 UV/Vis spectra withn =
1951 channels is given. The AFS for this system
with s = 2 independent components is shown in
Figure 3.

The collection of spectra for these three reaction sys-
tems are shown together with the concentrations profiles
and spectra of the pure components at the end of this pa-
per in Figures 8–10. For more details on these problems
see [9], [11] and [13].

2. On the AFS

The Borgen and Kowalski [2] approach to the AFS
for three-component systems together with further ref-
erences and explanations has been introduced in the first
part [8] of this paper in Section 2.2. Next only those
equations are compiled which are essential for this pa-
per.

The starting point is ak × n spectral data matrixD
whose nonnegative factorizationCA is desired. The
k × s concentration matrixC contains the concentra-
tion profiles of thes components in its columns, and
thes×n spectral factorA contains the associatedspure-
component spectra in its rows. Usually, a givenD has an
infinite number (or continuum) of nonnegative factor-
izations. The AFS is a low dimensional representation
of these solutions. IfD has the ranks, then the truncated
rank-s singular value decomposition readsD = ŨΣ̃Ṽ
with Ũ ∈ R

k×s, Σ̃ ∈ Rs×s andṼ ∈ Rn×s. This allows to
setC = ŨΣ̃T−1 andA = TṼ

T
whereT is ans× s regu-

lar matrix andD = ŨΣ̃T−1TṼ
T . If D contains perturbed

spectral data, then the rank ofD is usually larger thans
and the upper relations hold in an approximate form.

The AFS for ans-component system is a subset of
theRs−1 with the form

M = {t ∈ R1×s−1 : exists invertibleT ∈ Rs×s,

T(1, :) = (1, t), ŨΣ̃T−1 ≥ 0 andTṼ
T
≥ 0}.

(1)

For a three-component system this simply reads

M = {(α, β) ∈ R2 : det(T) , 0, C,A ≥ 0}

with C = ŨΣ̃T−1, A = TṼ
T

and

T =





1 α β

1 s11 s12

1 s21 s22




. (2)

2.1. Mathematical foundation

The definition ofM in (1) implies that the rowsa of
a feasible factorA can be presented by linear combina-
tions of the rows ofṼ

T
in the form

a = (1, t) · Ṽ
T
. (3)
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Figure 1: Typical areas of feasible solutions. Left: Three separated segments forming the AFS (Data set 1: hydroformylation process). Right: The
AFS is a connected set with a hole (Data set 2: formation of hafnacyclopentene).

The fixed 1 in the row vector (1, t) guarantees thatany
spectrum has a contribution from the first right singular
vector. This property is by no means evident and has to
be proved. Theorem 2.2 shows that the AFS represen-
tation (1) is valid if and only ifDTD is an irreducible
matrix. For such matrices Theorem 2.4 shows thatM is
a bounded set. Boundedness is a necessary prerequisite
for the numerical techniques in [7, 8] to compute the
AFS. To our knowledge no proof on the boundedness
has been given so far.

The central results of this section are Theorems 2.2
and 2.4. In these theorems rank(D) = s is assumed with
s≥ 2. The results do not necessarily hold for perturbed
data and ifs is smaller than rank(D). Some implications
of these theorems are summarized at the end of this sec-
tion.

Definition 2.1. Let P be an n× n permutation matrix,
i.e. P is a column permutation of the identity matrix.

An n× n matrix H with n≥ 2 is called reducible, if a
permutation matrix P exists so that

PHPT =

(

H1,1 H1,2

0 H2,2

)

.

Therein H1,1 is an m×m submatrix and H1,2 is an m×
(n−m) submatrix with1 ≤ m< n. If such a permutation
matrix P does not exist, then H is called an irreducible
matrix.

The next theorem proves that the Borgen and Kowal-
ski approach (with 1s in the first column ofT) is justi-
fied. Further, the result is used in Theorem 2.4 on the
boundedness of the AFS.

Theorem 2.2. Let D ∈ R
k×n be a nonnegative matrix

with rank(D) = s which has no zero column. Further let
UΣVT be a singular value decomposition of D and let
Ṽ be the submatrix of V formed by its first s columns.

There exists no row vector t∈ R1×s−1 \ {0} with

(0, t) · ṼT
≥ 0 (4)

(in words: any linear combination of the columns
2, . . . , s of Ṽ has negative components) if and only if
DTD is an irreducible matrix.

Proof. First let DTD be irreducible. The Perron-
Frobenius-theorem [14] guarantees that the first right
singular vectorV(:, 1) is a sign-constant vector without
zero components. This means that eitherV(:, 1) > 0
or V(:, 1) < 0. If V(:, 1) > 0 and assuming a vector
t ∈ Rs−1 \ {0} satisfying (4), then it holds that

(0, t) · Ṽ
T

︸     ︷︷     ︸

≥0 and,0

· Ṽ(:, 1)
︸︷︷︸

>0

> 0.

