
AMPEigensolver:
Adaptive Multigrid Preconditioned Eigensolver

Users’ Guide, Version 1.0

Ming Zhou, Klaus Neymeyr

Institut für Mathematik,

Universität Rostock,

Ulmenstraße 69, Haus 3, 18057 Rostock, Germany.

July 21, 2014.

2

Preface

The Adaptive Multigrid Preconditioned Eigensolver software (AMPEigensolver) can be
used to compute a modest number of the smallest eigenvalues and the associated eigen-
functions of the negative Laplace operator in bounded two-dimensional domains. The
AMPE software is written in FORTRAN and uses the BLAS and LAPACK libraries. The
users’ front-end of the software is a Graphical User Interface (GUI) of Matlab. The pro-
gram is implemented in a storage efficient way and can solve problems up to 50 million
degrees of freedom on a personal computer with 32GiB RAM (without disk swapping).
The eigensolver software uses the finite element method (FEM) and includes fast adap-
tive grid refinement strategies, which are based on residual estimators using linear and
quadratic finite elements. The iterative solver rests on multigrid preconditioned gradient
iterations for the minimization of the Rayleigh quotient. A report on numerical experi-
ments with AMPE is contained in [19].

CONTENTS 3

Contents

1 Getting started 4
1.1 External FORTRAN programs . 6

2 The eigenvalue problem and the eigensolvers 8
2.1 The elliptic eigenvalue problem . 8
2.2 Preconditioned gradient eigensolvers . 8
2.3 Preconditioned eigensolvers in AMPE . 9

3 The domain library 10
3.1 Sample domains . 11
3.2 User defined domains . 12

4 The graphical user interface (GUI) 15
4.1 Problem selection . 15
4.2 Program execution . 18
4.3 Results . 19

5 Error estimation and adaptive grid refinement 20
5.1 Residual based error estimation . 20
5.2 Triangle subdivision and grid refinement . 21
5.3 Program execution without using a Matlab GUI 22

6 A test problem with 85 million nodes 22

7 Future work 28

1. Getting started 4

1 Getting started

The program package AMPEigensolver can be downloaded from

http://www.math.uni-rostock.de/ampe/

Then unzip the file ampe.zip and open a Matlab command window or desktop window
in the directory ampe. The Matlab GUI of AMPE can be started by calling the function
ampe.m. The Matlab-GUI contains two panels, namely the left panel “Initialization &
Computation”, see Figure 1, and the right panel “Results”, see Figure 3.

Figure 1: The left panel “Initialization & Computation” at the start of AMPE.

1. Getting started 5

For a quick test of AMPE the user only has to select a domain in the domain selection
menu (in the top of the left panel) and then click the button “Start computation” in
the lower right corner of the left panel. With the default setting of the parameters the
computation is completed almost instantaneously on a standard office PC. Then the left
panel shows not only the initial triangulation, but also the computation times and the
number of triangles, edges and nodes in the final triangulation, see Figure 2.

Figure 2: Panel “Initialization & Computation” after completion of the computation.

1.1 External FORTRAN programs 6

The right panel “Results” shows the 3D plots of the eigenfunction approximations, see
Fig. 3. Additionally the six buttons in the lower part of the right panel allow to draw the
(i) Computational costs

(ii) Triangulation,
(iii) Sparsity pattern,
(iv) Convergence of the Ritz values,
(v) Eigenfunctions,
(vi) Residuals.
By clicking the right mouse button within the axes of one of these figures a separate
Matlab figure opens. The figure can now be modified, printed or exported. It should
be noted that the option to plot the sparsity pattern does not imply that AMPE uses
internally the finite element discretization matrix in an explicit way. Instead the core of
the FORTRAN program is a so-called matrix-free finite element multigrid solver for the
eigenvalue problem.

1.1 External FORTRAN programs

The adaptive grid refinement process, the preconditioned gradient type eigensolver and
the multigrid preconditioning are parts of an external FORTRAN program which is called
from the AMPE GUI. Precompiled versions of the FORTRAN program for the following
systems are contained in the distribution:

- ampelinux32 for Linux 32 bit,
- ampelinux64 for Linux 64 bit,
- ampemac32 for Mac OS 32 bit,
- ampemac64 for Mac OS 64 bit,
- ampewin32.exe for Windows 32 bit and
- ampewin64.exe for Windows 64 bit.

We have used the gcc compiler gfortran, see

https://gcc.gnu.org/wiki/GFortranBinaries.

The executable files can be found in the directory programs. AMPE automatically selects
the right executable for your hardware.

1.1 External FORTRAN programs 7

Figure 3: The “Results” panel shows the final eigenfunction approximations.

2. The eigenvalue problem and the eigensolvers 8

2 The eigenvalue problem and the eigensolvers

2.1 The elliptic eigenvalue problem

Let Ω ⊂ R
2, be a bounded, open, connected set with a Lipschitz continuous boundary

Γ = Γ1∪̇Γ2. The problem is to find a modest number of the smallest eigenvalues λ together
with real-valued eigenfunctions u = u(x) satisfying

−∇ ⋅ (c(x)∇u) + q(x)u = λu, x ∈ Ω,
u = 0, x ∈ Γ1, (1)

ν ⋅ c(x)∇u = 0, x ∈ Γ2.

