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Abstract

Multivariate curve resolution techniques in chemometricsallow to uncover the pure component information of mixed
spectroscopic data. However, the so-called rotational ambiguity is a difficult hurdle in solving this factorization prob-
lem. The aim of this paper is to combine two powerful methodological approaches in order to solve the factorization
problem successfully. The first approach is the simultaneous representation of all feasible nonnegative solutions in
the area of feasible solutions (AFS) and the second approachis the complementarity theorem. This theorem allows
to formulate serious restrictions on the factors under partial knowledge of certain pure component spectra or pure
component concentration profiles.

In this paper the mathematical background of the AFS and of the complementarity theorem is introduced, their
mathematical connection is analyzed and the results are applied to spectroscopic data. We consider a three-component
reaction subsystem of the Rhodium-catalyzed hydroformylation process and a four-component model problem.

Key words: spectral recovery, multivariate curve resolution, nonnegative matrix factorization, area of feasible
solutions, complementarity theorem.

1. Introduction

Multivariate curve resolution (MCR) methods in
chemometrics are important and successful tools to ex-
tract information on the pure components from spectro-
scopic data of multi-component chemical reaction sys-
tems. However, MCR methods suffer from the so-called
rotational ambiguity. This means that the factorization
problem for the spectral data matrix often has wide
ranges of nonnegative solutions. These solutions are
called feasible factors. From these solutions the “true”
nonnegative concentration profiles of the pure compo-
nents and their associated spectra are to be selected. For
two-component systems the observation of such con-
tinua of possible solutions has been made by Lawton
and Sylvestre [1]. They also gave a representation of
these continua of solutions by plotting the associated ex-
pansion coefficients in the plane. Such a representation
of range of feasible solutions by sets of expansion co-
efficients is called an area of feasible solutions (AFS).
For three-component systems Borgen and Kowalski [2]
have devised a technique for representing the AFS also
in the two-dimensional plane. For details on the con-
struction of the AFS see [3, 4, 5, 6]. The numerical

computation of the AFS is very intensive in terms of
computing time. For three-component systems efficient
numerical processes have been presented in [7, 8, 9].
For four-component systems Golshan, Maeder and Ab-
dollahi [10] recently presented a technique to compute
the AFS.

1.1. Using supplemental information

Once having computed the AFS for a given spectral
data matrix, one is interested in selecting one solution
from the AFS which fits best the chemical system un-
der consideration. Any further information on the re-
action system can help to decrease the ambiguity and
so to reduce the AFS. Various chemometric techniques
have been developed to this end. Examples are the win-
dow factor analysis [11], the evolving factor analysis
[12, 13], the application of unimodality conditions [14]
or the use of kinetic models [15, 16, 17, 18] and last but
not least the uniqueness theorems by Manne [19]. An-
other approach for feeding-in partial knowledge of the
factors in order to reduce the rotational ambiguity is the
complementarity and coupling theorywhich have been
introduced in [20].
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1.2. Aim and organization of this paper

The aim of this paper is to combine the complemen-
tarity theorem from [20] with the AFS for systems with
an arbitrary number of components; practical applica-
tions are shown for three- and four-component chemi-
cal reaction systems. It is shown how the knowledge
of a single spectrum, i.e. a single point of the spectral
AFS, can reduce the AFS for the concentration factor
for the remaining components to a straight line in case
of a three-component system and vice versa, cf. [21, 9].
We also consider four-component systems where a pre-
given point in the spectral AFS results in a plane in the
AFS for the concentration factors.Such additional in-
formation on a chemical reaction system is sometimes
accessible as the spectra of the reactants or the spectrum
of the main product might be available. In other cases
there are techniques to determine the concentration pro-
files of certain species. In Section 4 we consider exper-
imental data from the Rhodium-catalyzed hydroformy-
lation from which a catalytic subsystem with three com-
ponents is studied.

The paper is organized as follows: After a brief in-
troduction to the spectral recovery problem and to the
AFS, the mathematical background for the application
of the complementarity theorem to the AFS is discussed
in Section 3. Numerical results are presented for a
three-component system which is a subsystem of the
Rhodium-catalyzed hydroformylation. Further a four-
component model problem is studied.

2. Area of feasible solutions

2.1. The factorization problem

The key equation for the following analysis is the
low-rank-approximation of the spectral data matrixD ∈
R

k×n

D ≈ UΣT−1
︸  ︷︷  ︸

C

TVT
︸︷︷︸

A

, (1)

which can be computed from a singular value decompo-
sition [22] of D. ThereinU is ak × s matrix containing
the first s left singular vectors ofD, the n × s matrix
V contains the firsts right singular vectors ofD andΣ
is the s × s diagonal matrix with thes largest singu-
lar values on its diagonal, see [23, 24] for details. The
regulars× s matrix T serves to represent the rotational
ambiguity. The desired approximate factorsC andA of
D can be computed by right-multiplication ofUΣ with
T−1 and left multiplication ofVT by T. Spectral recov-
ery amounts to the construction of a suitableT by using

soft constraints, kinetic models or any other additional
information, see e.g. [15, 16, 14, 25, 26].