This is a contradiction to the orthogonality ofṼ since
its first columnṼ(:, 1) is orthogonal to all the remain-
ing columnsṼ(:, 2 : s). For the caseV(:, 1) < 0 the
arguments are almost the same.

In order to prove the opposite direction by contrapo-
sition, letDT D be a reducible matrix. According to Def-
inition 2.1 there is a permutation matrixP so that

PDTDPT =

(

D1 0
0 D2

)

.

The right upper block is also a zero block since
PDTDPT is a symmetric matrix.
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By assumptionD has no zero-columns so that all dia-
gonal elements ofDTD are nonzero; i.e.,dT

k dk , 0
wheredk is thek-th column ofD. ThereforePDT DPT

has no zero-columns so thatD1 andD2 are nonzero and
nonnegative matrices. Without loss of generalityD1 and
D2 can be assumed to be irreducible matrices; otherwise
the argumentation is applied to proper irreducible sub-
matrices.

Let λ1 andλ2 be the eigenvalues ofD1 resp.D2 with
the largest modulus. The Perron-Frobenius theorem
guarantees thatλ1 and λ2 are (by irreducibility) sim-
ple and positive eigenvalues. The associated normal-
ized eigenvectorsu1 and u2 are component-wise pos-
itive vectors. These eigenvectors are among the right
singular vectors ofD so that for proper indexesi1, i2

PṼ(:, i1) =

(

±u1

0

)

, PṼ(:, i2) =

(

0
±u2

)

. (5)

Therein± expresses that the orientation of a singu-
lar vector is not uniquely determined. Without loss of
generality leti2 , 1 (otherwisei1 , 1). Then let
(0, t) := ±eT

i2
whereei2 is the standard basis column vec-

tor whosei2-th component equals 1 and all other com-
ponents are 0. From (5) one gets

PṼ(±ei2) =

(

0
u2

)

≥ 0.

Transposition of this equation and right multiplication
by P results in

±eT
i2
Ṽ

T
PT P
︸︷︷︸

I

= (0, uT
2 ) P ≥ 0.

Together with (4) this completes the proof.

Corollary 2.3. Let DT satisfy the assumptions of Theo-
rem 2.2. Then noυ ∈ Rs−1 exists with

ŨΣ̃

(

0
υ

)

≥ 0

if and only if DDT is irreducible.

Proof. From DT = ṼΣ̃ŨT and non-existence oft with
(0, t)ŨT ≥ 0 if and only if DDT is irreducible one gets
the non-existence oft with (0, t)Σ̃ŨT ≥ 0. Transposition
of the last inequality proves the proposition.

The matrixDTD can be assumed to be irreducible
for spectroscopic applications. Otherwise, the series of
spectra decomposes into apparently separated or non-
coupled subblocks. A trivial example of a reducible
matrix is the 3-by-3 identity matrixD = I3 so that

DTD = I3 for which T is not necessarily in the form
(2) (sinceV = T = T−1 = C = A = I3 ≥ 0 is a feasible
solution).

An important consequence of Theorem 2.2 is that the
AFS is a bounded set. The AFSM is a subset of

M+ = {t ∈ R1×s−1 : (1, t)Ṽ
T
≥ 0}, (6)

which is closely related to FIRPOL in [2, 3]. The set
M+ stands for the nonnegativity of the spectral factor
A only, andM+ is the intersection of then half-spaces

{t ∈ R1×s−1 : tṼ(i, 2 : s)T ≥ −Ṽ(i, 1)}, i = 1, . . . , n.
(7)

The next theorem shows thatM andM+ are bounded
sets for irreducibleDT D.

Theorem 2.4.Let D satisfy the assumptions of Theorem
2.2. ThenM+ by (6) andM are bounded if and only if
DTD is an irreducible matrix.

Proof. SinceM+ is an intersection of the half-spaces
(7), boundedness ofM+ means that there is not ∈
R

1×s−1 so that according to (6)

(1, γt)Ṽ
T
≥ 0 (8)

for all γ ≥ 0 (otherwiseM+ would be unbounded in
the directiont).

Inequality (8) can be rewritten as

γtṼ(:, 2 : s)T ≥ 0 ≥ −Ṽ(:, 1).

The null vector has been inserted in this chain of in-
equalities which is justified becauseṼ(:, 1) is a nonneg-
ative vector. Hence boundedness means that there is no
t ∈ R1×s−1 so thattṼ(:, 2 : s)T ≥ 0. Equivalently, there
is no t so that (0, t)Ṽ ≥ 0 and thusDT D is irreducible
due to Theorem 2.2. This proves the assertion forM+ .
AsM is a subset ofM+ the proof is completed.

With few additional assumptions one can show that
the setM does not include the origin (i.e. the zero vec-
tor).

