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Abstract

Multivariate curve resolution techniques can be used ieoim extract from spectroscopic data of chemical mixtures
the contributions from the pure components, namely theiceatration profiles and their spectra. The curve resolu-
tion problem is by nature a matrix factorization problem,jethsuters from the diiculty that the pure component
factors are not unique. In chemometrics the so-callediastat ambiguity paraphrases the existence of numerous,
feasible solutions. However, most of these solutions atememically meaningful.

The rotational ambiguity can be reduced by adding additiofarmation on the pure factors like known pure
component spectra or measured concentration profiles aottmponents. The complementarity and coupling theory
(as developed in J. Chemometrics 27 (2013), 106-116) pesvadtheoretical basis for exploiting such adscititious
information in order to reduce the ambiguity. In this papges practical application of the complementarity and
coupling theory is explained, a user-frien@fATLAB implementation is presented and the techniques are applied
spectral data from the Rhodium-catalyzed hydroformytagiccess.
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process.

1. Introduction

Consider a chemical reaction system to be given
with several (potentially unknown) chemical compo-

and measurement errors can be taken into account by
adding a small error matrig € R®" to the right-hand
side of (1).

nents. Spectroscopic measurements on this system are |n chemical applications only the spectral data ma-

assumed to result in a serieslobpectra. Each spec-
trum is a vector witm absorbance values of the chemi-
cal mixture with respect to a fixed wavelength grid. This
spectral data can be stored row-wise ik-tmesn ma-
trix D.

The matrix formulation of the Lambert-Beer law says
thatD has a factorization

D=CA

kxn

kxs sxn, (1)
where the concentration factér € R*S is a nonnega-
tive matrix which contains column-wise the concentra-
tion profiles of thespure components with respect to the
given time-grid. The spectral factédr € RS" contains
row-wise the pure component spectra. Nonlinearities

trix D is given and the unknown numbsiof indepen-
dent components as well as the pure component factors
C and A are to be determined. A serious obstacle for
this reconstruction problem is the so-called rotational
ambiguity. This means thd usually has numerous
factorizations into nonnegative matricEsand A. The
problem s to select from this continuum of solutions the
“one” chemically correct solution. The first systematic
analysis of such sets of solutions was done by Lawton
and Sylvestre [16] in 1971 for a two-component sys-
tem. Up to now, a vast literature has been devoted to
the rotational ambiguity and its low-dimensional rep-
resentation, see for example [5, 32, 25, 32, 34, 9, 28]
and the references therein. However, a systematic
analysis of the rotational ambiguity is not necessary
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for the determination of practically useful factoriza- numerical ranks of D is the number of singular values
tions. Instead approximation methods have been devel-larger than a threshold value (a proper multiple of the
oped, which belong to the Multivariate Curve Resolu- machine precision). The firgtleft and right singular
tion (MCR) techniques or to the Self-Modeling Curve vectors serve as a low dimensional basis for the repre-
Resolution (SMCR) methods, see Section 2. Some of sentation of the factor€ and A, see e.g. [16, 18, 21].
these methods are available in software form like the In the following we use the same notation for the fac-
popular MCR-ALS toolbox for multivariate curve res- torsU, X andV of the truncated SVD in whick and
olution problems [12, 13]. A further software which is V contain only theses singular vectors corresponding
specialized in the computation of the area of feasible to the largest singular values aBds thes x s diagonal

solutions is the FAC-PACK toolbox [30, 29]. matrix with these singular values on its diagonal. The
direct way to construc€ and A with respect to these
1.1. Aim of this paper bases of singular vectors is to introduce a regular matrix

s - )
Here, we are focusing on another approach to reduceT € R¥®and its inverse in the form

the rotational ambiguity namely on the complementar-
ity and coupling theory [27]. This theory allows to

formulate restrictions on the feasible concentration pro- D~UZV' =UST T TV', 2)
files if information on the spectra is available and vice =C =A

versa. The complementarity and coupling theory has
a solid mathematical foundation and can be formulated
in terms of linear andfiine linear subspaces to which see, e.g., [6, 19, 23] on this approach. The introduction
certain concentration profiles and spectra are restricted.of T and its inverse implies a substantial reduction of
The mathematical argumentation is to some extent re- the degrees of freedom for the factorization problem to
lated to the duality theory by Rajko [24]. computeC andA. The decisive point is that has only