A systematic and fundamental approach to the factor-
ization problem is to compute and to represent the full
set of all nonnegative solutions simultaneously. This
complete representation is just the AFS. For an expla-
nation of the AFS see the seminal papers of Borgen and
Kowalski [2] as well as Rajkó and István [3]. Newer
contributions on the numerical computation of the AFS
for two-, three- and four-component systems can be
found in [5, 7, 8, 9, 10].

2.2. Singular vector expansions

The representation of the AFS for the spectral factor
is based on the expansion of the spectra with respect
to the basis of right singular vectors given byV. In a
similar way the AFS for the concentration factor rests on
an expansion of the concentration profiles with respect
to the basis of left singular vectors given byU.

In (1) the rows (spectra) ofA are represented as linear
combinations of the right singular vectors, which are the
columns ofV. Theith row of A = TVT reads

A(i, :) = (ti1, . . . , tis)VT = ti1
(

1,
ti2
ti1
, . . . ,

tis
ti1

︸       ︷︷       ︸

=:x

)

VT

= ti1 (1, x)VT .

(2)

Thereinti1 , 0 has been used, a fact which is by no
means obvious, but has been proved in Theorem 2.2
of [9]. Equation (2) shows that theith spectrumA(i, :)
aside from scaling is uniquely determined by the row
vectorx ∈ R

s−1 of expansion coefficients. The scaling
constantti1 in (2) can be written as

ti1 = (T)i1 = (AV)i1 = (AV(:, 1))i. (3)

The construction for the factorC is similar. The jth
column ofC = UΣT−1 with (T−1)i j = t̄i j reads

C(:, j) = UΣ(t̄1 j , . . . , t̄s j)T

= t̄1 jUΣ
(

1,
t̄2 j

t̄1 j
, . . . ,

t̄s j

t̄1 j
︸       ︷︷       ︸

=:y

)T

= t̄1 j UΣ(1, y)T .

(4)

Once again,̄t1 j , 0 is guaranteed by Theorem 2.2 in [9].
It holds that

t̄1 j = (T−1)1 j = (Σ−1UTC)1 j = σ
−1
1 U(:, 1)TC(:, j). (5)
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2.3. The AFS
As shown in Equation (2) any spectrum can be repre-

sented (aside from scaling) by its vectorx of expansion
coefficients with respect to the right singular vectors
V(:, 2), . . . ,V(:, s). This is the basis for a low dimen-
sional representation of the AFS. A further argument is
needed for the representation of the AFS, namely that
by a permutation matrixP and its inversePT can be in-
serted betweenC and A in (1) and that this allows to
rearrange the row ofA and columns ofC arbitrarily,
sinceCA = (CPT)(PA) = (UΣT−1PT)(PTVT). There-
fore only the first row ofT is to be considered in order to
define the AFS for the spectral factor. The delineation of
the area of feasible solutions (AFS) under nonnegativity
constraints for ans-component system is as follows

MA = {x ∈ R
s−1 : exists invertibleT ∈ Rs×s,

T(1, :) = (1, x), UΣT−1 ≥ 0 andTVT ≥ 0}.
(6)

For a two-component system (s = 2) the AFS is a real
interval, for a three-component system (s = 3) it is a
subset in the plane and fors= 4 it is a subset of theR3.
For s = 2 the interval-AFS can easily be written down
explicitly. For s = 3 geometric approaches to the con-
struction of the AFS can be found in [2, 3]. Numerical
methods for the computation of the AFS fors = 2, 3, 4
are described in [5, 7, 10, 8, 9].

In a similar manner the AFSMC for the concentra-
tion factor can be defined. According to (4) and with the
same arguments used above, matricesZ are to be deter-
mined with the first row equal to (1, . . . , 1) ∈ R

s and
with Z(:, 1)T = (1, y) for y ∈ Rs so thatUΣZ andZ−1VT

are nonnegative matrices.
In short formMA andMC are given by

MA := {x ∈ Rs−1 : UΣT−1 ≥ 0 andTVT ≥ 0}

MC := {y ∈ Rs−1 : UΣZ ≥ 0 andZ−1VT ≥ 0}
(7)

with invertibles× smatricesT andZ so that

T(1, :) = (1, x), Z(:, 1)T = (1, y)

and every matrix element of the first column ofT and
the first row ofZ equals 1. For general dataD the matri-
cesT andZ−1 do not coincide since the restrictions on
T andZ cannot be fulfilled simultaneously.

2.4. Block representation
For this paper it is useful to representC and A and

some of their submatrices by their expansion coeffi-
cientsx andy according to (2) and (4). We call this the
block representation of truncated expansion coefficients
with respect to the basis of singular vectors.

Definition 2.1. Let s0 be an integer with1 ≤ s0 ≤ s
and let for i = 1, . . . , s0 the row vector x(i) ∈ R

s−1 be
the truncated vector of expansion coefficients of A(i, :)
with respect to the right singular vectors in the sense of
(2). Considering s0 rows of A(1 : s0, :) simultaneously
yields

X =





x(1)

...

x(s0)





∈ Rs0×(s−1)

as the block representation of truncated expansion co-
efficients.