Therein, ν is the exterior unit normal to Γ2, c(x) is a symmetric positive definite matrix-
valued function and q(x) ≥ 0. In the present version of AMPE c(x) is the identity matrix
and q(x) = 0.
The weak formulation of (1) is the key for the application of the mathematically sound
spectral theory of self-adjoint compact operators in Hilbert spaces. It guarantees the
existence of a countable set of real eigenvalues [1, 21].
The Rayleigh-Ritz discretization of this weak form results in the generalized matrix eigen-
value problem

Ax = λMx. (2)

The discretization (or stiffness) matrix A ∈ R
n×n and the mass matrix M ∈ R

n×n are
symmetric and positive (semi)definite matrices, which are typically very large and sparse.
The finite element discretization in AMPE uses piecewise linear elements and for the error
estimation also piecewise quadratic finite elements.

2.2 Preconditioned gradient eigensolvers

The numerical solver for the eigenvalue problem (2) should exploit the structure of the
mesh eigenproblem and its computational costs should ideally increase almost linearly in
the dimension n of the matrices. These demands rule out all eigensolvers which are usually
used for small and dense matrices, see [2, 7, 20]. Here any factorization of A or M must
be avoided.
A conceptually very simple approach, which allows to construct near-optimal-complexity
eigensolvers, uses gradient iterations for the iterative minimization of the Rayleigh quotient

ρ(v) =
vTAv

vTMv
, (3)

see [6, 14]. The gradient of the Rayleigh quotient is collinear to Av − ρ(v)Mv. A correc-
tion of a current iterate in the direction of the negative gradient of (3) can decrease the
Rayleigh quotient if a proper step-length is used. The minimum of the Rayleigh quotient
is the smallest eigenvalue of (2) and is attained in an associated eigenvector. This sim-
ple gradient iteration converges very slowly; the convergence factor grows like O(1 − h2)
in the discretization parameter h. A change of the underlying geometry can accelerate
the convergence considerably. If T ∈ Rn×n is an approximate inverse or preconditioner
for A, then the gradient vector with respect the geometry induced by T −1 is collinear

2.3 Preconditioned eigensolvers in AMPE 9

to T (Av − ρ(v)Mv). In the best case multigrid preconditioned gradient eigensolvers can
converge with a grid-independent convergence rate and the computational costs for the
approximation of a fixed number of the smallest eigenvalues increases only linearly in the
degrees of freedom n [13]. If not only the smallest eigenvalue but a modest number of
the smallest eigenvalues are to be computed, then the gradient iteration can easily be
generalized to a subspace iteration.
In AMPE the operation x ↦ Tx is implemented by the approximate solution of a linear
system with a multigrid preconditioner [8]. The user can specify the parameters on the
number of pre- and postsmoothing Jacobi iterations per grid level and the maximal number
of V-cycles in the left panel. The multigrid hierarchy is generated by an adaptive grid
refinement strategy, see Section 5.

2.3 Preconditioned eigensolvers in AMPE

The AMPE software includes various implementations of preconditioned gradient solvers
for the computation of one or more eigenvalues and associated eigenvectors by means
of vector iterations and subspace iterations. These methods can be selected in the left
panel of AMPE by choosing the parameters k and s within the PINVIT(k,s) hierarchy
of iterative solvers [16]. The integer number s is the subspace dimension and the integer
k says that the method uses not only the current preconditioned residual, but also k − 1
preceding (vector or subspace) iterates in order to determine the next iterate by means of
the Rayleigh-Ritz method. Typical selections of these parameters are explained next:

1. k = s = 1: This basic preconditioned gradient iteration is a vector iteration (s = 1)
which maps a current iterate vi to

vi+1 = vi − Tri

with the residual ri = Avi − ρ(vi)Mvi. The preconditioner T is assumed to fulfill
∥I − TA∥A < 1 with respect to the operator norm induced by A. The iteration
can be interpreted as a perturbed and/or preconditioned inverse iteration procedure
(PINVIT). See [12] for the convergence analysis.

2. k = 2, s = 1: The preconditioned steepest descent (PSD) iteration uses the Rayleigh-
Ritz procedure in order to extract from the two-dimensional space span{vi, T ri} the
Ritz vector of (A,M) which corresponds to the smaller Ritz value

vi+1 ←Ð RRmin(span{vi, T ri}).

This iteration is faster compared to the case k = s = 1 since the Rayleigh-Ritz method
implicitly determines an optimal step length so that the Rayleigh quotient of the
new iterate vi+1 is minimized. See [18] for the convergence analysis of PSD.

3. k = 3, s = 1: This iteration is known as the Locally Optimal Preconditioned Conju-
gate Gradient method (LOPCG), see [10, 11, 13].

vi+1 ←Ð RRmin(span{vi−1, vi, T ri}).

Asymptotically this iteration has observed to behave like a preconditioned conju-
gate gradient iteration and includes a three-term recursion. The local optimality is
achieved by the Rayleigh-Ritz procedure.

3. The domain library 10

4. k = 1, s > 1: This block form of the preconditioned gradient iteration uses a block
iterate Vi ∈ Rn×s instead of the vector iterate vi. This matrix contains in its columns
the Ritz vectors of (A,M) in the column space of Vi. If Θi is the associated diagonal
matrix containing the Ritz values on its diagonal, then the Ritz vectors and Ritz
values of the next iterate are

(Vi+1,Θi+1) ←Ð RRs,min(span{Vi − TRi})

with Ri = AVi −MViΘi. Therein RRs,min stands for the Rayleigh-Ritz procedure
which extracts a subspace spanned by s Ritz vectors corresponding to the s smallest
Ritz values.

5. k = 2, s > 1: The block preconditioned steepest descent (BPSD) iteration is an
accelerated form of the case k = 1 and s > 1. Here the Rayleigh-Ritz procedure is
applied to the 2s dimensional subspace spanned by the columns of Vi and TRi. It
has the form

(Vi+1,Θi+1) ←Ð RRs,min(span{Vi, TRi}).

For a convergence analysis see [19].