In this paper we show how the complementarity and S° matrix elements, buE andA together havek(+ n)s
coupling theory can practically be applied to spectro- matrix elements. Having reduced the degrees of free-
scopic data. User-friendBfATLAB code is presented dom in this way, the so-called rotational ambiguity is

which can be applied to spectral data matribeas in- still a difficult obstacle. Usually, a computed solution
troduced above. Finally, our techniques and program (C, A) is not unique and a continuum of solutions ex-
codes are applied to a serieskof 2641spectraeach ists if only the nonnegativity constraints are applied, see

with n = 664 wavenumbergrom the hydroformylation ~ €.9. [34, 1]. Any regulas x s matrix R can be used
of 3,3-dimethyl-1-butene with a rhodiytri(2,4-di-tert- to construct the new factols = CR™* andA = RA
butylphenyl)phosphite catalyst mhexane. For this ex- ~ Obviously, these factors solve the factorization problem
ample problem those parameters are determined whichsinceD = CA. The new factors are called feasible if
are associated with feasible nonnegative solutions. C > 0 andA > 0. Typically, numerous feasible so-
lutions exist in the form of one continuum or multiple
continua [32]. Various techniques have been developed
in order to choose proper solutions. For example one
can introduce soft and hard constraints [8, 11], kinetic
models [11, 14] or proper additional information on the
system in order to compute an appropriatand thus
1. the number of independent componesésid the factors€C andA. Further valuable tools are the win-
2. the nonnegative matric€andA with D ~ CA dow and evolving factor analysis [18, 20], the usage of
uniqueness theorems [22] and so on. The book series

The most established approach to compsitand to [6] is an elaborate reference on the wide range of devel-
compute the factor€ andA is the singular value de- opments.

composition (SVD) ofD [10]. The SVD readdD =
UzVT with orthogonal matrices of left singular vectors In this paper we are also interested in the construction
U e R¥* and right singular vectorg € R™". Further, of suchT which result in nonnegative factorizations.
¥ is ak x n diagonal matrix with the singular values However, our focus is somewhafi@rent. We want to
on its diagonal and zeros elsewhere. For noisefree dataanalyze thanutual relation of restrictions on the factor
the number of non-zero singular values equals the num- A (for instance by given spectra) on trestrictions for
ber of independent componergs For noisy data the the feasible concentration profilesd vice versa.

2

2. The spectral recovery problem

For a given spectral data matiix € R*", the spec-
tral recovery problem encompasses the computation of



3. The complementarity and coupling theory

The complementarity and coupling theory is a rig-
orous mathematical analysis of the mutual relation be-
tween the factor€ andA, see [27]. In the following we
explicitly treat the case of known spectra and the result-
ing restrictions on the concentration profiles. However,

Theorem 3.2 (Complementarity theorem)If sy pure
component spectra are known, then the remaining con-
centration profiles are elements of thesg-dimensional
subspace

C:={UZy: yeR® T(1l:s,:)y=0}

the analysis also includes the case of given concentra-, ;i T(L:s0.) = Al: %) V.

tion profiles and the resulting restrictions on the spectra

sinceC andA are interchangeable in the following the-
orems.

Next the notions “complementarity” and “coupling”
are used in the following sense: If for example the first
S pure component spectr&(j,:), j = 1,..., S, are
known, then

- the concentration profiles(;, i) for the other com-
ponents = +1,..., sare calleccomplementary

- and the concentration profil€:, j) for the com-
ponentsj = 1,...,5 with the same indexes are
calledcoupled

3.1. The colon notation

The colon notation allows a succinct representation
of the complementarity and coupling theorems and their
mathematical background from linear algebra. This no-
tation allows to extract single or multiple columns or
rows from a matrix. For a matrik the notationM(i, :)
defines theéth row of M, andM(i; : i», :) is the subma-
trix of the rowsi; toi, of M. Everything works similarly
in transposed form, e.gM(, j) is the jth column ofM.
MATLAB also uses this notation.