In the same way let y( j) be the representative of C(:, j)
in the sense of (4). Then

Y =





y(1)

...

y(s0)





∈ Rs0×(s−1)

is the block representation of C(:, 1 : s0).

Remark 2.2. If s0 = s, then the block representations
X,Y ∈ R

s×(s−1) define two simplices in theRs−1 whose
vertices are the row vectors of either X or Y.

Further, Equations (2) and (3) result in

A(i, :) = (AV(:, 1)i (1, x(i)))VT .

This yields for s0 = s and with the s-dimensional 1-
vector e= (1, . . . , 1)T ∈ Rs

A = M1(e,X)VT with M1 = diag(AV(:, 1)).

Similarly, Equations (4) and (5) result in

C(:, j) = (σ−1
1 U(:, 1)TC(:, j)) UΣ(1, y( j))T

so that for s0 = s

C = UΣ

(

eT

YT

)

M2 with M2 = diag(σ−1
1 U(:, 1)TC).

3. The AFS and the complementarity theorem

As stated in Section 1.1 there are various techniques
how to feed in partial knowledge of the factors in order
to reduce the rotational ambiguity of an MCR method.
Here we would like to show how the complementarity
theorem from [20] can be applied for the purpose of a
reduction of the AFS.
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Figure 1: Application of Theorem 3.1 to an (s = 3)-component system for the Rhodium-catalyzed hydroformylation process, see Section 4.1 or
[27] for details. Left: the spectral AFS is contoured by black lines and consists of three separated segments. A series offeasible spectra is shown
by single points colored from blue to red. Right: the series of spectra which are associated with the series of points inMA. Center: Set of straight
lines or one-dimensional affine subspaces inMC which are associated with the points inMA and which are shown in the same coloration.The
axes of the AFS plots arex1 andx2. For a three-component system these axes equal (α, β) according to the standard notation.

3.1. Mutual reduction ofMC andMA by the comple-
mentarity theorem

The complementarity theorem from [9] shows how
pre-given spectra for certain pure components restrict
the concentration profiles for the remaining components
and vice versa. A comparable observation has been
made in [21] for three-component systems.

For a reproduction of the complementarity theorem
in concise form see Appendix 6.1.Next it is shown how
such a pre-given spectrum, which is represented by a
single point in the spectral AFSMA reduces the AFS
MC for the complementary components.

Theorem 3.1. Let a spectrum/row A(i0, :) be given. Ac-
cording to (2) it holds A(i0, :) = ti01(1, x)VT and x spec-
ifies a point in the spectral AFSMA.

Then all concentration profiles C(:, j) with j , i0 are
represented in the sense of (4) by points y which are
elements of the s− 2-dimensional affine subspace

C(i0) =





y ∈ Rs−1 :

s−1∑

ℓ=1

xℓyℓ = −1





. (8)

Thus all feasible concentration profiles C(:, j) with j ,
i0 have the form

UΣ(1, y)T with y ∈ C(i0).

Proof. For given A(i0, :) Theorem 4.2 from [20], see
also Appendix 6.1, can be applied (for the case that
1 : s0 is substituted byi0). This theorem guarantees
that the complementary concentration profilesC(:, j) for
j , i0 are elements of the space

{UΣỹ : for ỹ ∈ Rs with A(i0, :)Vỹ = 0}. (9)

Thereinỹ is a column vector in theRs.
Insertion ofA(i0, :) = ti01(1, x)VT into (9) shows that

ti01(1, x)VTVỹ = ti01(1, x)ỹ = 0 (10)

is the decisive condition,which is now transformed in
order to prove (8).First, Equation (4) allows to write
the concentration profileC(:, j) = UΣỹ in the form

UΣỹ = t̄1 jUΣ(1, y)T

with the row vectory ∈ R
s−1. Thusỹ = t̄1 j(1, y)T. In-

serting this into (10) yields

ti01t̄1 j (1, x) (1, y)T = ti01t̄1 j

(

1+
s−1∑

ℓ=1

xℓyℓ
)

= 0.

Since ti01t̄1 j , 0, the second factor equals 0,
i.e.

∑s−1
ℓ=1 xℓyℓ = −1, which proves (8).

Finally, the dimension ofC(i0) equalss−2 because the
vectory ∈ Rs−1 has to satisfy one linear constraint.

The setC(i0) is an (s− 2)-dimensional affine subspace
which is a hyperplane inRs−1 and which intersectsMC.
Further, Theorem 3.1 also applies to the situation in
whichMA andMC have changed their places. This fact
does not require a separate proof but is now stated ex-
plicitly.