Theorem 2.5. Let D ∈ R
k×s be a nonnegative rank-s

matrix so that DT D and DDT are irreducible matrices
and that a factorization D= CA with nonnegative fac-
tors exists. Then0 <M.

Further, the first left singular vector̃U(:, 1) is not the
concentration profile of a pure component and the first
right Ṽ(:, 1) is not the spectrum of one of the pure com-
ponents.
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Proof. Let D = CA be a factorization with 0≤ C ∈
R

k×s and 0≤ A ∈ Rs×n. According to (1) the first row of
A equalsA(1, :) = (1, t)Ṽ

T
for somet ∈ M. The concen-

tration profile of the second component isC(:, 2) = ŨΣ̃υ
for υ ∈ Rs. Corollary 2.3 proves thatυ1 , 0.

Thus (1, t) is the first row ofT andυ is the second
column ofT−1. From

0 = I1,2 = (TT−1)1,2 = (1, t) · υ

one derives 0, υ1 = −t · υ(2 : s, 1). Thus neithert nor
υ(2 : s, 1) are null vectors. So 0<M andṼ(:, 1) is not
equal to a pure component spectrum. Applying the ar-
guments toDT shows thatŨ(:, 1) is not a concentration
profile of a pure component.

3. Objective functions

The numerical computation of the AFS fors= 3 and
even largers is a complicated and computationally ex-
pensive process. There is no closed-form-representation
of the AFS which could simply be drawn by the evalu-
ation of a function. Noisy data makes the computation
of the AFS even more difficult.

For three-component systems Borgen and Kowalski
[2] as well as Rajkó and István [3] presented for noisy-
free data a geometric approach to the construction of the
AFS. A direct numerical approximation of the AFS for
three-component systems and noisy data can be com-
puted by means of the triangle-enclosing algorithm [7]
and the polygon inflation algorithm [8]. These iterations
aim at an approximate computation of the boundary of
the AFS. The central process behind these algorithms is
a routine which decides whether a certain point (α, β) is
contained inM. Such points are calledvalid. Points
exterior toM arenon-validpoints.

The algorithms in [7] and [8] make use of different
objective functions. Next these objective functions are
compared for generals-component systems. The first
objective function requires a more expensive computa-
tional process compared to the second function. The
two algorithms give the same results for nonnegative
data. In case of noisy data the resulting AFS approx-
imations may slightly differ.

3.1. The AFS for s-component systems
According to (1) and (2) the problem for ans-

component system is to find regular matrices

T =





1 t1 . . . ts−1

1
...

1

S





∈ Rs×s (9)

with a row vectort = (t1, . . . , ts−1) ∈ R
1×s−1 and a sub-

matrix S ∈ R
(s−1)×(s−1) in a way thatC = ŨΣ̃T−1 and

A = TṼ
T

are nonnegative matrices. In order to decide
whethert is valid (t ∈ M) or non-valid (t <M) one has
to solve an optimization problem. The solution is either
a proper submatrixS or its non-existence can be stated.
We call this process theAFS-decisionover (t,S).

3.2. Thessq approach

The AFS-decision over (t,S) in [4, 5, 7] is based on

ssq : Rs−1 × R(s−1)×(s−1) → R, (t,S) 7→ ‖D −C+A+‖
2
F

with

C+ = max(ŨΣ̃T−1, 0), A+ = max(TṼ
T
, 0)

andT given by (9). Further‖ · ‖F denotes the Frobenius
norm [15].

By usingssq the AFSM is

M =

{

t ∈ M+ : min
S∈R(s−1)×(s−1)

ssq(t,S) ≤ ǫ
}

(10)

with ǫ = 0. For practical computations in presence of
rounding errors one can useǫ = 10−12. The minimiza-
tion problem in [7] has been solved by the Nelder-Mead
simplex minimization (MatLab routinefminsearch).
This approach is summarized as follows:

Objective function 1. The AFS-decision over(t,S) re-
sults in a valid t, i.e. t∈ M, if the minimization of the
objective functionssq yields 0 up to rounding errors.

3.3. Alternative approach to the AFS-decision

Next an alternative minimization problem is dis-
cussed with a much smaller number of squares. A first
rapid test on the validity oft ∈ M can result in an addi-
tional acceleration of the computational process.

We start with this rapid test for a givent. Nonnega-
tivity of TṼ

T implies that

−t · V(i, 2 : s)T ≤ V(i, 1), i = 1, . . . , n. (11)

This test does not require the computation ofS in (9)
so that the computational costs for checking (11) are
negligible.