3.2. The complementarity theorem

The complementarity theory says that if a number
of 5y spectra of ars-component system is known, the
complementary concentration profiles are restricted to
an s — sp-dimensional linear subspace. The most re-
strictive case (aside from the trivial case- s that all
spectra are available) is then= s— 1. The latter case
is treated by the next theorem.

Theorem 3.1 (Simplified complementarity theoremif

all but one pure component spectra are known, then the

concentration profile of the remaining pure component
is uniquely determined aside from scaling.

The fundamental idea behind the complementarity
theory is to analyze the impact of a given spectrum on
T. This implies an ffect onT~ which can finally be
expressed as a restriction on the fa@oiThe full com-
plementarity theorem reads as follows; the proof is con-
tained in [27].
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In Section 4 we explain how these mathematical
statements can be transformed into a practically appli-
cable form. To this endf/ATLAB code is presented
which can directly be applied to the spectroscopic data.
However, the mathematical theostrictly holds for
noisefree data and in absence of any numerical round-
ing errors - but the results still holgpproximatelyfor
experimental and slightly noisy data. For a more de-
tailed discussion of the impact of noise see Section 5
and Section 6 for an application to experimental data.

3.3. The coupling theorem

As introduced in Section 3 the coupling theory pro-
vides a relation between thth pure component spec-
trum A(i, ;) and theith concentration profil€(:, i).

Theorem 3.3 (Coupling theorem) If s, pure com-
ponent spectra are known (without loss of generality
we assume these components to be indexed by i
1,..., %), thenthe coupled concentration profileg @)
fulfill

Citiec® for i=1,..., %

Therein theC® are the s- s-dimensional gine linear
subspaces

CV = {UZy: yeRS T(l:s0,0)y=8) (3)

with T(1:s,:)=A(1: ,:) V.

Each of the spaces() is an dfine linear space. It
results (by left-multiplication witHJX) of the solution
y of the underdetermined system of linear equations

T(1l:s-1,)y=¢e. 4)
Thereing € RS is theith standard basis vector, which
is just theith column of thes x sidentity matrix. Since
T(1 : %,:) has the ranksy, its null space has the di-
mensions — 5 and the space of solutions of (4) has the
dimensions — 5. See Section 4.3 for the graphical vi-
sualization of the set of feasible profil€g:, i).



Algorithm 1 Simplified complementarity. this knowledge for the computation of a proper factor-

Require: D € R" Ae RE1xn g ization D=CA. Formally the complementarity and cou-
Ensure: Comp|ementary Concentrati(cn: C(:,S) pllng theory can be underStOOd as a hal’d mOde| fOI’
1: [U,S,V] = svd(D); the reduction of the rotational ambiguity. However,
2: fori=1:s noisy data can result in problems if the truncated SVD
3 if-min(V(,i)) > max(V(.,i)) UZ(;,1:9V(,1: 9" is only a poor approximation of

4 uG,i) = -UG,i); D. Then||D - UZ(;,1: 9V(:;,1: 9|l is not small and
5: V(i) = V(i) the residual may contain unconsidered pure component
6: end: information. See Section 5 for more details.
7: end,
- — * . . .
g: :/-_—:\u"\/(gr)lS) 4. Practical implementation of the complementarity
10 ¢ = U*S(. 1:s)y: and coupling theory
l; i 'm”l(c)_> max(c) In this section we give a detailed guidance on how to
! j d(f =G apply the complementarity and coupling theory to spec-
ii: eln HC): tral data matrices. The spectral data matriRis R,
- plot(c), and we assums, pure component spectra to be given.
These spectra are inscribed row-wise into the matrix
A e RN,

3.4. Nonnegative solutions The program code is provided for the very popular

The restrictions of the complementarity and coupling MATLAB (MATrix LABoratory) numerical comput-
theory are still to be combined with the nonnegativity "g environment. Algorithms from numerical linear al-
constraint. While Theorem 3.1 provides a unique solu- 9ebra are easily accessible MATLAB as high-level
tion (aside from scaling with a positive scaling parame- !2nguage elements. With some additiorfég the pro-
ter), the other theorems result in linear arfiire linear ~ 9ram code can be transferred to any other program lan-
subspaces including one or more degrees of freedom.9uage.

