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Abstract

Multivariate curve resolution techniques in chemometait@w to uncover the pure component information of mixed
spectroscopic data. However, the so-called rotationaiguitly is a difficult hurdle in solving this factorization prob-
lem. The aim of this paper is to combine two powerful methodadal approaches in order to solve the factorization
problem successfully. The first approach is the simultaa@epresentation of all feasible nonnegative solutions in
the area of feasible solutions (AFS) and the second appiiedble complementarity theorem. This theorem allows
to formulate serious restrictions on the factors underigdathowledge of certain pure component spectra or pure
component concentration profiles.

In this paper the mathematical background of the AFS andettmplementarity theorem is introduced, their
mathematical connection is analyzed and the results atedpp spectroscopic data. We consider a three-component
reaction subsystem of the Rhodium-catalyzed hydrofortiprigorocess and a four-component model problem.

Key words: spectral recovery, multivariate curve resolution, noratieg matrix factorization, area of feasible
solutions, complementarity theorem.

1. Introduction computation of the AFS is very intensive in terms of
computing time. For three-component systelffi€ient

Multivariate curve resolution (MCR) methods in numerical processes have been presented in [7, 8, 9].
chemometrics are important and successful tools to ex- For four-component systems Golshan, Maeder and Ab-
tract information on the pure components from spectro- dollahi [10] recently presented a technique to compute
scopic data of multi-component chemical reaction sys- the AFS.
tems. However, MCR methodsfser from the so-called
rotational ambiguity. This means tha}t the factorizat!on 1.1. Using supplemental information
problem for the spectral data matrix often has wide
ranges of nonnegative solutions. These solutions are  Once having computed the AFS for a given spectral
called feasible factors. From these solutions the “true” data matrix, one is interested in selecting one solution
nonnegative concentration profiles of the pure compo- from the AFS which fits best the chemical system un-
nents and their associated spectra are to be selected. Fader consideration. Any further information on the re-
two-component systems the observation of such con- action system can help to decrease the ambiguity and
tinua of possible solutions has been made by Lawton so to reduce the AFS. Various chemometric techniques
and Sylvestre [1]. They also gave a representation of have been developed to this end. Examples are the win-
these continua of solutions by plotting the associated ex- dow factor analysis [11], the evolving factor analysis
pansion cofficients in the plane. Such a representation [12, 13], the application of unimodality conditions [14]
of range of feasible solutions by sets of expansion co- or the use of kinetic models [15, 16, 17, 18] and last but
efficients is called an area of feasible solutions (AFS). not least the uniqueness theorems by Manne [19]. An-
For three-component systems Borgen and Kowalski [2] other approach for feeding-in partial knowledge of the
have devised a technique for representing the AFS alsofactors in order to reduce the rotational ambiguity is the
in the two-dimensional plane. For details on the con- complementarity and coupling theomhich have been
struction of the AFS see [3, 4, 5, 6]. The numerical introduced in [20].
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1.2. Aim and organization of this paper

The aim of this paper is to combine the complemen-
tarity theorem from [20] with the AFS for systems with
an arbitrary number of components; practical applica-
tions are shown for three- and four-component chemi-
cal reaction systems. It is shown how the knowledge
of a single spectrum, i.e. a single point of the spectral
AFS, can reduce the AFS for the concentration factor
for the remaining components to a straight line in case
of a three-component system and vice versa, cf. [21, 9].
We also consider four-component systems where a pre-
given point in the spectral AFS results in a plane in the
AFS for the concentration factorSuch additional in-
formation on a chemical reaction system is sometimes

soft constraints, kinetic models or any other additional
information, see e.g. [15, 16, 14, 25, 26].

A systematic and fundamental approach to the factor-
ization problem is to compute and to represent the full
set of all nonnegative solutions simultaneously. This
complete representation is just the AFS. For an expla-
nation of the AFS see the seminal papers of Borgen and
Kowalski [2] as well as Rajkd and Istvan [3]. Newer
contributions on the numerical computation of the AFS
for two-, three- and four-component systems can be
foundin|[5, 7,8, 9, 10].

2.2. Singular vector expansions
The representation of the AFS for the spectral factor

accessible as the spectra of the reactants or the spectrunis based on the expansion of the spectra with respect
of the main product might be available. In other cases to the basis of right singular vectors given Wy In a
there are techniques to determine the concentration pro-similar way the AFS for the concentration factor rests on
files of certain species. In Section 4 we consider exper- an expansion of the concentration profiles with respect
imental data from the Rhodium-catalyzed hydroformy- to the basis of left singular vectors given by

lation from which a catalytic subsystem with three com-
ponents is studied.