If a certain row vectort has passed the test (11), then
we consider the function

f : Rs−1 × R(s−1)×(s−1) → R
ks+n(s−1)+1, (12)

(t,S) 7→





min(0,Cil )
min(0,Aℓ j)
‖Is − T+T‖2F





kscomponents
n(s− 1) components
1 component.
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min
(

(1, α, β) · Ṽ
T)
≥ 0

(α, β) <M minS ‖ f (t,S)‖22 ≤ ǫ

(α, β) <M (α, β) ∈ M

yesno

yesno

Figure 2: Decision tree for objective function 2. The dashedellipse
expresses some uncertainty as the numerical minimization concerning
S may fail, cf. Section 3.5.

The first ks components off are either equal to 0 or
the negative components ofC ∈ R

k×s. The following
n(s− 1) components off are either equal to 0 or the
negative components ofA ∈ Rs×n; the first row ofA has
not to be checked on negative components due to the
test (11). The last component off aims at avoiding a
rank-deficient matrixT with rank(T) < s.

The least-squares minimization off includes a num-
ber ofks+ n(s− 1)+ 1 squares. Sinces is a fixed small
number andk as well asn are potentially large the total
costs for minimizing (12) increases asO(k+ n) wherein
O is the Landau symbol. In contrast to this, thessq ap-
proach is more expensive withO(kn). For the numerical
minimization of ‖ f (t,S)‖22 a code for nonlinear least-
squares minimization can be applied likelsqnonlin in
MatLab. For ourFAC-PACK implementation we use
the FORTRAN code NL2SOL [16].

With (12) this allows to define the area of feasible
solutions as follows

M =

{

t ∈ M+ : min
S∈R(s−1)×(s−1)

‖ f (t,S)‖22 ≤ ǫ
}

.

Theoreticallyǫ = 0 but we useǫ = 10−10 for practical
computations.

Objective function 2. The AFS-decision over(t,S) re-
sults in a valid t, i.e. t∈ M, if the test(11) is passed
and the minimization of the objective function f results
in 0 up to rounding errors. The decision tree is shown
in Fig. 2.

3.4. Negative components

Noisy spectral data or negative components of the
spectral data matrixD due to some data preprocessing
does not always allow to find nonnegative matrix factors

C andA. A proper treatment of small negative compo-
nents of these matrices appears to be crucial for a suc-
cessful construction of the AFS. The approaches from
Sections 3.2 and 3.3 treat such negative components dif-
ferently.

Let us first discuss the limit case of
minS∈R(s−1)×(s−1) f (t,S) = f (t,S∗) = 0. Then by
definition of f , see Equation (12), it is guaranteed that
C andA are nonnegative matrices. Thus

max(C, 0) ·max(A, 0) = C · A = D.

This implies thatssq(t,S∗) = 0. It is not clear that the
other case of a vanishingssq of D − C+A+ implies that
f also vanishes. To show this, the reconstructionD =
C+A+ with the truncated matricesC+ andA+must imply
C− = 0 andA− = 0. It is not clear if such properties can
be proved. But asC+ andA+ are feasible nonnegative
factors they are in any case represented by the AFS.

Here we accept the factorsC andA if the relative neg-
ative portion in the columns ofC and the rows ofA is
bounded as follows

min j C ji

maxj |C ji |
≥ −ε,

min j Ai j

maxj |Ai j |
≥ −ε

for i = 1, . . . , 3. The parameterε, see Section 3.3, is
taken asε = 10−12 for model problems without pertur-
bations.

Similarly the first rapid test (11) is reformulated as

Vi1 + t1Vi2 + · · · + ts−1Vis

‖(1, t) · VT‖∞
≥ −ε, i = 1, . . . , n.

Therein‖ · ‖∞ is the maximum norm, i.e. the maximum
of the absolute values of the components.

Further, the firstkscomponents off are taken as

min(0,Cil/‖C(:, l)‖∞ + ε)

and the followingn(s− 1) components are similarly

min(0,Aℓ j/‖A(ℓ, :)‖∞ + ε).

3.5. Reliability of the numerical optimization

The AFS-decision for a vectort ∈ R
s−1 is a numer-

ically expensive and potentially instable process since
for the givent a properS is to be computed by solving
an optimization problem. This numerical computation
may fail. In particular such problems are to be expected
if only a poor initial approximation forS is available at
the start of the optimization procedure.

However, for two-component systems the situation is
very simple, see Section 3.6. Fors≥ 3 the decision tree
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Figure 3: AFS for a two component system for the ButiPhane data.

shown in Figure 2 applies. The rapid test on nonnegativ-
ity by inequality (11) appears to be non-critical. Further,
any decisiont ∈ M can be trusted as the optimization
process has found a solution. A decisiont < M due to
minS ‖ f (t,S)‖22 > ǫ may not be trusted as, e.g., the op-
timization procedure may have got stuck in a local and
non-global minimum. To reduce the risk of such mis-
classifications we always take special care to generate
good initial values forS. Such initial matrices can be
computed by local averaging final and trusted matrices
S on points in a close neighborhood oft.