Corollary 3.2. Theorem 3.1 is applicable to the case in
which A and C are swapped. Then a given representa-
tive y for a concentration profile C(:, i0) results in the
set

A(i0) =





x ∈ Rs−1 : x · yT =

s−1∑

ℓ=1

xℓyℓ = −1






of representatives for the complementary pure compo-
nent spectra A( j, :) with j , i0.
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Theorem 3.1 constitutes a relation between a cer-
tain point in either the spectral or concentrational AFS
with an affine subspace in the concentrational or spec-
tral AFS. For a two-component system a certain point
x ∈ MA is directly related with another pointy ∈ MC.
For a three-component system a certain pointx ∈ MA

is connected with a straight line inMC, see also [21, 9].
This is demonstrated in Figure 1 where for the case
s = 3 a series of feasible points inMA is shown to-
gether with the set of associated one-dimensional affine
subspaces (straight lines). Details on this problem are
presented in Section 4.1. For an (s = 4)-component
system a certain pointx ∈ MA is related with a plane;
this is demonstrated in Section 4.2 for a model problem.

If more than one spectrum or concentration profile of
the pure components is known, thenMA andMC can be
further reduced. Then, in the best case, even a unique
decomposition can be determined.

Corollary 3.3. For given s0 rows A(i, :), i = 1, . . . , s0,
let x(i) ∈ Rs−1 be the representatives in the sense of (2).
Let X ∈ R

s0×(s−1) be the block representation of these
coefficients according to Definition 2.1.

Then the representatives y∈ MC of the complemen-
tary columns C(:, j), j = s0 + 1, . . . , s, are elements of
the(s− s0 − 1)-dimensional affine subspace

C(1:s0) =
{

y ∈ Rs−1 : XyT = (−1, . . . ,−1)T
}

. (11)

Proof. Let C(:, j) with j > s0 be a concentration pro-
file and lety ∈ MC be its representative, see Equation
(4). Theorem 3.1 imposes the conditionsx(i)y = −1 for
i = 1, . . . , s0, which gives (11). The dimension ofC(1:s0)

equalss− s0 − 1 sinces0 linear equations are imposed
ony ∈ Rs−1.

Remark 3.4. The dimension s−s0−1 ofC(1:s0) is consis-
tent with the dimension s−s0 in Equation (7) of Theorem
4.2 in [20]. The reason that the dimension ofC(1:s0) is
reduced by 1 is that the block representation of the ex-
pansion coefficients in Definition 2.1 includes the fixed
scaling of the first left singular vector. In other words,
(1, y) is the vector of expansion coefficients under scal-
ing assumptions andω(1, y), for ω ∈ R, is the full sub-
space without any scaling.

Corollary 3.3 can also be formulated in a way in
which C and A have changed their places.

3.2. Simplices inMC andMA and their relations

In this section we assume that so much information
on a factor is available that the second factor is com-
pletely determined by the complementarity theorem. A
well known fact on MCR factorizationsD = CA is that

one given factor determines the second factor. The sec-
ond factor can be determined as follows: In the case of
noise-free dataD a linear system of equations is to be
solved ifCA has the full rank ofD. In the case of noisy
data or if a low-rank approximation ofD is considered,
then the second factor can be computed by solving least-
squares problems. In any case the knowledge of a full
factor completely determines the system.

A successful factorization means that in the AFSMA

and the AFSMC eachs points are specified. These
points are the vertices of two simplices, one inMA and
one inMC. For the factorA the simplex inMA has
the verticesx(i), i = 1, . . . , s, see (2). The block repre-
sentation of these vertices isX ∈ R

s×(s−1) according to
Remark 2.2. Analogously, the factorC defines a sim-
plex inMC with the verticesy( j) given by the rows of
Y.

For a two-component system the simplex inR is a
line segment. For a three-component system the sim-
plex inR

2 is a triangle and its edges are determined by
the complementarity theorem 3.1. For four-components
systems the simplex inR3 is a tetrahedron and its side
surfaces, the triangles, are determined by the comple-
mentarity theorem once again. All this is analyzed and
demonstrated in the following. First the relation of the
simplex defined byX to the simplex defined byY is de-
scribed in Theorem 3.5.

Theorem 3.5. Let X ∈ R
s×(s−1) be the block represen-

tation of A as introduced in Definition 2.1. Then the
vertices Y( j, :), j = 1, . . . , s, can be computed by solv-
ing s linear systems of equations. For j= 1, . . . , s and
Y( j, :) = y( j) the linear system of equations reads





x(1)

...

x( j−1)

x( j+1)

...

x(s)





(

y( j)
)T
=





−1
...

−1





. (12)

The assertion also holds if X and Y are interchanged.

Proof. Corollary 3.3 for s0 = s − 1 results in a 0-
dimensional affine subspaceC(1:s−1) which is just the
single vertexY(s, :) = y(s) and proves the casej = s.
The argument can also be applied for the remaining in-
dexesj.

Theorem 3.5 and the simplices inMA andMC are
illustrated by Figure 2 for a three-component system.
Then the axes of the AFS plots are denoted byα = x1
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andβ = x2 according to the standard notation.For de-
tails on the underlying factorization problem see Sec-
tion 4.1.2.