The paper is organized as follows: After a brief in-
troduction to the spectral recovery problem and to the
AFS, the mathematical background for the application
of the complementarity theorem to the AFS is discussed
in Section 3. Numerical results are presented for a
three-component system which is a subsystem of the
Rhodium-catalyzed hydroformylation. Further a four-
component model problem is studied.

2. Area of feasible solutions

In (1) the rows (spectra) gt are represented as linear
combinations of the right singular vectors, which are the
columns ofV. Theith row of A= TV' reads
tio tis ) T

yees— |V

ti1

Ai) = (tin, . VT =t (1, = e
2

=X

=ti1 (1, X)V'.

Thereintj; # 0 has been used, a fact which is by no

means obvious, but has been proved in Theorem 2.2
of [9]. Equation (2) shows that thi¢h spectrumA(i, :)
aside from scaling is uniquely determined by the row

vectorx € RS! of expansion coicients. The scaling

2.1. The factorization problem

The key equation for the following analysis is the
low-rank-approximation of the spectral data mabix
kan

D~UZT TV, (1)
——— ——
C A

which can be computed from a singular value decompo-
sition [22] of D. ThereinU is ak x s matrix containing
the firsts left singular vectors oD, then x s matrix
V contains the firss right singular vectors ob andx
is the s x s diagonal matrix with thes largest singu-
lar values on its diagonal, see [23, 24] for details. The
regulars x s matrix T serves to represent the rotational
ambiguity. The desired approximate fact@randA of
D can be computed by right-multiplication &fz with
T-! and left multiplication ofv™ by T. Spectral recov-
ery amounts to the construction of a suitablby using

2

constant;; in (2) can be written as

tiz = (T)iz = (AV)ir = (AV(;, 1)) )

The construction for the fact@® is similar. Thejth

column ofC = UST ! with (T1);; = tj reads

C(:.)) = Ux(ty;.... 1)"
]

1j

_ tei
= tljUZ(l . % )T @)

=y
=t;; UZ(Ly)".

Once againty; # 0 is guaranteed by Theorem 2.2in [9].

It holds that

tyj = (T™y = VO = 07" UL 1)'C ). (5)



2.3. The AFS

As shown in Equation (2) any spectrum can be repre-
sented (aside from scaling) by its vectoof expansion
codficients with respect to the right singular vectors
V(;,2),...,V(;,9. This is the basis for a low dimen-
sional representation of the AFS. A further argument is

needed for the representation of the AFS, namely that

by a permutation matrif and its inversé®™ can be in-
serted betwee and A in (1) and that this allows to
rearrange the row oA and columns ofC arbitrarily,
sinceCA = (CP")(PA) = (UXTPT)(PTV'). There-
fore only the first row ofl is to be considered in order to
define the AFS for the spectral factor. The delineation of
the area of feasible solutions (AFS) under nonnegativity
constraints for ars-component system is as follows

Ma = {xe RS exists invertiblelT € RS,

T(L:)=(Lx), USTt>0andTV' > 0}.

(6)
For a two-component systers € 2) the AFS is a real
interval, for a three-component systesi£ 3) itis a
subset in the plane and fer= 4 it is a subset of th&®.
For s = 2 the interval-AFS can easily be written down
explicitly. Fors = 3 geometric approaches to the con-
struction of the AFS can be found in [2, 3]. Numerical
methods for the computation of the AFS e 2,3,4
are describedin [5, 7, 10, 8, 9].

In a similar manner the AF31c for the concentra-
tion factor can be defined. According to (4) and with the
same arguments used above, matricese to be deter-
mined with the first row equal to (1..,1) € RS and
with Z(:,1)" = (1,y) fory € R® so thatUXZ andZ~tVT
are nonnegative matrices.

In short formMa and Mc are given by

Mp = {xeR¥1: UST1>0andTV' > 0}

7
Mc:={yeR¥!: UZZ > 0andz'V' > 0} .

with invertible s x s matricesT andZ so that
T(1,:) = (1, x), ZG, D" =(1,y)

and every matrix element of the first column®fand
the first row ofZ equals 1. For general ddbathe matri-
cesT andZ~! do not coincide since the restrictions on
T andZ cannot be fulfilled simultaneously.

2.4. Block representation

For this paper it is useful to represebtand A and
some of their submatrices by their expansionfliee
cientsx andy according to (2) and (4). We call this the
block representation of truncated expansionfiorents
with respect to the basis of singular vectors.