Subsets of these subspaces are to be identified which
contain only the nonnegative concentration profiles. In 4.1. Initial steps

the following we consider two types of restrictions: The initial steps for the implementation of each al-

gorithm is to compute an SVD dd (line 1 in each al-
gorithm) and to ensure a proper orientation of the sin-
. . . gular vectors (lines 2—7 in each algorithm). By testing
dicted by the complementarity and coupling the- max(V(., 1)) > — min(V(., i)) and optional multiplication
ory. ) of theith left and right singular vector by -1 the singu-
IIl. Consistency.The rank-reduced spectral data ma- |ar vectors get an orientation which is numerically re-
trix D — C(:, )A(i, :), which represents the spectral  producible. Otherwise, some annoying sign-ambiguity

I. Explicit nonnegativenes<(;,i) > 0 is addition-
ally required for any concentration profile as pre-

data matrixD after subtraction of thith pure com-  \yould interfuse the representation of the numerical re-
ponent, must again be nonnegative. sults - especially if the complementarity and coupling
, theory is considered in the context of the computation

For more details see [27]. of the Area of Feasible Solutions (AFS), cf. [31]. In

line 8 the transformatiom according to (2) is defined.
3.5. Usefulness of the complementarity and coupling
theory 4.2. Implementation of the complementarity theorem

Multivariate curve resolution methodsfier from the Algorithm 1 is an implementation of the simplified
rotational ambiguity. The extraction of the "true” so- complementarity theorem 3.1. All but one spectra are
lution is a dificult problem which can approximately given,i.e.,sp = s—1. The null space of is represented
be solved by introducing hard and soft models (regu- by the variabley (in line 9) and left-multiplication with
larizations). Often some additional knowledge on the UZX results in the complementary concentration profile
factors is available. The complementarity and coupling C(:, s) which is unique aside from scaling. Once again,
theory is a mathematically rigorous technique to exploit the proper sign o€(:, ) is ensured by lines 11-13.
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The implementation of the general complementarity Algorithm 2 Complementarity fosy = s— 2.

theorem is more complicated. Algorithm 2 is an im- Require: D € RP", Ae RS2 g

plementation of the cassy = s - 2; for the impor-
tant case of ars = 3-component system this remain-
ing optionsy = 1 stands for a single given spectrum
and is the only remaining non-trivial case. In the lines
10 and 11 the column vector of whose first compo-
nent has the largest modulus, is swapped to the first
column of Y. The division byY(1,1) guarantees that
the resulting matrixy fulfills Y(1,1) = 1. In line 13
the basis of the null space is modified in a way that
Y(1,2) = 0. With these preparations and with a proper
interval [a, b] which guarantees nonnegative concentra-
tion profiles, these profiles are plotted in line 16. There
is only one such bounded interval p], and a minimal
a as well as a maximdl are to be computed so that the
concentration profiles are nonnegative, cf. Section 3.4.
The two restrictions from Section 3.4, namely explicit
nonnegativeness and consistency, are used to construct
the two endpoints of the interval. Our construction of
the first column ofY together with the Perron-Frobenius
theory guarantee that this approach works properly.

In the lines 14-16 of Algorithm 2 a plot of a series of
m nonnegative concentration profiles is generated. Rec-
ommended values fan are 10, 15 or 20. All this is
demonstrated in Section 6.2 for spectroscopic data from 15
the Rhodium-catalyzed hydroformylation. 16

[
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Ensure. Complementary concentration profileS(:

,[s—1, §]) are plotted

: [U,S,V] = svd(D);
for i=1:s
if -min(V(:,i)) > max(V(:,i))
U(:,i) = -U(,i);
V(i) =-V(,i);
end;
end;
- T =A*V(,1:5s);
2 Y = null(T);
: [mi,i] = max(abs(Y(1,3)));

SYG[L) =Y );

Y1) =Y(G,1)/Y(L,L);