Remark 3.6. Theorem 3.5 in Equation (12) formulates
a relation between the simplices inMC andMA which
are defined by X and Y. This relation cannot imme-
diately be translated to a factorization of D since the
feasible factorizations

D = UΣT−1
︸  ︷︷  ︸

C

TVT
︸︷︷︸

A

= UΣZ
︸︷︷︸

C′

Z−1VT
︸ ︷︷ ︸

A′

with T and Z defined in (7) include a specific scaling
of the rows of A and columns of C. Thus in general
C′A = UΣZTVT

, D holds. What is needed for a cor-
rect representation of the factorization are the two di-
agonal matrices M1 and M2 as introduced in Remark
2.2. With these matrices and with T= (e,X) and
ZT = (e,Y) for e = (1, . . . , 1)T ∈ R

s it holds that
D = UΣZM2M1TVT .

3.3. FAC-PACK implementation

In [9] a fast numerical procedure has been introduced
for the numerical computation of the AFSMC and the
AFSMA by the polygon inflation algorithm. A tuto-
rial and the software, which is calledFAC-PACK and
which is written in C with a MatLab graphical user in-
terface, are available from

http://www.math.uni-rostock.de/facpack/

The first revisionFAC-PACK 1.0 serves to compute
the spectral AFSMA and the concentrational AFSMC.
The areas of feasible solutions which are shown in Fig-
ures 1 and 2 have been computed withFAC-PACK. In
the first quarter of 2014 the revision 1.1 ofFAC-PACK

has been made publically available. This revision in-
cludes an algorithmic implementation of the comple-
mentarity theorem which allows to import known spec-
tra or known concentration profiles, to mark their repre-
sentatives in the AFS and to construct as well as to draw
the complementary affine spaces. All the images shown
in Figure 2 have been generated with the revision 1.1 of
FAC-PACK.

3.4. A sensitivity measure with respect to noise

Theorem 3.1 and Equation (8) can be used to derive
a relation on the sensitivity of the AFS with respect to
noise.

Lemma 3.7. Let x ∈ MA be given and let y∈ MC

be in the complementary space of concentration profiles

as given by (8). If the perturbation of x due to noise
is given byδx, then the induced perturbationδy of y is
bounded as follows

‖δy‖ ≥
|(δx)yT |

‖x‖
(13)

if the quadratic term(δx)(δy)T is ignored. The inequality
also holds with(x, δx) and (y, δy) having changed their
positions.

Proof. Let a certain spectrum be given and let its repre-
sentative bex ∈ MA. Theorem 3.1 shows that the rep-
resentativesy of the complementary concentration pro-
files fulfill xyT = −1. Let δx ∈ R

s−1 be a perturbation
(row) vector ofx andδy be the resulting perturbation for
y. From

(x+ δx)(y+ δy)
T = −1

one gets after subtraction ofxyT = −1

(δx) yT + x(δy)T = −(δx)(δy)T = O(‖δx‖ ‖δy‖)

whereO is the Landau symbol and where‖ · ‖ is the Eu-
clidean vector norm.(The Landau or big O notation is
used to describe the asymptotic behavior of a function;
here it expresses that (δx)(δy)T is a mixed quadratic term
in theδ-perturbations, which quadratically tends to 0, if
δx→ 0 andδy→ 0.)

Next the second order term of perturbations on the
right-hand side is ignored. Application of the Cauchy-
Schwarz inequality leads to

‖x‖ ‖δy‖ ≥ |x(δy)T | = |(δx)yT |.

This proves that‖δy‖ ≥ |(δx)yT |/‖x‖.

Inequality (13) shows that the resulting perturbation
‖δy‖ is bounded from below by|(δx)yT |/‖x‖. This lower
bound is reciprocal to‖x‖ which is the Euclidean dis-
tance ofx to the origin. An interpretation of this result
is as follows: For pointsx far away from the origin the
influence of perturbationsδx on y decreases. However,
any x close to the origin appears to be sensitive with
respect to perturbations.

This perturbation argument is consistent with spec-
troscopic observations: For IR-spectra with narrow lo-
calized peaks next to non-absorbing frequency bands,
the representativesx are often far away from the origin.
Hence the sensitivity with respect to noisy data is rela-
tively small. In contrast to this UV/Vis data often has
wide absorbing frequency bands without non-absorbing
bands. Then the representing vectorsx of the true solu-
tions are often close to the origin and the reliability of
the results of Theorem 3.1 for noisy data decreases.

6



2000 2050 2100
0

0.05

0.1

0.15

 

 

actor

One given spectrumA(1, :)

wavenumber [1/cm]

u
n

sc
al

ed
ab

so
rp

tio
n olefin

2000 2050 2100
0

0.05

0.1

0.15

 

 

Two given spectraA(1 : 2, :)

wavenumber [1/cm]

u
n

sc
al

ed
ab

so
rp

tio
n olefin

acyl complex

2000 2050 2100
0

0.05

0.1

0.15

 

 