Definition 2.1. Let  be an integer withl < 55 < s
and let fori= 1,...,s the row vector ¥ € RS be
the truncated vector of expansion gigents of A, :)
with respect to the right singular vectors in the sense of
(2). Considering grows of A1 : s, :) simultaneously
yields

x@

X — c R%X(S—l)

()

as the block representation of truncated expansion co-
gfficients.

In the same way let¥} be the representative of(C )
in the sense of (4). Then

o

Y= € R

Y
is the block representation of(C1 : ).

Remark 2.2. If sp = s, then the block representations
X, Y € R™GD define two simplices in th&s! whose
vertices are the row vectors of either X or Y.

Further, Equations (2) and (3) result in

Al,?) = (AV(, 1) (L, xXO)VT.

This yields for g = s and with the s-dimensional 1-
vectore= (1,...,1)T e RS

A = M(e, X)VT with M; = diag(AV(:, 1)).
Similarly, Equations (4) and (5) result in

C(. J) = (@1"U( 1)TCC. 1) US(Ly)T
sothatforg=s

el

) M with M, = diage7*U(;, 1)'C).

3. The AFS and the complementarity theorem

As stated in Section 1.1 there are various techniques
how to feed in partial knowledge of the factors in order
to reduce the rotational ambiguity of an MCR method.
Here we would like to show how the complementarity
theorem from [20] can be applied for the purpose of a
reduction of the AFS.
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Figure 1: Application of Theorem 3.1 to as £ 3)-component system for the Rhodium-catalyzed hydroftation process, see Section 4.1 or
[27] for details. Left: the spectral AFS is contoured by kléines and consists of three separated segments. A serieasifle spectra is shown
by single points colored from blue to red. Right: the seriespectra which are associated with the series of poinfs{in Center: Set of straight
lines or one-dimensionalfZne subspaces iMc which are associated with the points Ma and which are shown in the same coloratidrhe
axes of the AFS plots ang andx,. For a three-component system these axes egug) according to the standard notation.

3.1. Mutual reduction oMc and M by the comple-  Thereiny'is a column vector in th&s.
mentarity theorem Insertion ofA(ig, ;) = ti,1(1, X)VT into (9) shows that

Thg complementarity the_orem from [9] shows hovy tio1(L X)VTVY = ti,2(1, X)§ = O (10)
pre-given spectra for certain pure components restrict
the concentration profiles for the remaining components S the decisive conditionyhich is now transformed in
and vice versa. A comparable observation has beenOrder to prove (8).First, Equation (4) allows to write
made in [21] for three-component systems. the concentration profil€(:, j) = UZ§ in the form

For a reproduction of the complementarity theorem Usy = f;Us(1, )T
in concise form see Appendix 6.Mext it is shown how _
such a pre-given spectrum, which is represented by aWith the row vectorly € RS, Thusy = t3;(1,y)". In-
single point in the spectral AF31, reduces the AFS  serting this into (10) yields
M for the complementary components.

Theorem 3.1. Let a spectruow A(ig, :) be given. Ac-
cording to (2) it holds Ao, :) = t,1(1, X)VT and x spec-
ifies a point in the spectral AFSa.

Then all concentration profiles(C j) with j # ig are
represented in the sense of (4) by points y which are
elements of the s 2-dimensional gine subspace

s-1
tioatay (1) (1Y) = tigafj (1+ > xye) = 0.
=1
Since tiat;j # 0, the second factor equals O,
i.e. ¥77 Xy, = -1, which proves (8).
Finally, the dimension of(*) equalss-2 because the
vectory € RS has to satisfy one linear constraintC]

o1 The seC() is an (- 2)-dimensional fiine subspace
clo) = Jy e e Z ey = —1\. @8) which is a hyperplane iRS* and V\{hiCh interseptA/(g. .
Further, Theorem 3.1 also applies to the situation in

=1
which Ma and Mc have changed their places. This fact
Thus all feasible concentration profileg:Cj) with j # does not require a separate proof but is now stated ex-
io have the form plicitly.
US(Ly)"T with ye Ci. Corollary 3.2. Theorem 3.1 is applicable to the case in

which A and C are swapped. Then a given representa-

Proof. For givenA(io,:) Theorem 4.2 from [20], see tive y for a concentration profile G ip) results in the
also Appendix 6.1, can be applied (for the case that Set
1 : s is substituted byip). This theorem guarantees , s-1
that the complementary concentration profil&s j) for Al = {x eR: x.yT = Z XeYe = —1}
j # io are elements of the space =1
. . . ) . of representatives for the complementary pure compo-
{UZ§: for § € RS with A(io, :)Vy = 0} 9) nent spectra 4, :) with j # io.
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Theorem 3.1 constitutes a relation between a cer- one given factor determines the second factor. The sec-
tain point in either the spectral or concentrational AFS ond factor can be determined as follows: In the case of
with an dfine subspace in the concentrational or spec- noise-free dat® a linear system of equations is to be

tral AFS. For a two-component system a certain point
X € My is directly related with another poigte Mc.