3.6. The AFS for two-component system

For a two-component system the matrixT is simply
given by

T =

(

1 α

1 β

)

.

If we ignore noise and letε = 0, then using the objective
function 2 results in

(α, β) ∈ [a, b] × [c, d] or (β, α) ∈ [a, b] × [c, d]

with

a = − min
i: V(i,2)>0

Vi1

Vi2
, b = min

i

Ui2σ2

Ui1σ1
,

c = max
i

Ui2σ2

Ui1σ1
, d = − max

i: V(i,2)<0

Vi1

Vi2
.

Thus the AFS for a two-component system consists of
two real intervals. These two intervals are usually rep-
resented by the sides of a rectangle, cf. [5]. A point
within this rectangle allows a simultaneous representa-
tion of the AFS for the spectral and for the concentration
factor (which is fundamentally different from the AFS
for three-component systems where either the AFS for
the spectral factor or the AFS for the concentration fac-
tor is represented in 2D). It is also clear thatb < 0 < c
and that eitherα < 0 andβ > 0 or alternativelyα > 0
andβ < 0. All this is consistent with 0< M which is

dimension objective fct. 1 objective fct. 2
k n time [s] time [s]
75 50 9.15 1.23
150 100 33.31 1.68
300 200 133.04 2.82
450 300 271.95 3.47
750 500 803.86 5.45
1500 1000 3773.88 11.26

Table 1: Total computing times for programs using the two objective
functions for the model from [8]. In each of these cases the AFSMC

and the AFSMA are computed.

proved in Theorem 2.5. In case of noisy data, the AFS
is still a rectangle. Then the scalarsa, b, c andd can be
computed numerically by using the bisection method.
For instancea andd are the minimal or maximal value
of α so that

(1, α)VT

‖(1, α)VT‖∞
≥ −ǫ

andb, c are computed analogously by using linear com-
binations ofUΣ. Figure 3 shows the two-dimensional
AFS for the ButiPhane data set, which is data set 3 in
Section 1.1.

3.7. Computational costs

Next a direct comparison of the computational costs
is given for the two objective functions presented above.
First we consider a three-component model problem
and second we use FT-IR spectral data from the hydro-
formylation process. The two objective functions are
each applied within the polygon inflation algorithm in
order to present in detail the effect of the choice of the
objective functions.

3.7.1. A model problem
The three-component model problem is taken from

part I of this paper; see Section 4.1 in [8]. Here we
consider a series of different values fork, the number
of spectra, andn, the number of spectral channels, see
Table 1. The last two columns of Table 1 give the total
computational times for programs using the objective
functions 1 and 2. For these computations the parame-
tersε = 10−12 andεb = δ = 10−3 have been used; see
Part I for the explanation ofεb andδ.

Figure 4 shows the computation time againstkn in a
log-log plot. The computational costs for the first ob-
jective function increases withO (kn). The second ob-
jective function results in a much faster method. The
numerical data are consistent with costs increasing as
O (k+ n).
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Figure 4: Bilogarithmic plot of the data from Table 1.

AFS objective fct. 1 objective fct. 2
time [s] time [s]

MC 998.32 4.58
MA 862.33 4.39

Table 2: Computing times for the two objective functions forthe
Rhodium catalyzed hydroformylation. The times forMC andMA

are tabulated separately.

3.7.2. Rhodium catalyzed hydroformylation
Next we consider the Rhodium catalyzed hydro-

formylation as given by the data set 1 in Section 1.1.
Now the parameters areε = −0.01 andεb = δ = 10−3.
The computational times in Table 2 confirm that the sec-
ond objective function results in a much faster method.
The resulting areas of feasible solutions are almost iden-
tical if the same valueεb for the boundary precision is
used. The associated Hausdorff distances for the three
segments of the AFS are given in Table 1 of [8].

4. Inverse polygon inflation for an AFS with a hole

As shown in Section 2 the AFS is a bounded set
which does not include the origin. A challenging ques-
tion is: What is the number of isolated segments an AFS
may consist of?

For s = 2-component systems the AFS consists of
p = 2 separated intervals which are taken as the sides of
a rectangular for its presentation; see [1, 5] or Section
3.6. Fors = 3-component systems experimental data
and model data show that a number ofp = 1, p = 3
or evenp = 6 segments may occur. We plan to give
a mathematical proof that an AFS with two segments
cannot occur in a forthcoming publication. A further

interesting question is to show that the number of AFS
segments ofMA andMC coincide.

It is well known that the AFS for three-component
systems may consist of only one segment and that this
segment can contain a hole, which surrounds the origin.
Next we describe a variation of the polygon inflation al-
gorithm which can be used to compute such AFS with a
hole or an AFS with more than three isolated segments.