6. k = 3, s > 1: This important preconditioned subspace eigensolver with the form

(Vi+1,Θi+1) ←Ð RRs,min(span{Vi−1, Vi, TRi})

is well-known as the Locally Optimal Block Preconditioned Conjugate Gradient
(LOBPCG) method [11, 9]. This method has an optimal convergence behavior com-
pared to all the other methods within the (k, s) hierarchy of iterative eigensolvers.

The preconditioned eigensolvers for k > 3 and with s ≥ 1 have the form

(Vi+1,Θi+1) ←Ð RRs,min(span{Vi−k+2, . . . , Vi, TRi}).

The efficiency of these iterations seems to fall behind the methods with k = 3 and the same
s. The reason is that the additional costs for the Rayleigh-Ritz procedure to work with a
k ⋅s dimensional space cannot be justified by the marginal convergence acceleration for the
iterations with k > 3. The reader can validate this statement by numerical experiments
with AMPE.

3 The domain library

The AMPE software provides some predefined sample problems. For these test problems
the initial grids are coded in a short Matlab program whose form is explained in Section
3.2. These initial grids are
(i) a Square,
(ii) an L-shaped domain,
(iii) a Circle and
(iv) an Omega-shaped domain.
For each domain various homogeneous boundary conditions (BC) can be selected, see the
directory domains of the AMPE software and Section 3.1 for the details.

3.1 Sample domains 11

3.1 Sample domains

Next the initial grids for the four domains Square, L-shaped, Circle, and Omega-shaped

are introduced. In the graphical representations of these domains blue circles and blue
edges are located on the Dirichlet boundary. The Dirichlet boundary conditions for the
eigenvalue problem are homogeneous and hence the eigenfunctions in blue nodes are fixed
to zero (fixed nodes or edges). All other black edges are either interior edges or edges on
the Neumann boundary of the domain (free nodes and edges). The edges of a triangulation
are enumerated with black numbers.
Curvilinear parts of the boundary are approximated by sequences of straight edges. If
an element is refined within the adaptive grid refinement procedure, then new nodes are
projected to the boundary of the domain.

Domain (i) : Square Ω = [−1,1]2 with homogeneous Dirichlet BC. This domain and
its initial triangulation is defined in square1.m in the directory domains, see Figure 4.

1

2

3

4 5

Figure 4: Initial triangulation of Ω = [−1,1]2

Domain (ii) : For the L-shaped domain Ω = [−1,1]2 ∖ [0,1]2 three different settings
for the boundary conditions are used, cf. Figure 5.

• lshaped1.m: Homogeneous Dirichlet BC are used on the entire boundary.

• lshaped2.m: Homogeneous Dirichlet BC are assumed on the entire boundary, and
a finer (but not refined) initial triangulation compared to lshaped1.m is used.

• lshaped3.m: Homogeneous Neumann BC are used for the two boundary edges touch-
ing the origin and homogeneous Dirichlet BC are assumed for the rest.

Domain (iii) : The initial triangulation and the boundary conditions for the unit circle

Ω = {(r cos(ϕ), r sin(ϕ)) ; r ∈ [0,1], ϕ ∈ [0,2π]}

are shown in Figure 6.

• circle1.m: A slit along the positive abscissa is assumed. Homogeneous Dirichlet
BC are assumed for r = 1 and ϕ ∈ (0,2π) as well as for ϕ = 0 and r ∈ [0,1] (top side
of the slit). On the bottom side of the slit with ϕ = 2π and r ∈ (0,1) homogeneous
Neumann BC are used. The domain has a slit along the positive abscissa, which
leads to overlapping nodes and edges.

3.2 User defined domains 12

1

2

3

4

5 6

7

8

9

10

11 12 13

1 2 3 4

5

6

78

9

10

1112

13

14

15

16 17 18 19

202122

23

24

25 26

27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42

43 44

1

2

3

4

5 6

7

8

9

10

11 12 13

Figure 5: Initial triangulations of the L-shaped domain.

• circle2.m: Homogeneous Dirichlet BC for r = 1 and ϕ ∈ [0,2π].

• circle3.m: Homogeneous Dirichlet BC for r = 1 and ϕ ∈ [0,2π] as well as in the
single point r = 0.

1

23

4

5 6

(7)

8

9

10

11

12

13

1

23

4

5 6

7

8

9

10

11

12

1

23

4

5 6

7

8

9

10

11

12

Figure 6: Initial triangulation and boundary conditions for the circle.

Domain (iv) : An Omega-shaped domain including the open ring

Ω = {(r cos(ϕ), r sin(ϕ)) ; r ∈ [0.7,1], ϕ ∈ [δ,2π − δ]}

and two rectangles, see Figure 7. For the details see the Matlab code.

• omega1.m: Homogeneous Dirichlet BC are assumed on the entire boundary.

• omega2.m: Homogeneous Neumann BC are used on the inner circle and homogeneous
Dirichlet BC on the remaining part of the boundary.

3.2 User defined domains

The user can define further domains and their boundary conditions by the definition of the
initial triangulations. This is explained by using the Matlab subroutine threequartercircle.m

3.2 User defined domains 13

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

17 18 19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36 37 38

39

40

414243
44

45

46

47

48

49

50

51

52

53

54

55
56

5758596061
62

63

64

65

66

67

68

69

70

71

72

73
74

757677

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

17 18 19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36 37 38

39

40

414243
44

45

46

47

48

49

50

51

52

53

54

55
56

5758596061
62

63

64

65

66

67

68

69

70

71

72

73
74

757677

Figure 7: Initial triangulation and boundary conditions for the Ω-shaped domain.

which defines the domain of a three-quarter circle with homogeneous Dirichlet BC. With
this domain the AMPEigensolver logo has been computed; this logo is shown on the start
screen of the program. The initial triangulation with the enumeration of the edges and
the enumeration of the nodes are shown in Figure 8.