For a three-component system a certain pgirt Ma

is connected with a straight line i, see also [21, 9].
This is demonstrated in Figure 1 where for the case
s = 3 a series of feasible points iMa is shown to-
gether with the set of associated one-dimensiofiale

solved ifCA has the full rank oD. In the case of noisy
data or if a low-rank approximation & is considered,
then the second factor can be computed by solving least-
squares problems. In any case the knowledge of a full
factor completely determines the system.

A successful factorization means that in the A&
and the AFSM¢ eachs points are specified. These

subspaces (straight lines). Details on this problem are points are the vertices of two simplices, onedfy and

presented in Section 4.1. For as € 4)-component
system a certain point € Mp is related with a plane;
this is demonstrated in Section 4.2 for a model problem.
If more than one spectrum or concentration profile of
the pure components is known, th&f, and Mc can be

one in Mc. For the factorA the simplex inMa has
the verticesx, i = 1,...,s, see (2). The block repre-
sentation of these vertices ¥ € R¥(D according to
Remark 2.2. Analogously, the fact@rdefines a sim-
plex in Mc with the vertices/) given by the rows of

further reduced. Then, in the best case, even a uniquey.

decomposition can be determined.

Corollary 3.3. For given g rows Ai,:),i=1,..., %,
let X € RS be the representatives in the sense of (2).
Let X € R9X(sD) pe the block representation of these
cogficients according to Definition 2.1.

Then the representativesey Mc of the complemen-
tary columns @, j), j = S+ 1,...,s, are elements of
the(s— s — 1)-dimensional gine subspace

) ={ye R : Xy =(-1,...,-1)}. (1)
Proof. Let C(;, j) with j > s be a concentration pro-
file and lety € Mc be its representative, see Equation
(4). Theorem 3.1 imposes the conditiodsy = —1 for

i =1,...,%, which gives (11). The dimension gf:%)
equalss — 5 — 1 sinces linear equations are imposed
ony e RS, O

Remark 3.4. The dimension-ssp—1 of C&%) is consis-
tent with the dimension-ssy in Equation (7) of Theorem
4.2 in [20]. The reason that the dimension@t<) is
reduced by 1 is that the block representation of the ex-
pansion caoficients in Definition 2.1 includes the fixed
scaling of the first left singular vector. In other words,
(1,y) is the vector of expansion c¢fieients under scal-
ing assumptions and(1,y), for w € R, is the full sub-
space without any scaling.

Corollary 3.3 can also be formulated in a way in
which C and A have changed their places.

3.2. Simplices itMc and Ma and their relations

In this section we assume that so much information
on a factor is available that the second factor is com-
pletely determined by the complementarity theorem. A
well known fact on MCR factorization® = CAis that

5

For a two-component system the simplexRnis a
line segment. For a three-component system the sim-
plex inIR? is a triangle and its edges are determined by
the complementarity theorem 3.1. For four-components
systems the simplex iR? is a tetrahedron and its side
surfaces, the triangles, are determined by the comple-
mentarity theorem once again. All this is analyzed and
demonstrated in the following. First the relation of the
simplex defined by to the simplex defined by is de-
scribed in Theorem 3.5.

Theorem 3.5. Let X € R be the block represen-
tation of A as introduced in Definition 2.1. Then the
vertices XJ,:), j = 1,..., s, can be computed by solv-
ing s linear systems of equations. Fokjl,...,s and
Y(j,:) = yO the linear system of equations reads

e

%ﬁn T -1

(i+1) (y(')) =| : (12)
-1

X(.S)

The assertion also holds if X and Y are interchanged.

Proof. Corollary 3.3 fors s — 1 results in a 0-
dimensional fiine subspac€®s V) which is just the
single vertexY(s,:) = y*9 and proves the casg= s.
The argument can also be applied for the remaining in-
dexes;j. O

Theorem 3.5 and the simplices My and Mc are
illustrated by Figure 2 for a three-component system.
Then the axes of the AFS plots are denotedvby x;



andg = xp according to the standard notatidfor de-
tails on the underlying factorization problem see Sec-
tion 4.1.2.