4.1. Inverse polygon inflation

If for a three-component systems (s = 3) the en-
tire AFS consists of one segment with a hole, then the
triangle-enclosure algorithm [7] and the polygon infla-
tion algorithm are to be modified properly. For the
triangle-enclosure algorithm two runs are necessary in
order to cover the interior and the exterior boundary
curve by sequences of triangles.

For the polygon inflation algorithm the exterior poly-
gon and the interior polygon are to be treated differently
but the geometric concept of inflation polygon is in each
of these cases the same. Only the objective functions are
changed.

First, the computational effort to compute the exte-
rior polygon is very small since only (1, t)ṼT

≥ 0 is
to be tested according to Equation (6), cf. FIRPOL in
[2]. This exterior polygon is just the boundary of the set
M+ defined in (6). The remaining conditions ont to be
a valid vector, i.e.t ∈ M, are used to define a further set

M∗ = {t ∈ Rs−1 : min
S
‖ f (t,S)‖22 = 0} (13)

whose inner boundary is computed by the standard
polygon inflation algorithm. Fort ∈ M∗ the defini-
tion of M∗ guarantees thatT is regular,C ≥ 0 and
A(2 : 3, :) ≥ 0. The intersection ofM+ andM∗ , which
combines the conditions, results in the AFS

M =M+ ∩M∗ . (14)

In order to avoid any misinterpretation we mention that
M∗ is very different to INNPOL as used in [2, 3].

The algorithm to compute a polygon which approxi-
mates the boundary ofM+ uses an objective function
which guarantees (7) to hold. The starting point is the
origin which is always inM+ . The polygon inflation
starts with a triangle enclosing the origin and whose ver-
tices are located on the boundary ofM+ .

After this the interior boundary ofM∗ is computed
by using the objective function (12). Therefore the com-
plementR2 \ M∗ is approximated from the interior of
this set. The starting point is, once again, the origin
since Theorem 2.5 guarantees that (0, 0) < M∗ . The
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Figure 5: Breaking-up of the AFSMA from one to three segments for the Example 4.1 withω1 = 1.5. Left: Only one segment with a hole for
ω2 = 0.5. Center: The hole touches each side of the outer triangle for ω2 = 0.26787. Right: Forω2 = 0.2 the AFS is broken into three clearly
separated segments.

usage of the complement is the reason why we call the
algorithm aninverse polygon inflation. The computa-
tion of the hole of the AFS by applying the polygon in-
flation toR2 \M∗ has the advantage that only few lines
of program code are to be adapted. Further, the relevant
regions of the two setsM+ andM∗ can be computed
in a stable way.

If FAC-PACK uses the standard polygon inflation al-
gorithm and finds an AFS segment which has a nonzero
intersection with at least three quadrants of the Carte-
sian coordinate system, then the algorithm automati-
cally switches to the inverse polygon inflation. Thus a
one-segment AFS is automatically computed by inverse
polygon inflation.

4.2. FAC-PACK software for AFS computations

The polygon inflation algorithm and the inverse poly-
gon inflation algorithm are implemented in the software
toolbox FAC-PACK for Matlab [17]. FAC-PACK

contains a graphical user interface from which the spec-
tral data can be loaded, a singular value decomposition
and an initial nonnegative matrix factorization (NMF)
can be computed. This NMF is the starting point for the
computation of the AFS.FAC-PACK allows to display
the spectral and concentration factors which are asso-
ciated with any points of the AFS. Further, one or even
two components can be locked and the resulting reduced
AFS is shown.

TheFAC-PACK homepage containing the software
and a tutorial can be accessed at

http://www.math.uni-rostock.de/facpack/

4.3. Weakly separated segments of the AFS

If the segments of an AFS are only weakly separated
(in a sense that the polygon inflation algorithm tends to
glue separated segments of the AFS to a joint segment;
see the AFS in the mid of Figure 5), then the numerical

computation ofM+ andM∗ , which is followed by their
intersection, is a stable and favorable way to construct
M. The inverse polygon inflation procedure can even
be applied to general situations with well separated seg-
ments - a situation we have often found for FT-IR spec-
tral data. However, the computational procedure for the
inverse polygon inflation is somewhat more expensive
compared to the direct computation of the three sepa-
rated segments.

4.4. AFS dynamics showing the separation process

In order to study the possible shapes of an AFS we il-
lustrate the transition of the AFS from one topologically
connected segment to an AFS formed by three segments
for a three-component model problem. In this separa-
tion process three segments which pairwise touch in one
point split up to three clearly separated segments. The
case of only two separated segments is not observed; we
will give a mathematical proof on this in a forthcoming
paper. The model problem depends on two real param-
etersω1 andω2.

Example 4.1. Let D ∈ R3×3 be the nonnegative matrix

D =





1 0 0
0 1 0
0 0 1




+ ω1





0 0 0
1 0 0
1 1 0




+ ω2





1 1 1
0 1 1
0 0 1




.