1
2

3

4
5

6

7

8

9

10

11 12

13

1

2

3

4

5

6

7

8

Figure 8: Initial triangulation and boundary conditions for the 3/4 circle (left) and enu-
meration of the nodes (right).

The file threequartercircle.m has the following form:

function threequartercircle

x=0; y=0;

t=linspace(pi/2,2*pi,7);

x=[x cos(t)]; y=[y sin(t)]; v=[];

e=[];

for k=2:8, e=[e; 1 k]; end

for k=2:7, e=[e; k k+1]; end

3.2 User defined domains 14

ep=zeros(size(e));

ep([1 7],1)=1;

ep(8:end,1)=2;

tr=[1 8 2; 2 9 3; 3 10 4; 4 11 5; 5 12 6; 6 13 7];

trp=zeros(size(tr,1),2);

cc=[0 0 1]; ci=2;

save domain.mat

The parameters and arrays are explained in the following.

x,y: These two vectors contain the planar coordinates of the nodes.

v: A vector of integers which are the indices of the free nodes. In the case of the 3/4
circle all initial nodes are located on the Dirichlet boundary so that v is empty.

e: This integer array contains in the ith row the indices of the nodes which are connected
by the ith edge. In each row the indices are written in ascending order.

ep: The first column of this integer array contains the edge types.

The type 0 stands for interior edges and for edges on the (affine linear) Neumann
boundary.

The type 1 is used for edges on the (affine linear) Dirichlet boundary.

Types “smaller than −1” are used if an edge approximates a region with a
curvilinear Neumann boundary.

Types “larger than 1” denote edges which approximate a region with a curvi-
linear Dirichlet boundary.

Further the type −1 is used for auxiliary edges which are only used in the refined
meshes. In the current version of AMPE, curvilinear parts of the boundary are
approximated by arc elements, see the array cc below. The second column of ep

contains the status information on the edges. For the initial triangulation these
variables are set to 0.

tr: An integer array whose ith row contains the edge numbers for the ith triangle. The
edge numbers are listed counter-clockwise.

trp: The first column contains the triangle types and the second column contains the
depth of refinement for a triangle. All these variables are set equal to 0 for the
initial triangulation. Section 5.2 explains further types for refined triangles.

cc: This variable can be used to describe curvilinear regions of the boundary. If the jth
curvilinear region of the boundary is approximated by an arc element whose radius
r is centered at (x, y), then the j row reads [x y r]. Thus cc is an α × 3 array if a
number of α curvilinear regions of the boundary are approximated by arc elements.

ci: This 1×α vector contains the edge types for the curvilinear regions of the boundary.
See the variable cc for the arc elements and the variable ep for the edge types.

4. The graphical user interface (GUI) 15

Remarks:

• The initial triangulation may have no free node. Then the adaptive eigensolver
automatically invokes a uniform grid refinement (as a part of the program core
written in FORTRAN).

• The program domainview.m in the directory utilities can be used in order to
check whether or not (in user defined domains) the arrays e and tr are correctly
defined.

4 The graphical user interface (GUI)

The AMPEigensolver combines a user-friendly graphical user interface (GUI) for the pro-
gram control and for the graphical output with a numerically efficient core of the program
written in FORTRAN. The GUI is written in Matlab and can be started by calling ampe.m

from a Matlab command window or Matlab desktop. The GUI is explained next.

4.1 Problem selection

The first step is to select a 2D domain. See Section 3.1 for pre-defined domains and Section
3.2 for the generation of user defined domains. After the domain selection the initial grid
is shown in the left panel, see Figure 9.

1

23

4

5 6

(7)

8

9

10

11

12

13

Figure 9: The initial grid circle1.m

In three subpanels various control parameters can be selected:

Subpanel 1: Discretization settings, see Figure 10.

Number of nodes: Maximal number of nodes which are acceptable with respect to
the finest discretization.

Uniform refinements: Number of uniform refinement cycles which are to be applied
to the initial triangulation before the adaptive grid refinement procedure is started.

Refinement coefficient: A real number α ∈ (0,1). The coefficient α defines a
convex combination of the largest squared component and a weighted mean of the

4.1 Problem selection 16

Figure 10: Setting of the parameters for the discretization.

squared components of the residual vector with respect to quadratic finite elements,
see Equation 37 in [15]. All the edges whose squared component of the residual is
larger than the convex combination are marked for a refinement.

Estimator type: The five estimators Q1, Q2, Q3, L1 and L2 are residual based a
posteriori error estimators which use quadratic finite elements or an intermediary
local regular refinement. See Section 5.1 for details.

Estimator index array: Vector of integers (separated by spaces) which are the
indices of the eigenvectors whose residuals are used for the residual based error
estimator.

Subpanel 2: Settings for the multigrid solver, see Figure 11.

Figure 11: Settings for the multigrid solver.

Maximal number of iterations: The maximal number of iterations which can be
executed by the approximate linear system solver. This linear solver, which repre-
sents the action of the preconditioner T , is the inner iteration within the inner-outer

4.1 Problem selection 17

loop structure. The outer iteration is the preconditioned gradient type eigensolver.
Typically only 1 or 2 inner iterations are needed to decrease the residual of the linear
systems sufficiently.

Presmoothing and postsmoothing steps: The number of the pre- and post-smoothing
steps per grid level. A Jacobi smoother with a damping constant ω = 2/3 is used.
If a slow convergence of the linear system solver is detected, then the number of
smoothing steps is automatically increased.

cg-preconditioning: If the cg-preconditioning box is checked, then the inner linear
system solver is combined with a conjugate gradient method. This considerably
increases the accuracy of the linear system solver. If the Tightening factor 1

parameter in the subpanel “Eigensolver” is very small (less than 0.01), then the
conjugate gradient solver is recommended.