Remark 3.6. Theorem 3.5 in Equation (12) formulates
a relation between the simplices e and Ma which
are defined by X and Y. This relation cannot imme-
diately be translated to a factorization of D since the
feasible factorizations

D=UXT TV = UzzZz VT
N— e N—— N—— ——

C A (o4 A

with T and Z defined in (7) include a specific scaling
of the rows of A and columns of C. Thus in general
C’'A=UZZTV' # D holds. What is needed for a cor-
rect representation of the factorization are the two di-
agonal matrices M and M, as introduced in Remark
2.2. With these matrices and with E (e X) and

Zl = (gY)fore = (1,...,1)T € RS it holds that

D = UXZMM;TVT.

3.3. FAC-PACK implementation

In [9] a fast numerical procedure has been introduced
for the numerical computation of the ABEB(c and the
AFS Ma by the polygon inflation algorithm. A tuto-
rial and the software, which is callddAC-PACK and
which is written in C with a MatLab graphical user in-
terface, are available from

httpy/www.math.uni-rostock.décpack

The first revisionFAC-PACK 1.0 serves to compute
the spectral AFSV, and the concentrational AES(c.
The areas of feasible solutions which are shown in Fig-
ures 1 and 2 have been computed WithC-PACK. In

the first quarter of 2014 the revision 1.1/6AC-PACK
has been made publically available. This revision in-
cludes an algorithmic implementation of the comple-
mentarity theorem which allows to import known spec-
tra or known concentration profiles, to mark their repre-

as given by (8). If the perturbation of x due to noise
is given bydy, then the induced perturbatiafy of y is
bounded as follows

|(S)y"

lloyll =
Il

(13)

if the quadratic tern{o)(dy) " is ignored. The inequality
also holds with(x, 6x) and (y, éy) having changed their
positions.

Proof. Let a certain spectrum be given and let its repre-
sentative bex e Ma. Theorem 3.1 shows that the rep-
resentativey of the complementary concentration pro-
files fulfill xy" = —1. Letdyx € RS be a perturbation
(row) vector ofx andsy be the resulting perturbation for
y. From

(x+6)(y+6,) =-1

one gets after subtraction &’ = -1

) Y" +X(8y)" = =(3:)(6y)" = Olloxll ll6ylly

whereQ is the Landau symbol and whdfte]| is the Eu-
clidean vector norm(The Landau or big O notation is
used to describe the asymptotic behavior of a function;
here it expresses thaij(s,)" is a mixed quadratic term
in the-perturbations, which quadratically tends to O, if
dx — 0 andsy — 0.)

Next the second order term of perturbations on the
right-hand side is ignored. Application of the Cauchy-
Schwarz inequality leads to

XISyl > X(3y) | = 16y .

This proves thatsll > [(5x)Y"I/IIXI. O

Inequality (13) shows that the resulting perturbation
6,1l is bounded from below bis,)y"|/IIx]l. This lower
bound is reciprocal t¢x|| which is the Euclidean dis-
tance ofx to the origin. An interpretation of this result
is as follows: For pointx far away from the origin the
influence of perturbation$, ony decreases. However,

sentatives in the AFS and to construct as well as to draw any x close to the origin appears to be sensitive with

the complementaryfhne spaces. All the images shown
in Figure 2 have been generated with the revision 1.1 of
FAC-PACK.

3.4. A sensitivity measure with respect to noise

respect to perturbations.

This perturbation argument is consistent with spec-
troscopic observations: For IR-spectra with narrow lo-
calized peaks next to non-absorbing frequency bands,
the representativesare often far away from the origin.

Theorem 3.1 and Equation (8) can be used to derive Hence the sensitivity with respect to noisy data is rela-

a relation on the sensitivity of the AFS with respect to
noise.

Lemma 3.7. Let x € Ma be given and let ye Mc
be in the complementary space of concentration profiles
6

tively small. In contrast to this UW/is data often has
wide absorbing frequency bands without non-absorbing
bands. Then the representing vectors the true solu-
tions are often close to the origin and the reliability of
the results of Theorem 3.1 for noisy data decreases.
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Figure 2: Application of Theorem 3.5 and Corollary 3.3 toctpa data from the Rhodium-catalyzed hydroformylationgass, see Section 4.1.
Left Column: One given spectrum fixes a point Ma and a straight line inMc for the complementary components. This results in one-
dimensional continua of concentrations profiles. Centéwron: Two given spectra determine two pointsMia and two straight lines inVc.
Their intersection uniquely determines the concentrapianfile of the third component. Right column: Three givencéecompletely determine
the complete solution. The two simplices (triangles)Vita and Mc according to Theorem 3.5 are also shown.