Three given spectraA(1 : 3, :)

wavenumber [1/cm]

u
n

sc
al

ed
ab

so
rp

tio
n olefin

acyl complex
hydrido complex

−0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

α

β

AFSMA - one given component

−0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

α

β

AFSMA - two given components

−0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

α

β

AFSMA - all components known

−3 −2 −1 0 1 2 3

−10

0

10

20

α

β

AFSMC - one 1D affine space

−3 −2 −1 0 1 2 3

−10

0

10

20

α

β

AFSMC - two 1D affine spaces

−3 −2 −1 0 1 2 3

−10

0

10

20

α

β

AFSMC - all components fixed

0 200 400 600 800 1000
0

0.5

1

1.5

2

Feasible solutionsC(:, 2) andC(:, 3)

time [min]

u
n

sc
al

ed
co

n
ce

n
tr

at
io

n

0 200 400 600 800 1000
0

0.5

1

1.5

2

Feasible solutionsC(:, 1) andC(:, 2)

time [min]

u
n

sc
al

ed
co

n
ce

n
tr

at
io

n

0 200 400 600 800 1000
0

0.5

1

1.5

2

Unique concentration factor

time [min]

u
n

sc
al

ed
co

n
ce

n
tr

at
io

n

Figure 2: Application of Theorem 3.5 and Corollary 3.3 to spectral data from the Rhodium-catalyzed hydroformylation process, see Section 4.1.
Left Column: One given spectrum fixes a point inMA and a straight line inMC for the complementary components. This results in one-
dimensional continua of concentrations profiles. Center column: Two given spectra determine two points inMA and two straight lines inMC.
Their intersection uniquely determines the concentrationprofile of the third component. Right column: Three given spectra completely determine
the complete solution. The two simplices (triangles) inMA andMC according to Theorem 3.5 are also shown.
First row: Given one, two and three spectra (rows ofA). Second row: AFSMA with one, two and three fixed points representing the given spectra.
Third row: AFSMC with the affine subspaces according to Theorem 3.1 shown by one, two and three straight lines. The points of intersection of
these lines uniquely determine concentration profiles. Fourth row: Series of concentration profiles which can be found in the intersection of the
AFS with the affine subspaces (straight lines) according to Theorem 3.1.
Known points inMA are marked by× and are related with the straight lines inMC. Uniquely determined points inMC are marked by◦ and are
associated with the edges of the triangle inMA. The same coloration is used for points in eitherMA orMC and their associated line segments in
eitherMC orMA. A rescaling of the columns ofC or rows ofA is necessary for a correct reconstructionD = CA, cf. Remark 3.6.
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Figure 3:The geometric construction underlying Lemma 3.8.

The reciprocal relation between‖x‖ and the perturba-
tion ‖δy|| which is expressed by Equation (13) has some
structural resemblance to the observation of Windig,
Keenan et. al. [28] namely that in MCR techniques high
contrast solutions in theC-space are related to low con-
trast solutions in theA-space and vice versa.

The next lemma shows that the acute angle which
is enclosed byx and x + δx in the A-space equals the
acute angle which is enclosed by the associated one-
dimensional affine spaces in theC-space and vice versa.
This result can be interpreted as a bound on the poten-
tial perturbationδy resulting from a given perturbation
δx. The application of this result to the AFS plots in the
current paper requires that theα andβ axes are scaled
to the same length units.

Lemma 3.8. For (s = 3)-component system let x and
x+ δx be given inMA. Further, letCy andCy+δy be the
associated one-dimensional affine linear subspaces as
determined by Theorem 3.1. Then it holds that

∡(x, x+ δx) = ∡(Cy,Cy+δy).

The relation also holds if x and y interchange their po-
sitions.

Proof. For a givenx inMA any elementy of the com-
plementary spaceCy satisfies (x, y) = x1y1 + x2y2 = −1.
This relation can be rewritten in the Hesse normal form
of a straight line

(

−
x
‖x‖
, y

)

= +
1
‖x‖
.

This means that theCy is a straight line which is orthog-
onal to−x/‖x‖ and whose smallest distance to the origin
is 1/‖x‖.

Similarly the relation (x + δx, y + δy) = −1 can be
rewritten as

(

−
x+ δx

‖x+ δx‖
, y+ δy

)

= +
1

‖x+ δx‖

so thatCy+δy is a straight line which is orthogonal to
−(x + δx)/‖x + δx‖ and whose smallest distance to the
origin is 1/‖x + δx‖. The geometric setup is shown in
Figure 3. Simple geometric arguments (on the sum of
angles in a triangle) show that the acute angleϕwhich is
enclosed byx andx+δx equals the acute angle enclosed
byCy andCy+δy.

3.5. Further AFS reduction effects

The complementarity theory is only one source for an
AFS reduction from pre-given information. Next, three
different sources for a reduction of the AFS are listed.
We always assume that a single spectrum is known,
i.e. a single point in the AFSMA is determined. (The
same arguments apply if a single concentration profile
or single point in the AFSMC is given.) Then, with-
out claiming completeness, three different sources for
restrictions onMA andMC are:

1. Restrictions on the AFS segments of the comple-
mentary components inMC. These restrictions are
the topic of the present paper.

2. Restrictions on the concentration profile of the
component for which the spectrum is given.

3. Restrictions on the AFS segments for the remain-
ing components inMA.

The restrictions of the AFS due to the items 2 and 3
are presented in Figure 4 for the Rhodium-catalyzed hy-
droformylation process, see Section 4.1. Whilst item 1
enforces a restriction to a one-dimensional affine sub-
space, items 2 and 3 amount to a moderate decrease of
the area of the AFS segments. Further details on item 3
are contained in [9]; the AFS restrictions related to item
2 will be explained in a forthcoming paper. In any case
the predictions forMC by the complementarity theorem
are much more restrictive compared to the other criteria.