Subpanel 3: Eigensolver, see Figure 12.

Figure 12: Parameter setting for the eigensolver.

PINVIT(k,s) index: The indices k and s are used to specify the gradient eigensolver.
The integer value s is the dimension of the iteration subspace and for k ≥ 2 a
number of k − 1 preceding and cuurent (vector or subspace) iterates together with
the preconditioned residual are used to span the subspace from which the Rayleigh-
Ritz procedure extracts the new subspace and its basis of Ritz vectors. See Section
2.3 for details. The parameter s is an upper bound for the maximal index for the
Estimator index array in the subpanel 1.

Tightening factor 1: This factor, a real number in (0,1), is used to tighten the
stopping condition for the iterative gradient type eigensolver. The upper bound for
the residual is multiplied by this factor and the preconditioned gradient iteration is
stopped with respect to a certain grid level if the residual falls below this tightened
bound. After this the error estimation and grid refinement procedures are called.

4.2 Program execution 18

Tightening factor 2: This factor, a real number in (0,1), is used only for the finest
discretization level as a second multiplicative tightening for the stopping condition.
This leads to very accurate Ritz pairs with a small iteration error with respect to
the finest level of discretization.

Procedural variants for k>2: Three variants for the Rayleigh-Ritz procedure
can be selected by the program input 1, 2 or 3. In the case 1 all the vectors to
which the Rayleigh-Ritz procedure is applied are orthogonalized with respect to the
Euclidean inner product. This improves the stability of the projection step. In
the case 2 no preceding orthogonalization is used. In precise arithmetic this case is
equivalent to the case 1. However, for high-dimensional problems the usage of case
1 is recommended. In the case 3 a number of k − 1 previous iteration subspaces,
each space has the dimension s, are prolongated after a grid refinement. Then the
subspace residual is computed for the prolongation of the last iteration subspace and
so the Rayleigh-Ritz procedure can work in each iteration step with a ks-dimensional
subspace.

Finally the menu at the bottom of the left panel allows to switch off the time consuming
printing of 3D surface plots of the eigenfunctions with a very large number of nodes. All
the eigenfunctions are automatically drawn if the final mesh has less than 30000 nodes.
If the final mesh has between 30000 and 1 million nodes, then only the one eigenfunction
corresponding to the smallest eigenvalue is drawn. For problems with more nodes the
plot of the eigenfunctions can be deactivated in order to avoid a cost-intensive graphical
representation.

4.2 Program execution

If one of the default parameters is changed, then the message “initial setting updated”
is displayed in the left panel. If the initial settings can be accepted or if the necessary
changes of the settings have been made, then the button “Start computation” allows to
start the FORTRAN core program of the AMPEigensolver. This core program accesses
the initial data via the files domain and input in the directory fortran io.
During the program execution the mouse cursor in the Matlab GUI changes to a watch.
Simultaneously a short transcript of the convergence history of the eigensolver appears on
the standard output of the FORTRAN program (usually on command window or a xterm
window), see Figure 13.
The first column contains the level indices, the second column the total number of nodes
and the third column the degrees of freedom. Then the approximations of the smallest
eigenvalue are listed. These data are for the domain circle1.m and can be compared with
the analytical eigenvalues, see Section 5 in [17]. The three step numbers stand for the
(outer) iterations of the eigensolver, the inner iterations of the multigrid linear systems
solver (preconditioner) and for the pre- or postsmoothing steps. Finally the columns ref,
evp and est contain the CPU times in seconds for the grid refinement process, for the
gradient eigensolver and for the residual based error estimation. After program completion
the triangulation is checked in order to verify that no hanging nodes have been generated.
The FORTRAN program writes the program output in binary form to the file output in

4.3 Results 19

program started

level #nodes d.o.f. lambda(1) #steps ref evp est

1 65 36 9.904281251 0.00 0.00

2 183 140 8.996708271 2 2 2 0.00 0.00 0.00

3 266 218 8.574820851 1 1 2 0.00 0.00 0.00

4 599 527 8.288486559 2 1 2 0.00 0.00 0.00

5 709 633 8.132655237 2 1 2 0.00 0.00 0.00

6 1004 903 8.001751898 2 1 2 0.00 0.01 0.00

7 1048 946 7.933179202 2 1 2 0.00 0.01 0.00

8 1342 1227 7.878231104 2 1 2 0.00 0.01 0.00

9 1815 1696 7.844654845 3 1 2 0.00 0.02 0.00

10 2226 2096 7.819098917 2 1 2 0.00 0.02 0.00

11 3185 3006 7.791113620 2 1 2 0.00 0.02 0.00

12 3449 3267 7.778759977 2 1 2 0.00 0.02 0.00

13 4123 3903 7.766060987 2 1 2 0.00 0.03 0.00

14 4219 3997 7.760100351 2 1 2 0.00 0.03 0.00

15 4921 4669 7.753190234 2 1 2 0.00 0.04 0.00

16 6114 5858 7.749948076 2 1 2 0.00 0.05 0.00

17 7999 7737 7.746953318 2 1 2 0.00 0.06 0.00

18 10070 9761 7.744099295 2 1 2 0.00 0.08 0.01

total cpu time: 0.44

all edges checked

all triangles checked

program completed

Figure 13: Transcript of the convergence history of the eigensolver.

the directory fortran io. For large problems the generation and writing of the output
can be time-consuming.
The Matlab GUI of AMPE reads these data and provides a graphical presentation. For
instance the eigenfunction approximations are drawn in the right panel, see Figure 3.
Further a short summary of the computation is shown left of the “Start computation”
button, see Figure 14.