First row: Given one, two and three spectra (row#\pfSecond row: AFSVa with one, two and three fixed points representing the givectsg.
Third row: AFS Mc with the dfine subspaces according to Theorem 3.1 shown by one, two @®ldtraight lines. The points of intersection of
these lines uniquely determine concentration profiles.rfiaww: Series of concentration profiles which can be founthe intersection of the
AFS with the d@fine subspaces (straight lines) according to Theorem 3.1.

Known points inMa are marked by and are related with the straight linesArc. Uniquely determined points iMc are marked by and are
associated with the edges of the triangleifa. The same coloration is used for points in eitiddp or Mc and their associated line segments in
either Mc or Ma. A rescaling of the columns & or rows ofA is necessary for a correct reconstructidr= CA, cf. Remark 3.6.



Figure 3:The geometric construction underlying Lemma 3.8.

The reciprocal relation betwedr|| and the perturba-
tion ||6yl| which is expressed by Equation (13) has some
structural resemblance to the observation of Windig,
Keenan et. al. [28] namely that in MCR techniques high
contrast solutions in thé-space are related to low con-
trast solutions in thé-space and vice versa.

The next lemma shows that the acute angle which
is enclosed by andx + &4 in the A-space equals the

acute angle which is enclosed by the associated one-

dimensional fiine spaces in thé-space and vice versa.
This result can be interpreted as a bound on the poten-
tial perturbationsy resulting from a given perturbation
dx- The application of this result to the AFS plots in the
current paper requires that theandps axes are scaled

to the same length units.

Lemma 3.8. For (s = 3)-component system let x and
X+ dx be given inMa. Further, letCy andCy.,;, be the
associated one-dimensiongfiae linear subspaces as
determined by Theorem 3.1. Then it holds that

A(X X+ 6x) = £(Cy, Cyss,)-

The relation also holds if x and y interchange their po-
sitions.

Proof. For a givenx in Ma any elemeny of the com-
plementary spac@y satisfies X, y) = xiy1 + Xay2 = —1.
This relation can be rewritten in the Hesse normal form
of a straight line

(

This means that th@y is a straight line which is orthog-
onal to—x/||x/| and whose smallest distance to the origin
is 1/]II.

X

lIXII”

8

Similarly the relation X + 6,y + 6y) = —1 can be
rewritten as

( + 6y)

so thatCy,s, is a straight line which is orthogonal to
—(X + 6x)/|Ix + 6x|| and whose smallest distance to the
origin is 1/||x + éx||. The geometric setup is shown in
Figure 3. Simple geometric arguments (on the sum of
anglesin a triangle) show that the acute anrgl¢hich is
enclosed bk andx + 54 equals the acute angle enclosed
by Cy andCys,.- O

1
=+—
[I1X + x|

X+ 0x
—_ ’y
[IX + 6xl|

3.5. Further AFS reduction/gcts

The complementarity theory is only one source for an
AFS reduction from pre-given information. Next, three
different sources for a reduction of the AFS are listed.
We always assume that a single spectrum is known,
i.e. a single point in the AF®1,4 is determined. (The
same arguments apply if a single concentration profile
or single point in the AFSV¢ is given.) Then, with-
out claiming completeness, thredfdrent sources for
restrictions ontMa and Mc are:

1. Restrictions on the AFS segments of the comple-
mentary components ivc. These restrictions are
the topic of the present paper.

. Restrictions on the concentration profile of the

component for which the spectrum is given.

Restrictions on the AFS segments for the remain-

ing components itMa.

2

3.

The restrictions of the AFS due to the items 2 and 3
are presented in Figure 4 for the Rhodium-catalyzed hy-
droformylation process, see Section 4.1. Whilst item 1
enforces a restriction to a one-dimensionine sub-
space, items 2 and 3 amount to a moderate decrease of
the area of the AFS segments. Further details on item 3
are contained in [9]; the AFS restrictions related to item

2 will be explained in a forthcoming paper. In any case
the predictions foMc by the complementarity theorem
are much more restrictive compared to the other criteria.

3.6. Ambiguity reduction in MCR techniques

There are various further options for the reduction of
the rotational ambiguity in multivariate curve resolution
techniques. For instance hard-modeling by means of a
kinetic model and the restrictions on the concentration
profiles inC have been presented in [16]. Other im-
portant and well established techniques for the ambigu-
ity reduction are the evolving factor analysis (EFA) and
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Figure 4:The AFS and its reduction for the spectral data from the Hydnaylation process as considered in Figure 2. One or twotpaire fixed
in Ma and are marked by andx in Ma. The resulting reduced AFS segments are shown by a blacklswiif only the pointx is given and by
a broken line if only the poink is given. In the left plot the broken line is contained in theadl red segment.