Nonnegative factorizations D= CA and the AFSMA

are to be computed.

For our computations the parameterω1 is fixed to
ω1 = 1.5 andω2 is used as a variable. Figure 5 shows
that the AFS forω2 = 0.5 is one topologically con-
nected set. Forω2 = 0.26787 the AFS consists of
three segments which pairwise touch in one point. For
ω2 = 0.2 one gets three clearly separated segments.

Various numerical experiments indicate that the AFS
MA for three-component systems is either formed by
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one topologically connected segment or by three iso-
lated segments. The same holds for the AFSMC. Spe-
cially constructed matricesD may have much more iso-
lated segments.

4.5. The AFS for spectroscopic data

1. Data set 1 - the Rhodium catalyzed hydroformy-
lation: The reference to this FT-IR spectroscopic
data is given in Section 1.1. The spectral AFS for
this problem is computed by inverse polygon in-
flation. Figure 6 shows the setsM+ (left), M∗

(center) and their intersectionM, see also Figure
1.

2. Data set 2 - formation of hafnacyclopentene: The
reference to this UV/Vis data set is given in Section
1.1. The AFSM =MA is shown in Figure 1 (right
plot) and is one topologically connected set with
a hole, which contains the origin. This relatively
large AFS imposes only weak restrictions on the
factor A since the associated spectra are nowhere
equal to zero. All this allows a wide range of fea-
sible transformation making the AFS large.

4.6. How to compute line-shaped segments of the AFS

An isolated segment of the AFS is most often either
a set whose (mathematical surface) area is larger than
zero or it is a single point. In some cases an isolated sub-
set of the AFS appears to be a straight-line segment. In
absence of rounding errors and perturbations its surface
area equals zero; for slightly perturbed data such a seg-
ment practically is a long and narrow band. The polygon
inflation method needs some algorithmic enhancement
in order to compute such straight-line segments.

In FAC-PACK we use an angle-search method for
approximating such AFS segments. The starting point
is a feasible coordinatex = (α, β) as computed by the

NMF. Together with a small radius parameterr the func-
tion

gr,x(ϕ) = x+ r

(

sin(ϕ)
cos(ϕ)

)

is considered in order to compute a feasible angleϕ so
that gr,x(ϕ) ∈ M. The numerical minimization of the
objective function (12) is executed only if the rapid test
(11) is passed. The initialx might be one of the end-
points of the line segment or between them. In the latter
case and ifϕ represents a feasible direction, then also
ϕ − π stands for a feasible direction. For these two op-
positely oriented direction maximal valuesr l andrr are
computed by the bisection method so that the desired
line segment equals the unionLl ∪ Lr with

Ll =

{

x+ r

(

sin(ϕ − π)
cos(ϕ − π)

)

with r ∈ [0, r l ]

}

,

Lr =

{

x+ r

(

sin(ϕ)
cos(ϕ)

)

with r ∈ [0, rr ]

}

.

5. How to use additional information on the factors

Nonnegativity of the factors is the only restriction
which underlies the construction of the AFS. However,
sometimes additional information on the factors is avail-
able. This information may consist of the knowledge
on certain pure-componentspectra or concentration pro-
files. Alternatively, some isolated peaks within a spec-
trum may be known. In a recent work Beyramysoltana,
Rajkó and Abdollahi [18] have shown a correlation of
known factors for three-component systems in the spec-
tral space with lines in the concentration space and vice
versa. Comparable results for two-component systems
are analyzed by Rajkó [19].
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The software toolboxFAC-PACK allows to lock cer-
tain spectra or concentration profiles and then to com-
pute the reduced and smaller AFS for the remaining
components [17]. In this section we focus on the mu-
tual effect of reducing the AFS forA on the AFS forC
and vice versa.

Further sources of additional information on the fac-
tors might be window factor analysis (WFA) techniques
or the evolving factor analysis [20, 21]. In this con-
text the theorems of Manne [22] might help to extract
concentration profiles of certain components. The im-
plementation of such local rank information as a part
of FAC-PACK is a point for the future work. One can
also use constraints like unimodality or the proximity of
a spectrum in the AFS to a pre-given spectrum in or-
der to reduce the ambiguity. However, in this paper we
concentrate on computing the AFS under nonnegativity
constraints and we do not want to dilute this approach
by introducing too much adscititious information.