Figure 14: Short summary of the computation.

4.3 Results

The right panel of the GUI provides various options for the visualization of the numerical
results, see Figure 15. By clicking the right mouse button within the axes of one of these
graphical representations a separate Matlab figure with the same content opens. This
figure can now be modified, printed or exported in the way as usual in Matlab.

Computational costs: Within a double logarithmic (log-log) plot the CPU times
per level and the total CPU times since program start are plotted versus the number

5. Error estimation and adaptive grid refinement 20

Figure 15: Options of the results menu.

of nodes.

Triangulation: The final and finest triangulation is drawn.

Sparsity pattern: The sparsity pattern of the stiffness matrix A with respect to
the final triangulation is plotted. However, the eigensolver is a so-called matrix-
free finite element multigrid solver which uses only the operation x ↦ Ax. The
sparsity pattern is generated by analyzing the index arrays for the edges. For high-
dimensional problems this plot can take a very long time.

Conv. Ritz val.: The convergence of Ritz values is presented by drawing the dif-
ferences of the Ritz values (for all grid levels aside from the last level and for each
iterate) and the final Ritz values with respect to the finest and final triangulation.
These errors are displayed in groups of three Ritz values, i.e. the first group includes
the three smallest Ritz values and so on. The group index is located directly right
to the button.

Eigenfunction: The eigenfunction approximations whose index appears directly to
the right of the button is plotted. The default value is 1.

Residual: This plot shows for the active eigenvalue/function index (see directly
right to the button) an upper estimate for the residual, the stopping criterion and
the current computed residual versus the level index. See [15] for mathematical
details.

Remarks:

• The font size is automatically adapted to the size of the GUI window.

• A Matlab menu bar and a toolbar can be added to the GUI window by clicking the
right mouse button on the outer boundary of the GUI. This allows for instance to
print and to export the window. By clicking the left mouse button in the margin
these additional bars disappear if tools like “zoom” or “rotate” are not active.

5 Error estimation and adaptive grid refinement

5.1 Residual based error estimation

For an introduction to a posteriori error estimation see [22] and also [3, 4, 5, 23] for the
theory on and for applications of residual based error estimators for the solution of bound-
ary value problems. Similar concepts can be applied to the adaptive multigrid solution

5.2 Triangle subdivision and grid refinement 21

of eigenvalue problems [17]. An interesting feature of multigrid subspace eigensolvers is
that the error estimation and adaptive grid refinement can be coupled only to a specific
eigenfunction or to groups of eigenfunctions with potentially different regularity.
The AMPEigensolver includes five a posteriori error estimators. The estimators Q1, Q2
and Q3 are edge oriented estimators which use quadratic finite elements. The estimators
L1 and L2 are based on an intermediary local regular refinement of triangles with linear
finite elements. By this intermediary refinement residual based error indicators can also
be computed for all edges of a triangle. Short explanations are given below; for the details
on the error estimation with quadratic finite elements in AMPE see [15, 17].

Q1: The estimator Q1 compares the sum (per element) of squares of the components
of the eigenvector residual for the midpoints of the edges (these error indicators
can be computed by using quadratic finite elements) with a certain bound which is
computed from a convex combination of the average value and of the maximal value
of the squared components of the residual. All edges of the triangle are marked for
a refinement if the local error indicator is larger than the critical bound.

Q2: The estimator Q2 is very similar to Q1 but analyzes the residual error indicators
for each edge individually. In contrast to Q1 this allows that only single edges of a
triangle are marked for the refinement.

Q3: The estimator Q3 is a modification of the estimator Q2. If an edge is marked for
the refinement all other edges of the same triangle are also marked (but no marking
recursion follows in order to avoid a uniform refinement).

L1: The estimator L1 uses an intermediary local regular refinement of a triangle with
linear finite elements. This allows to compute for midpoints of edges of a triangle the
associated components of the eigenvector residual with respect to linear elements.
The decision on marking for refinement is made as in the case Q2.

L2: The estimator L2 works with the concept of L1 and uses the marking strategy of Q3.

5.2 Triangle subdivision and grid refinement

Our adaptive grid refinement procedure works with four different classes of triangles.
These classes are represented by the four colors white, green, red and cyan. The rules for
the triangle subdivision are as follows.

1) All the triangles of the initial triangulation are white triangles.

2) If one or more edges of a white triangle are marked for a refinement, then the
subdivision can result in triangles of other types, see Figure 16.

2a) If only a single edge of a triangle is marked, then its subdivision results in a
red and a cyan triangle.

2b) If exactly two edges are marked for a refinement, then the subdivision results
in a white triangle, a green triangle and a cyan triangle.

2c) If all the three (midpoints of the) edges of a triangle are marked, then the
uniform subdivision of the triangle results in four white triangles.

5.3 Program execution without using a Matlab GUI 22

→→→

Figure 16: Possible refinements of a white triangle depending on the number of marked
edges.

In all subsequent triangle subdivisions white triangles are treated as explained above. The
remaining triangles are always considered as pairs “red + cyan” or “green + cyan”; thus
a cyan triangle is always accompanied by a green or by a red triangle. All further triangle
subdivisions result only in the following pairs of triangle types

“white”, “red + cyan”, “green + cyan”.