The restrictions by the complementarity theoremMity are shown by two gray straight lines. These latter predistiare very restrictive since
the intersection of the two straight lines determines oriatpo the red segment uniquely and the intersections wighgteen and the blue AFS
segments are short line segments.

window factor analysis (WFA) [13, 12, 11] and tech- concentrational AFSVc is plotted in the third row of
nigues which exploit local rank information in order to  Figure 2.For this three-component system the standard
extract single pure component spectra and single con-notatione = X3 andg = x; is used.
centration profiles. For these techniques the Manne the-
orems are key tools [19]. _ _ 4.1.1. Series of feasible points

Itis worth noting that the complementarity theory is v start with a demonstration of the relation of points
a hard constraint due to known spectra and concentra-j,, Ma and one-dimensionalizne subspaces iMc as

tion profiles which makes pregiictions on the remaining proved in Theorem 3.1. Figure 1 shows a sen@s
unknown parts o€ andA. In this sense EFA and WFA — 1,...,15, of 15 feasible points in one segment of

are related to the complementarity theory. However, in Ma. If we assign to this segment of the AFS the compo-

this paper the focus is on the AFS and additional infor- nent number 1, then the complementarity theorem says

mation, which may originate from a local rank analysis, 4t the concentration profil€:, 2 : 3) are restricted to
is used in order to reduce the AFS for complementary 1D affine subspaces ifvlc. For a fixedx = xO the asso-

components. ciated dfine subspace 6% and is given by (8). Figure
1 shows that the series of points M, is associated
4. Numerical results with a series of 1D fiine subspaces ifc. The dimen-

sion of each of these subspaces equals 1 sirc8 and
For the numerical experiments we consider a series of only s = 1 spectrum is given. The associated series
FT/IR spectra for a reactive subsystem of the Rhodium- of spectra is also shown in Figure 1. A coloration from
catalyzed hydroformylation process with three compo- blue to red is used for the series of pointsiify, for the
nents. We also treat a model problem with four compo- associated 1Dfeine subspaces i and for the series
nents. of spectra.

4.1. Rhodium-catalyzed hydroformylation 4.1.2. Successive reduction of the rotational ambiguity
The first application is the Rhodium-catalyzed hydro- ~ Next Theorems 3.1 and 3.5 are applied in order to
formylation process. See [27, 8] for details on the reac- demonstrate the successive reduction of the rotational

tive subsystem consisting of the olefin, the hydrido com- ambiguity for a three-component system. Tliie@et of

plex and the acyl complex. A total numberlof 1045 supplying additional information on the factors and the

spectra have been used within a wavenumber intervalresulting predictions by the complementarity theorem

with n = 664 channels. Hend2 is a 1045< 664 matrix. is monitored inMpa and Mc simultaneously. Figure 2

The spectral AFSV, is shown in Figures 1 and 2. The shows all results. In the first row of this figure either
9



FactorC representative is marked by a greerin My, then a

second plane can be added Adc. The intersection
of these two planes i is a straight line (drawn by

FactorA

05 cyan color). This intersection combines the restriction
onC(;,2 : 4) andC(;,[1, 3 : 4]) so that the concentra-
o 0 tion profilesC(;, 3 : 4) are described, see third row in
0 50 100 0 50 100 : : :
t X Figure 6. ClearlyC(;,1) is still represented by some

point on the green plane ar(:, 2) by some point on
the blue plane. If a third spectrui(3,:) is fixed, then

a third plane is added tMa andC(:, 4) is uniquely de-
termined by the intersection of the three planes; see the
last row in Figure 6. In the last image three lines are
one, two or three of the spectra are given. The sec- shown in cyan, yellow and magenta. These three lines
ond row shows the spectral AFS for the system with are assigned to the three profilgg, i), i = 1,2,3, as
either one, two or three marked points which represent paijrs.

the given spectra. The third row shows the associated
1D dfine subspaces in the concentrational AFS. If one
spectrum is given, then the concentration profiles of the
complementary components are restricted to affibe
space. If two spectra are given, then the concentration
profile of one componentis uniquely determined and for
the remaining two components the concentration pro-
files are restricted to 1D spaces. If all three spectra are
known, then all factors are uniquely determined. This
situation is visualized in the right column of images in
Figure 2. For this case two triangles (2D simplices) are
shown in M and Mc according to Theorem 3.5. For
all computations revision 1.1 of FAC-PACK has been
used, see Section 3.3.

Figure 5: Four concentration profil& e R’>* and the associated
spectraA € R**51 of the simulatedfour-component model problem in
Section 4.2.