S Y(,2) = Y(G,2)-Y(1,2)/Y (1,1)*Y(,1);

A suitable interval § b] with maximal lengthb - a,

so that all concentration profiles are nonnegative,
is to be determined with the two restrictions|(l)
from Section 3.4. If a minimah and a maximab
have been determined, then an equidistant subdivi-
sion withm = 20 nodes appears to befcient in
order to plot a series of feasible solutions.

m = 20;

: g = linspace(a, b, m);

: plot(U*S(:,1:8)*(Y(:,1)*ones(1,m)+Y(:,2)*q));

4.3. Implementation of the coupling theorem

rel
The initial steps in the lines 1-8 of Algorithm 3 are g
explained in Section 4.1. The mairfidirence compared

ated with one endpoint of the interval and the restric-
ns Il. is related with the other endpoint. The resulting

profiles are plotted with respect to an equidistant subdi-

with the implementation of the complementarity theo- yjsjon of [a(i), b(i)] in the lines 13 and 14 of Algorithm

rem is that the solution space is now affine linear 3.
subspace.
Algorithm 3 is an implementation of the coupling the- jm

The coupling theorem for genemle {1,...,s-1}is

plemented in a very similar way. Especially, the lines

orem forsy = s— 1, i.e., all but one spectra of the pure 13 and 14 are to be changed as the higher dimensional

components are known. In line 9 particular solutions for

Il space ofT requires a higher dimensional grid for

thes-s, inhomogeneous and under-determined systemshe graphical representation of the feasible solutions.

of linear equations

T : s, )W(,)=¢g, fori=1..., %, 5.

are computed simultaneously. Ttle column ofW is a
particular solution of théh linear system. In line 10 the

Noisy and experimental data

The complementarity and coupling theorems 3.1-3.3
are formulated for noisefree data. A continuity argu-

null space ofl is computed. The null space isin general ment shows that the results of the complementarity and

s—g dimensional; foisy = s—1 this linear spaceisone- co
dimensional. Hence, each solution has a single degreeor
of freedom. Foreachi =1,..., s, a proper maximal en

upling theorems still hold approximately for noisy
perturbed data if the signal-to-noise ratio is large
ough. However, if for a certain trace component the

interval [a(i), b(i)] is to be determined so that the two signal-to-noise ratio is very small, then the complemen-

restrictions (l/11.) for the coupled concentration profile
C(:,i) from Section 3.4 are fulfilled. The restriction I. is
5

pu

tarity and coupling theory cannot be applied even if its

re component spectrum could be extracted by elab-
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Figure 2: Singular value decomposition of data maBixrom Rhodium-catalyzed hydroformylation. Left: the firbtee left singular vectors.
Middle: the first 30 singular values in a logarithmic plotgRi: the first three right-singular vectors.

Algorithm 3 Coupling forsy = s— 1. Series of spectra
Require: D € R, Ae RG1xn g 0.08" i
Ensure: Coupled concentration profiles C(;,1 : s—1) 007} ﬁ
1: [U,S,V] = svd(D); 0.061 Q
2: fori=1:s 0.08
3 if -min(V(:,i)) > max(V(:,i)) o.0at
4 U(:,_i) = -U(:,_i); 0,03l
5: V(i) =-V(,i); 0.02t
6:  end, ool
7. end; ' o W\
. — C 1) . L . s . .
8 T=AV(,1ls), 1980 2000 2020 2040 2060 2080 2100
9: W =T\eye(s-1,s-1); wavenumber [fcm]
10: y = null(T);

Each coupled concentration profile is an element of Figure 1: Selection of 34 di = 2621 spectra for thk = 2621x n =
. . . 664 spectral data matri@ for the Rhodium-catalyzed hydroformyla-
a one-dimensionalfiine subspace. For eath= tion process.
1,...,s—1 a proper intervald;, ;] with maximal
lengthb; — & is to be determined which guarantee

nonnegative concentration profiles. 5.1. Low rank approximation by the SVD
1 i=1; %i=2i=3; .. A key step in spectral recovery technigues is the low
12: m = 20; rank approximation ofC and A by using only thes
13: g = linspace(a(i), b(i), m); largest singular values and the associatkedt and right
14: plot(U*S(:,1:s)*(W(:,i)*ones(1,m)+y*g)); singular vectors. If the reconstruction err U(:, 1 :