Together with proper rotations no further triangle types are to be defined.
To this end the common edge of such colored pairs of triangles is always considered as
passive, i.e. this edge can be removed or reoriented. For the remaining four active edges
of the pair of triangles there are 24 − 1 = 15 possibilities for the further subdivision. In
order to avoid acute-angled triangles the algorithm automatically marks edges belonging
to a triangle with a smaller depth within the tree of triangles (these are usually longer
edges compared to the remaining edges), whenever an edge belonging to a triangle with
a higher depth has been marked. All possible subdivisions of such pairs of triangles a
shown in Figure 17 for the pair “red + cyan” and in Figure 18 for the pair “green +
cyan”. In these figures the markings of edge midpoints by the error estimator are shown
by small circles and the additional markings due to the refinement rules are represented
by asterisks. More details are to be explained in a forthcoming paper.

5.3 Program execution without using a Matlab GUI

The FORTRAN core of AMPE can be invoked without using the Matlab GUI. To this
end two simple Matlab programs are provided in the directory utilities. The program
amped.m produces plots of the sequence of triangulations of the adaptive grid refinement
process. The triangles are colorized according to the type definitions in Section 5.2 and
the gray value of the colors increases with the depth of a triangle in the triangle tree. A
sequence of six triangulations for the unit circle domain with a slit along the positive axis,
see domain circle1.m, is shown in Figure 19. Finally, the program ampeo.m extracts
the sequence of eigenvalue approximations from the FORTRAN output file and draws the
final eigenfunction corresponding to the smallest eigenvalue.

6 A test problem with 85 million nodes

For a short demonstration of the AMPEigensolver with a large number of nodes we select
the domain Circle 1. We use the preconditioned steepest descent subspace iteration with

6. A test problem with 85 million nodes 23

→→→

→→→

→→→

→→→

→→→

Figure 17: All possible triangle subdivisions of the triangle pair “red + cyan”.

6. A test problem with 85 million nodes 24

→→→

→→→

→→→

→→→

→→→

Figure 18: All possible triangle subdivisions of the triangle pair “green + cyan”.

6. A test problem with 85 million nodes 25

Figure 19: Series of adaptively generated grids for the domain circle1.m.

k = 2 and s = 3 together with the residual based error estimator Q3 in order to compute
the three smallest eigenvalues and associated eigenfunctions. For the convergence analysis
of this method see [19]. Further we set the Estimator index array equal to 1 in order
to get a highly nonuniform grid for this H1 eigenfunction with an unbounded derivative
at the origin. All other initial settings are the default values. The numerical experiments
have been performed on a standard PC with an Intel Xeon 3.2GHz CPU and with a RAM
of 31.4GiB.
The resulting finest grid has 85611460 nodes and 85584086 degrees of freedom. Hence
the associated 3D subspace has more than 256 ⋅ 106 eigenvector components. Up to a
discretization level with 53289325 nodes the RAM of 31.4GiB is sufficient and after that
disk swapping is needed. The total computational time (CPU time) is 582.86 seconds.
Further details are shown in Figure 20.
Table 1 shows a table of eigenvalue approximations (Ritz values) versus the level index
and number of nodes for the adaptive subspace eigensolver. The three smallest exact
eigenvalues corresponding to Bessel eigenfunctions are

λ1 ≈ 7.7333365335, λ2 ≈ 12.1871394681, λ3 ≈ 17.3507761314. (4)

Furthermore, Figure 21 and Figure 22 show sectional enlargements centered at the origin
of the computed adaptive grids. The triangulation is highly non-uniform.

6. A test problem with 85 million nodes 26

10
1

10
3

10
5

10
7

10
−2

10
0

10
2

d.o.f.

co
m
p
u
ta
ti
o
n
a
l
co
st
s
[s
ec
]

0 25 50 75

10
−5

10
−3

10
−1

10
1

level index

θ
(
l
)

i
−
λ
i

0 25 50 75

10
−5

10
−3

10
−1

10
1

level index

(e
st
im

a
te
d
)
re
si
d
u
a
ls

fo
r
λ
1

Figure 20: The preconditioned steepest descent iteration (k = 2) with an (s = 3)-
dimensional subspace. Left: Total computational costs (solid line) and costs per level
(line with markers). Center: Error of the three smallest eigenvalue approximations with
regard to the exact eigenvalues given in Equation (4): Line with markers i = 1, broken
line i = 2 and solid line i = 3. Right: Residual for i = 1: Estimated residual norm w.r.t.
quadratic elements (solid line), modified estimate which is used for the stopping criterion
(broken line) and computed residual norm ∥r∥2T /∥Tr∥A w.r.t. linear elements (line with
markers).

level nodes d.o.f. θ
(l)
1 θ

(l)
2 θ

(l)
3

1 21 6 12.9556062556 16.3582266789 23.5305271202

15 3028 2882 7.7655645173 12.2259533964 17.4312458018

23 13242 12926 7.7387413406 12.1960595144 17.3691880581

31 58353 57682 7.7344307573 12.1892371364 17.3551180201

34 105971 104946 7.7338290185 12.1881857006 17.3528299159

45 665189 662626 7.7334171818 12.1873063161 17.3511134402

49 1416986 1413079 7.7333714847 12.1872193825 17.3509373188

56 8368074 8358333 7.7333424332 12.1871514306 17.3507991426

58 13912669 13901749 7.7333406933 12.1871480617 17.3507940911

60 22248755 22233131 7.7333387701 12.1871445391 17.3507865365

62 33008964 32989529 7.7333380316 12.1871424802 17.3507819249

64 85611460 85584086 7.7333372596 12.1871409134 17.3507790338

Table 1: Eigenvalue approximations computed by the preconditioned steepest descent
subspace iteration with k = 2 and s = 3.

6. A test problem with 85 million nodes 27

[−1,1]2

[−10−3,10−3]2

[−10−6,10−6]2

Figure 21: Sectional enlargements of triangle meshes with n ∈ {3028,13242,105971} nodes
and {2882,12926,104946} inner nodes. The associated depths of the triangulations are
15, 23 and 34. The positive axis r ≥ 0 and ϕ = 0 is a part of the boundary (and does not
include hanging nodes).