5.1. Three-component systems
To discuss a typical and concrete problem we as-

sume that the first spectrumA(1, :) of a three-component
system is known. As shown in [12] by coupling and
complementarity theorems the knowledge of this spec-
trum imposes an affine-linear constraint on the asso-
ciated columnC(:, 1) and further linear constraints on
the remaining columnsC(:, 2 : s). So the knowledge
of A(1, :) considerably reduces the original AFS forA.
Additionally, the points representing the complemen-
tary concentration profilesC(:, 2 : 3) are restricted to
a straight line through the AFS forC. The details are as
follows: A known spectrumA(1, :) is represented by the
coordinates (t2/t1, t3/t1) in the spectral AFSMA with
t = (t1, t2, t3) = A(1, :) · V(:, 1 : s). Theorem 4.2 in [12]
shows, that the concentration profilesC(:, 2) andC(:, 3)
are elements of the subspace

{UΣy : t · y = 0} = {Uỹ : t · Σ−1 · ỹ = 0}.

Together with the required scaling ˜y1 = 1 and using
(α, β) as coordinates inMC this subspace reads

L = {(α, β) : t · Σ−1 · (1, α, β)T = 0}

=

{

(α, β) :
t2
σ2
α +

t3
σ3
β = −

t1
σ1

}

.

Thus L is a straight line throughMC and the (α, β)-
representatives of the complementary concentration
profilesC(:, 2) andC(:, 3) are located on this line.

This reduction process can be continued if a second
spectrumA(3, :) is pre-given. For the concentration fac-
tor C this means that points in the AFS which represent

the two concentration profilesC(:, 1 : 2) are located on a
further straight line. Together with the first straight line
the intersection of these lines uniquely determines the
second concentration profileC(:, 2). This situation has
explicitly been discussed in [12]; see there Theorem 4.2,
Corollary 4.3 and Section 6.1. All these restrictions can
be combined with any further information/constraints
on C andA. However, ifC(:, i) andA(i, :) for a certain
i are pre-given simultaneously, then the whole problem
can be reduced by this component.

5.2. Numerical example

Next we consider UV/Vis spectra for the formation
of hafnacyclopentene given by data set 2 in Section 1.1;
see also Section 6.1 of [12]. For this three-component
system the initial concentrations of the consecutive re-
actionX → Y → Z arecX(0) = 0.01309 andcY(0) =
cZ(0) = 0. The last spectrum of this series is a good
approximation of the spectrum of the reaction product
Z as the reaction is more or less completed. Together
with the first spectrum two pure component spectra are
available.

The AFS and its reductions are presented in three
steps:

1. The initial areas of feasible solutions forC andA
are shown in Figure 7 in the left column. No ad-
scititious information has been used for the AFS
computation.

2. If A(:, 1) for the reactantX is given, then the ini-
tial AFS can be reduced to two smaller segments,
which are shown in Figure 7 in a darker gray. The
bold straight line in the AFS forC in Figure 7 (sec-
ond row and second column) covers the comple-
mentary concentration profilesC(:, 2 : 3).

3. If finally the spectrumA(:, 3) for Z is also given,
then the resulting AFS is reduced to the right lower
AFS segment which is shown in Figure 7 by the
darkest gray. A second straight line is added to
the AFS forC. Figure 7 (second row and third
column) shows this by another bold line. The in-
tersection of the two lines uniquely determines the
concentration profileC(:, 2).

5.3. Remark on the AFS for multi-component systems

The AFS for a system withs independent compo-
nents is a bounded set in thes− 1-dimensional space
according to Equation (9). Additional information on
the factors can be applied to such a higher-dimensional
AFS in a way which is comparable to the techniques
explained above.
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For example consider a four-component system. If a
certain spectrumA(1, :) is known, then the AFS forC(:
, 2 : 4) is the intersection of the original AFS forC and a
plane. The result is a bounded subset of an affine-linear
space with two degrees of freedom. With a pre-given
second spectrum the AFS for the concentration factor
will be reduced by an additional degree of freedom.

6. Conclusion

The AFS appears to be a helpful tool for getting ac-
cess to the range of all nonnegative factorizations of a
given spectral data matrix. Inspecting the AFS of a sys-
tem can support the user to get an idea on the possible
solutions from which an MCR method can select the
”one” final solution.

In this paper two objective functions are discussed
which allow to decide whether a certain point belongs
to the AFS or not. Further, the inverse polygon infla-
tion algorithm has been introduced for the successful
treatment of an AFS which consists of only one segment
with a hole.

Mathematical proofs have been given on the bound-
edness of the AFS and on the fact that the origin is
never contained in the AFS. The first property guaran-
tees that numerical algorithms for the approximation of

the boundary of the AFS can successfully be used. The
latter fact is the basis for the implementation of the in-
verse polygon inflation algorithm, which is to be used
to compute an AFS with a hole. We observed such an
AFS often for UV/Vis data. For FT-IR spectra an AFS
with three separated segments seems to be typical.

There are still open questions on the AFS. The num-
ber of separated segments of an AFS appears to be un-
clear. Further fast and stable algorithms for the con-
struction of the AFS for higher-dimensional systems are
still to be developed.
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