3.6. Ambiguity reduction in MCR techniques

There are various further options for the reduction of
the rotational ambiguity in multivariate curve resolution
techniques. For instance hard-modeling by means of a
kinetic model and the restrictions on the concentration
profiles in C have been presented in [16]. Other im-
portant and well established techniques for the ambigu-
ity reduction are the evolving factor analysis (EFA) and
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Figure 4:The AFS and its reduction for the spectral data from the hydroformylation process as considered in Figure 2. One or two points are fixed
inMA and are marked by× and× inMA. The resulting reduced AFS segments are shown by a black solid line if only the point× is given and by
a broken line if only the point× is given. In the left plot the broken line is contained in the small red segment.
The restrictions by the complementarity theorem inMC are shown by two gray straight lines. These latter predictions are very restrictive since
the intersection of the two straight lines determines one point in the red segment uniquely and the intersections with the green and the blue AFS
segments are short line segments.

window factor analysis (WFA) [13, 12, 11] and tech-
niques which exploit local rank information in order to
extract single pure component spectra and single con-
centration profiles. For these techniques the Manne the-
orems are key tools [19].

It is worth noting that the complementarity theory is
a hard constraint due to known spectra and concentra-
tion profiles which makes predictions on the remaining
unknown parts ofC andA. In this sense EFA and WFA
are related to the complementarity theory. However, in
this paper the focus is on the AFS and additional infor-
mation, which may originate from a local rank analysis,
is used in order to reduce the AFS for complementary
components.

4. Numerical results

For the numerical experiments we consider a series of
FT/IR spectra for a reactive subsystem of the Rhodium-
catalyzed hydroformylation process with three compo-
nents. We also treat a model problem with four compo-
nents.

4.1. Rhodium-catalyzed hydroformylation

The first application is the Rhodium-catalyzed hydro-
formylation process. See [27, 8] for details on the reac-
tive subsystem consisting of the olefin, the hydrido com-
plex and the acyl complex. A total number ofk = 1045
spectra have been used within a wavenumber interval
with n = 664 channels. HenceD is a 1045×664 matrix.
The spectral AFSMA is shown in Figures 1 and 2. The

concentrational AFSMC is plotted in the third row of
Figure 2.For this three-component system the standard
notationα = x1 andβ = x2 is used.

4.1.1. Series of feasible points
We start with a demonstration of the relation of points

inMA and one-dimensional affine subspaces inMC as
proved in Theorem 3.1. Figure 1 shows a seriesx(i),
i = 1, . . . , 15, of 15 feasible points in one segment of
MA. If we assign to this segment of the AFS the compo-
nent number 1, then the complementarity theorem says
that the concentration profilesC(:, 2 : 3) are restricted to
1D affine subspaces inMC. For a fixedx = x(i) the asso-
ciated affine subspace isC(i) and is given by (8). Figure
1 shows that the series of points inMA is associated
with a series of 1D affine subspaces inMC. The dimen-
sion of each of these subspaces equals 1 sinces= 3 and
only s0 = 1 spectrum is given. The associated series
of spectra is also shown in Figure 1. A coloration from
blue to red is used for the series of points inMA, for the
associated 1D affine subspaces inMC and for the series
of spectra.

4.1.2. Successive reduction of the rotational ambiguity
Next Theorems 3.1 and 3.5 are applied in order to

demonstrate the successive reduction of the rotational
ambiguity for a three-component system. The effect of
supplying additional information on the factors and the
resulting predictions by the complementarity theorem
is monitored inMA andMC simultaneously. Figure 2
shows all results. In the first row of this figure either
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Figure 5: Four concentration profilesC ∈ R
70×4 and the associated

spectraA ∈ R4×51 of thesimulatedfour-component model problem in
Section 4.2.

one, two or three of the spectra are given. The sec-
ond row shows the spectral AFS for the system with
either one, two or three marked points which represent
the given spectra. The third row shows the associated
1D affine subspaces in the concentrational AFS. If one
spectrum is given, then the concentration profiles of the
complementary components are restricted to a 1D affine
space. If two spectra are given, then the concentration
profile of one component is uniquely determined and for
the remaining two components the concentration pro-
files are restricted to 1D spaces. If all three spectra are
known, then all factors are uniquely determined. This
situation is visualized in the right column of images in
Figure 2. For this case two triangles (2D simplices) are
shown inMA andMC according to Theorem 3.5. For
all computations revision 1.1 of FAC-PACK has been
used, see Section 3.3.

4.2. A four-component model problem

The representation of an AFS by Equation (7) as well
as the arguments of the complementarity theorem from
Section 3 apply to any number of componentss ≥ 2.
Next a (s= 4)-component model problem is considered.
Thesimulatedconcentration profilesC ∈ R70×4 and the
spectraA ∈ R4×51 are shown in Figure 5. The resulting
spectral data matrix isD ∈ R70×51.