9X(1 : s 1:9V(,1: 97 is small, then multivariate
curve resolution methods can work very well. However
in the presence of systematic noise and if the signal-to-
noise ratio for a specific component is not small, then
orated techniques. References on the extraction of purethe truncated SVD is not a reliable basis for the recon-
component spectra for trace components with a very struction of the correct solutions [7, 35, 23, 33]. In this
low signal-to-noise ratio and their successful confirma- case the low rank representatio,1 : s) = A(1 : s:
tion, e.g. by DFT computations, are [17] in Sec. 4.4 or )V cannot reconstruct the spectral data very well as the
[36, 35, 37]. errorA(1 :s:) - A(1 : s :)VV' is not small. Then an
application of the complementarity and coupling theory
Next we would like to discuss the influence of ran- cannot be recommended.
dom and systematic noise on the results as well as its . ) . .
dependence on the ratio of total absorbance of a certain®-2. Trace components with a low signal-to-noise ratio
species to the level of noise. Thifexts also depend on If the noise level is relatively small and the signals
the used spectroscopic technique. of a trace component are of a size comparable to the
6



noise level, i.e. the signal-to-noise level for this compo-
nent is large, then a successful strategy is to work with
z singular vectors in order to construct a humbersof
spectra withz > s. Then the matrixT in (2) is a rect-
angulars x z matrix andT~! is to be replaced by its
pseudoinversé*, see [35]. For this more general sit-
uation the complementarity and coupling theory cannot
be applied, since it has only been formulated for square
matricesT € RS,

5.3. Further spectroscopic techniques

Up to now we have successfully applied the com-
plementarity and coupling theory to YMs and FT-
IR data, see Section 6 and [27, 28, 31]. Especially for
UV/Vis data the size and type of the noise is not in-
terfering the computational procedure. However, for
FT-IR data a potential baseline correction is a critical
step whose proper implementation is crucial for the sub-

Given pure component spectra

1980 2000 2020 2040 2060 2080 2100
wavenumber [cm]

Figure 3: The two known pure component spectra. The olefim{co
ponent 1) is shown by a blue line and the hydrido complex (comept
3) by a red dash-dotted line.

sequent Computations_ In princip|e the Comp|ementar- values. The three Iargest singular values are character-

ity and coupling arguments appear to be useful build-
ing blocks for extracting pure component information
if proper adscititious information on the chemical sys-

istically larger than the remaining singular values which
are close to zero. Thus we set 3. Figure 2 shows the
singular values together with the left and right singular

tem is available. These techniques might be a part of a vectors.

prospective automatic analysis of mixtures, cf. with the
automatic analysis in X-ray powderfiaction [3, 2].

6. Application to the Rhodium-catalyzed hydro-
formylation process

In this section the numerical algorithms and program
codes are applied to in situ FTIR spectroscopic data
from the Rhodium-catalyzed hydroformylation process.
For the experimental details see [15]. Within the spec-
tral interval [19602120]cn three dominant active
species can be identified; two of the pure component

Two spectra of the reaction subsystem are known:
The spectrum of the olefin 3,3-dimethyl-1-butene is
available, and the spectrum of the hydrido complex is
known. These two specta are shown in Figure 3.

6.2. Application of the complementarity theorem

The complementarity theorem can easily be applied.
Two of the three pure component spectra are available
so that the simplified complementarity theorem 3.1 can
be used. The concentration profile of the third compo-
nent (acyl complex) is uniquely determined aside from
scaling. Algorithm 1 withs = 3 results in the concen-

spectra of the three components are known. These aretration profileC(:, 2) of the acyl complex, see Figure 4.

ideal preconditions for the application of the comple-
mentarity and coupling theory.