Figure 22: Sectional enlargements of triangle meshes with 13912669 nodes and 13901749
free nodes. The associated depth of the triangulation is 58. The subfigures show enlarge-
ments centered at the origin within [−10−i,10−i] for i = 11, . . . ,16. The positive axis r ≥ 0
and ϕ = 0 is a part of the boundary (and does not include hanging nodes).

7. Future work 28

7 Future work

In forthcoming revisions of AMPE we plan to add the following features:
a) Solution of eigenvalue problems for general second order self-adjoint elliptic partial

differential operators, see Equation (1).
b) Implementation of general user defined curvilinear domains (not only by arc elements

as in the current version).
c) Solution of elliptic eigenproblems in 3D.

References

[1] I. Babuška and J. Osborn, Handbook of numerical analysis, vol. II, ch. Eigenvalue
problems, Elsevier, North–Holland, 1991.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (eds.), Templates for
the solution of algebraic eigenvalue problems: A practical guide, SIAM, Philadelphia,
2000.

[3] R.E. Bank, PLTMG: A software package for solving elliptic partial differential equa-
tions. Users’ guide 7.0, SIAM Books, Philadelphia, 1994.

[4] R.E. Bank and A. Weiser, Some a-posteriori error estimators for elliptic partial dif-
ferential equations, Math. Comput. 44 (1985), 283–301.

[5] P. Deuflhard, P. Leinen, and H. Yserentant, Concepts of an adaptive hierarchical
finite element code, Impact Comput. Sci. Engrg. 1 (1989), 3–35.

[6] E.G. D’yakonov, Optimization in solving elliptic problems, CRC Press, Boca Raton,
Florida, 1996.

[7] G.H. Golub and C.F. Van Loan, Matrix computations, Johns Hopkins Studies in the
Mathematical Sciences, Johns Hopkins University Press, 2012.

[8] W. Hackbusch, On the computation of approximate eigenvalues and eigenfunctions of
elliptic operators by means of a multi-grid method, SIAM J. Numer. Anal. 16 (1979),
201–215.

[9] A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov, Block Locally
Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc, SIAM
J. Sci. Comput. 29 (2007), 1267–1280.

[10] A.V. Knyazev, A preconditioned conjugate gradient method for eigenvalue problems
and its implementation in a subspace, International Ser. Numerical Mathematics,
96, Eigenwertaufgaben in Natur- und Ingenieurwissenschaften und ihre numerische
Behandlung, Oberwolfach, (Basel), Birkhäuser, 1991, pp. 143–154.

[11] , Toward the optimal preconditioned eigensolver: Locally optimal block precon-
ditioned conjugate gradient method, SIAM J. Sci. Comp. 23 (2001), 517–541.

REFERENCES 29

[12] A.V. Knyazev and K. Neymeyr, A geometric theory for preconditioned inverse itera-
tion. III: A short and sharp convergence estimate for generalized eigenvalue problems,
Linear Algebra Appl. 358 (2003), 95–114.

[13] , Efficient solution of symmetric eigenvalue problems using multigrid precondi-
tioners in the locally optimal block conjugate gradient method, Electron. Trans. Numer.
Anal. 15 (2003), 38–55.

[14] D.E. Longsine and S.F. McCormick, Simultaneous Rayleigh-quotient minimization
methods for Ax = λBx, Linear Algebra Appl. 34 (1980), 195–234.

[15] K. Neymeyr, A posteriori error estimation for a preconditioned algorithm to solve
elliptic eigenproblems, Tech. Report 77, Sonderforschungsbereich 382, Universitäten
Tübingen und Stuttgart, 1997.

[16] , A hierarchy of preconditioned eigensolvers for elliptic differential operators,
Habilitationsschrift an der Mathematischen Fakultät, Universität Tübingen, 2001.

[17] , A posteriori error estimation for elliptic eigenproblems, Numer. Linear Al-
gebra Appl. 9 (2002), 263–279.

[18] , A geometric convergence theory for the preconditioned steepest descent iter-
ation, SIAM J. Numer. Anal. 50 (2012), 3188–3207.

[19] K. Neymeyr and M. Zhou, The block preconditioned steepest descent iteration for
elliptic operator eigenvalue problems, Electron. Trans. Numer. Anal. 41 (2014), 93–
108.

[20] B.N. Parlett, The symmetric eigenvalue problem, Prentice Hall, Englewood Cliffs New
Jersey, 1980.

[21] P.A. Raviart and J.-M. Thomas, Introduction à l‘analyse numérique des équations
aux dérivées partielles, Masson, Paris, 1992.

[22] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement
techniques, Wiley and Teubner, New York and Stuttgart, 1995.

[23] O.C. Zienkiewicz, D.W. Kelley, S.R. Gago, and I. Babuška, Hierarchical finite ele-
ment approaches, error estimates and adaptive refinement, The mathematics of finite
elements and applications IV, Academic Press, New York, 1982, pp. 313–346.

	Getting started
	External FORTRAN programs

	The eigenvalue problem and the eigensolvers
	The elliptic eigenvalue problem
	Preconditioned gradient eigensolvers
	Preconditioned eigensolvers in AMPE

	The domain library
	Sample domains
	User defined domains

	The graphical user interface (GUI)
	Problem selection
	Program execution
	Results

	Error estimation and adaptive grid refinement
	Residual based error estimation
	Triangle subdivision and grid refinement
	Program execution without using a Matlab GUI

	A test problem with 85 million nodes
	Future work