4.2.1. Reduction of the rotational ambiguity by the
complementarity theorem

First the areas of feasible solutionsMC andMA for
D are computed. Every AFS consists of four separated
segments which can be associated with the four compo-
nents of the model problem. These segments are each
approximated by a polyhedron whose surface is a 3D
triangle mesh. These triangle meshes are shown in the
first row of images in Figure 6. Then a first spectrum
A(1, :) is fixed and the representativex ∈ R

3 is marked
by a blue× inMA together with a plane inMC to which
C(:, 2 : 4) are restricted; see the second row of images
in Figure 6. If a second spectrumA(2, :) is given whose

representative is marked by a green× in MA, then a
second plane can be added toMC. The intersection
of these two planes inMC is a straight line (drawn by
cyan color). This intersection combines the restriction
on C(:, 2 : 4) andC(:, [1, 3 : 4]) so that the concentra-
tion profilesC(:, 3 : 4) are described, see third row in
Figure 6. Clearly,C(:, 1) is still represented by some
point on the green plane andC(:, 2) by some point on
the blue plane. If a third spectrumA(3, :) is fixed, then
a third plane is added toMA andC(:, 4) is uniquely de-
termined by the intersection of the three planes; see the
last row in Figure 6. In the last image three lines are
shown in cyan, yellow and magenta. These three lines
are assigned to the three profilesC(:, i), i = 1, 2, 3, as
pairs.

4.2.2. The simplices inMA andMC

Theorem 3.5 describes the relation of the two sim-
plicesMA andMC which each uniquely determine a
feasible factorization. For our four-component system
such a pair of feasible simplices is shown in Figure 7.
These simplices are not independent of each other. As
explained in Remark 3.6 the vertices of the simplices
can be listed in the matricesT andZ and together with
diagonal scaling matricesM1 and M2 a feasible non-
negative factorization can be written down in the form
D = (UΣZM2)(M1TVT).

5. Conclusion

The AFS is a powerful tool to study the rotational
ambiguity and the band of feasible solutions of multi-
variate curve resolution problems. However, the com-
putation of all feasible solutions can only be a first step
of a successful chemometric analysis of a spectroscopic
data. Any further information on the reaction system
should be used in order to decrease the rotational am-
biguity. Such a decrease is equivalent with a reduction
of the AFS. In the best case unique points in the AFS
can be specified which uniquely determine one single
factorization. A challenging point for the further ap-
plication of AFS computations might be the analysis of
multiway and multiset data [29]. Tauler, Maeder and de
Juan [30] have devised a way how MCR-methods can
be extended to the analysis of multiset data. Within this
procedure the matricized form of the data can be an in-
terface for the AFS techniques.

The complementarity theorem appears to be a valu-
able tool in order to support this reduction process. Any
feed-in of pre-given or suspected spectra or concentra-
tion profiles can be used in order to define certain affine
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Figure 6: Successive reduction of the rotational ambiguityfor a four-component system. First row: AFSMA and AFSMC. Second row: A certain
spectrumA(1, :) is fixed and Theorem 3.1 restrictsC(:, 2 : 4) to the blue plane. Third row: Two spectraA(1, :) andA(2, :) inMA. The resulting
two planes inMC intersect in a straight line (cyan) to whichC(:, 3 : 4) are restricted. The coupled concentration profilesC(:, 1 : 2) in the sense of
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spaces to which the remaining factor are restricted. If
multiple information from different sources is used, then
multiple affine subspaces can be formulated. The in-
tersection of these subspaces in the AFS can easily be
interpreted as a further strong reduction of the rota-
tional ambiguity. The mathematical theory behind the
reduction of the AFS by the complementarity theorem
has been implemented to theFAC-PACK software, see
Section 3.3, and is available in its revision 1.1.
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6. Appendix

6.1. Complementarity theorem

Next the complementarity theorem is reproduced.
For its proof see [20].

Theorem 6.1. Let D ∈ R
k×n
+ be a matrix of rank s,

which is assumed to be decomposable in the form D=
CA with nonnegative factors C∈ R

k×s
+ and A ∈ R

s×n
+ .

Let UΣVT be a singular value decomposition of D. Fur-
ther let the rows A(i, :) for i = 1, . . . , s0 be given.

Then all the complementary concentration profiles
C(:, j) for j = s0+1, . . . , s are contained in the(s− s0)-
dimensional linear subspace

{c ∈ Rk : c has the form c= UΣy for a vector y∈ Rs

which satisfies A(1 : s0, :)Vy= 0}. (14)

The mathematical background of the complementar-
ity theorem is the factorization

D = UΣVT = UΣT−1
︸  ︷︷  ︸

=:C

TVT
︸︷︷︸

=:A

whereT is an invertibles× s matrix. If some columns
of C or some rows ofA are known, then some linear
constraints onT−1 or on T can be derived. Then the
identity T−1T = I allows to translate these constraints
to the inverse factor, i.e., onT or onT−1. In a final step
these relations can be formulated as conditions on the
factorA or on the factorC. The linear space (14) is the
result of this analysis.
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