4.2.2. The simplices iMa and Mc

Theorem 3.5 describes the relation of the two sim-
plices Ma and Mc which each uniquely determine a
feasible factorization. For our four-component system
such a pair of feasible simplices is shown in Figure 7.
These simplices are not independent of each other. As
explained in Remark 3.6 the vertices of the simplices
can be listed in the matricdsandZ and together with
diagonal scaling matricebl; and M, a feasible non-
negative factorization can be written down in the form
D = (UZZM,)(M,TVT).

5. Conclusion

4.2. A four-component model problem

The representation of an AFS by Equation (7) aswell The AFS is a powerful tool to study the rotational
as the arguments of the complementarity theorem from ambiguity and the band of feasible solutions of multi-
Section 3 apply to any number of componests 2. variate curve resolution problems. However, the com-
Nexta (s = 4)-componentmodel problem s considered. putation of all feasible solutions can only be a first step
Thesimulatedconcentration profile€ € R’>4 and the of a successful chemometric analysis of a spectroscopic
spectraA € R*®! are shown in Figure 5. The resulting data. Any further information on the reaction system
spectral data matrix iD € R7%51, should be used in order to decrease the rotational am-
biguity. Such a decrease is equivalent with a reduction
of the AFS. In the best case unique points in the AFS

complementarity theorem can be specified which uniquely determine one single

First the areas of feasible solutiopdc and Ma for factorization. A challenging point for the further ap-
D are computed. Every AFS consists of four separated plication of AFS computations might be the analysis of
segments which can be associated with the four compo-multiway and multiset data [29]. Tauler, Maeder and de
nents of the model problem. These segments are eachJuan [30] have devised a way how MCR-methods can
approximated by a polyhedron whose surface is a 3D be extended to the analysis of multiset data. Within this
triangle mesh. These triangle meshes are shown in theprocedure the matricized form of the data can be an in-
first row of images in Figure 6. Then a first spectrum terface for the AFS techniques.

4.2.1. Reduction of the rotational ambiguity by the

A(1,:) is fixed and the representatixes R® is marked
by a bluex in Ma together with a plane inc to which

The complementarity theorem appears to be a valu-
able tool in order to support this reduction process. Any

C(;,2 : 4) are restricted; see the second row of images feed-in of pre-given or suspected spectra or concentra-

in Figure 6. If a second spectruAg2, :) is given whose

10

tion profiles can be used in order to define certdiima



Spectral AFSMp Concentrational AFc

One complementary plane

One spectrum fixed

Two spectra fixed

Three spectra fixed

Figure 6: Successive reduction of the rotational ambigdiaitya four-component system. First row: AA3s and AFSMc. Second row: A certain
spectrumA(L,:) is fixed and Theorem 3.1 restrid®:, 2 : 4) to the blue plane. Third row: Two spec#él,:) andA(2,:) in Ma. The resulting
two planes inMc intersect in a straight line (cyan) to whi€l(:, 3 : 4) are restricted. The coupled concentration profilésl : 2) in the sense of
Theorem 4.6 in [20] are located on these planes. Fourth réwedspectra are fixed, the coupled concentration prafiied : 3) are each on one
line (cyan, yellow, magenta) and the complementary comagon C(:, 4) is uniquely given by the intersection of the three planes.

11



M and the tetrahedron of solutions M and the tetrahedron of solutions

Figure 7: Tetrahedra or 3-simplices for the pure factorswshio Figure 5. The two tetrahedra are related according teakon (12) in Theorem
3.5. The colors of the vertices are consistent with thoseepure factors in Figure 5.

spaces to which the remaining factor are restricted. If The mathematical background of the complementar-
multiple information from diferent sources is used, then ity theorem is the factorization
multiple &fine subspaces can be formulated. The in-

tersection of these subspaces in the AFS can easily be D=UzV' =UST ' TV'
interpreted as a further strong reduction of the rota- =C =A

tional ambiguity. The mathematical theory behind the . ) ] .
reduction of the AFS by the complementarity theorem whereT is an invertibles x s matrix. If some columns

has been implemented to tRAC-PACK software, see of C or some rows ofA are known, then some linear
Section 3.3, and is available in its revision 1.1. constraints orif ~* or on T can be derived. Then the

identity T-1T = | allows to translate these constraints

to the inverse factor, i.e., ohor onTL. In afinal step

these relations can be formulated as conditions on the
The authors would like to thank H. Abdollahi and factorAor on the factoC. The linear space (14) is the

members of his group for the inspiring discussions 'eSult of this analysis.
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