6.1. Spectral data and two pure component spectra

A series ofk 2641 spectra were taken from
the hydroformylation of 3,3-dimethyl-1-butene with
a rhodiunitri(2,4-di-tert-butylphenyl)phosphite catalyst
([Rh] = 3- 10“*mol/L) in n-hexane at 3T, p(CO)=
1.0 MPa and p(p) = 0.2 MPa. Each spectrum is a
vector withn = 664 absorbance values in the interval
[1960,2120]cm®. Figure 1 shows 34 of these spectra.
Within this spectral interval the reactant 3,3-dimethyl-
1-butene as well as the hydrido and acyl rhodium com-
plexes are the prevailing components, cf. [15]. This
statement is supported by the distribution of the singular

7

6.3. Application of the coupling theorem

Since all but one pure component spectra are avail-
able, Algorithm 3 can directly be applied. Next we ex-
plain the computation of the concentration profile of the
olefin. The profile for the hydrido complex can be com-
puted similarly. After the initialization phase a particu-
lar solutionW of the under-determined system of inho-
mogeneous linear equatiosA(:, 1) = (1,0)" is com-
puted, see line 9 in Algorithm 3. In FigurelbxW(:, 1)
is shown by the solid line. Then the null spaceTofs
computed. Figure 5 showdXy as a broken line for a
y # 0 from this null space. Thefzne linear space™®
in Theorem 3.3 is then spanned by &f:,1) = UXz



Concentration profil€(:, 2) of the acyl complex
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Figure 4: The application of the simplified complementatitgorem
in the form of Algorithm 1 yields the concentration prof@é:, 2) nor-
malized to maximum 1. Left ordinate shows the non-scale¢eon
tration as resulting from Algorithm 1; the right ordinateosls the
absolute concentration of the acyl complex by using a kinetbdel
[26].

with z = W(;,1) + yy andy € R. Finally, a real in-
terval fory is to be determined so th&X(;, 1) satisfies
the two restrictions (I. and II.) from Section 3.4. For
the given data we get € [ag,b;] = [1.19, 1.98]. (For
all othery eitherC(:, 1) has negative components or the
rank-reduced matri® — C(:, 1)A(i, ;) has negative com-
ponents.)

Affine linear space fd€(:, 1)

0.08f

0.06¢

0.04}

0.02f

-0.021

0 1000 2000 3000
time [min]

4000 5000

Figure 5: Construction of theffne linear space fdZ(:, 1). All linear
combinations of the particular solutiay = UZW(:, 1) (solid line)
and the homogeneous solutiais= UZXy (broken line) span thefane
subspace&c® as given in (3). Thei€(;,1) = cp + yc, for feasible
values ofy.

Figure 6 shows the resulting feasible concentration
profiles for the olefin. Similarly, the feasible concentra-
tion profiles of the hydrido complex are also contained
in a one-dimensionalfine subspace. Together with
the nonnegativity restrictions the remaining profiles are
shown in Figure 7.

8

Feasible concentration profil€X:, 1)
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\
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0ok L
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Figure 6: Olefin component: Feasible non-scaled concémirairo-
filesC(:, 1) according to the coupling theorem and wtk [a;, b1] =
[1.19, 1.98].

Feasible concentration profi:, 3)

0.05}
0.04f
0.03f
0.02
0.01f
el
== ‘
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time [min]

Figure 7: Hydrido complex: Feasible non-scaled concentrgtro-
files C(:, 3) according to the coupling theorem and which satisfy the
two nonnegativity restriction in Section 3.4 are shown by carves.

6.4. Complete solution

We have shown above that the complementarity and
coupling theory with two given pure component spectra
uniguely determines one concentration profile and re-
stricts the concentration profiles of the remaining two
components to one-dimensiondiiae subspaces. Thus
the complete factorizatiod = CA has still a single de-
gree of freedom.

If some kinetic model is added (in the form of a soft
constraint), then this remaining single degree of free-
dom can be removed, see [15, 26] for the details. The
resulting factors are shown in Figure 8.

7. Conclusion

The complementarity and coupling theory provides
advantageous tools for multivariate curve resolution
techniques in order to exploit the mutual dependence
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acyl complex, red dash-dotted line: the hydrido complex.

of the partial knowledge of one factor and the result-

[2] L. A. Baumes, S. Jimenez, and A. Corma.

details see [4, 29, 31].
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