
How to apply the complementarity and coupling theorems in MCR methods:
Practical implementation and application to the

Rhodium-catalyzed hydroformylation.

Mathias Sawalla, Christoph Kubisb, Robert Frankec,d, Dieter Hessc, Detlef Selentb, Armin Börnerb, Klaus Neymeyra,b

aUniversität Rostock, Institut für Mathematik, Ulmenstraße 69, 18057 Rostock, Germany
bLeibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock

cEvonik Industries AG, Paul-Baumann Straße 1, 45772 Marl, Germany
dLehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany

Abstract

Multivariate curve resolution techniques can be used in order to extract from spectroscopic data of chemical mixtures
the contributions from the pure components, namely their concentration profiles and their spectra. The curve resolu-
tion problem is by nature a matrix factorization problem, which suffers from the difficulty that the pure component
factors are not unique. In chemometrics the so-called rotational ambiguity paraphrases the existence of numerous,
feasible solutions. However, most of these solutions are not chemically meaningful.

The rotational ambiguity can be reduced by adding additional information on the pure factors like known pure
component spectra or measured concentration profiles of thecomponents. The complementarity and coupling theory
(as developed in J. Chemometrics 27 (2013), 106-116) provides a theoretical basis for exploiting such adscititious
information in order to reduce the ambiguity. In this paper the practical application of the complementarity and
coupling theory is explained, a user-friendlyMATLAB implementation is presented and the techniques are applied
spectral data from the Rhodium-catalyzed hydroformylation process.

Key words: spectral recovery factor analysis complementarity and coupling Rhodium-catalyzed hydroformylation
process.

1. Introduction

Consider a chemical reaction system to be given
with several (potentially unknown) chemical compo-
nents. Spectroscopic measurements on this system are
assumed to result in a series ofk spectra. Each spec-
trum is a vector withn absorbance values of the chemi-
cal mixture with respect to a fixed wavelength grid. This
spectral data can be stored row-wise in ak-times-n ma-
trix D.

The matrix formulation of the Lambert-Beer law says
thatD has a factorization

D
k× n

= C
k × s

A
s× n
, (1)

where the concentration factorC ∈ R
k×s is a nonnega-

tive matrix which contains column-wise the concentra-
tion profiles of thespure components with respect to the
given time-grid. The spectral factorA ∈ R

s×n contains
row-wise the pure component spectra. Nonlinearities

and measurement errors can be taken into account by
adding a small error matrixE ∈ R

k×n to the right-hand
side of (1).

In chemical applications only the spectral data ma-
trix D is given and the unknown numbers of indepen-
dent components as well as the pure component factors
C and A are to be determined. A serious obstacle for
this reconstruction problem is the so-called rotational
ambiguity. This means thatD usually has numerous
factorizations into nonnegative matricesC andA. The
problem is to select from this continuum of solutions the
“one” chemically correct solution. The first systematic
analysis of such sets of solutions was done by Lawton
and Sylvestre [16] in 1971 for a two-component sys-
tem. Up to now, a vast literature has been devoted to
the rotational ambiguity and its low-dimensional rep-
resentation, see for example [5, 32, 25, 32, 34, 9, 28]
and the references therein. However, a systematic
analysis of the rotational ambiguity is not necessary
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for the determination of practically useful factoriza-
tions. Instead approximation methods have been devel-
oped, which belong to the Multivariate Curve Resolu-
tion (MCR) techniques or to the Self-Modeling Curve
Resolution (SMCR) methods, see Section 2. Some of
these methods are available in software form like the
popular MCR-ALS toolbox for multivariate curve res-
olution problems [12, 13]. A further software which is
specialized in the computation of the area of feasible
solutions is the FAC-PACK toolbox [30, 29].

1.1. Aim of this paper

Here, we are focusing on another approach to reduce
the rotational ambiguity namely on the complementar-
ity and coupling theory [27]. This theory allows to
formulate restrictions on the feasible concentration pro-
files if information on the spectra is available and vice
versa. The complementarity and coupling theory has
a solid mathematical foundation and can be formulated
in terms of linear and affine linear subspaces to which
certain concentration profiles and spectra are restricted.
The mathematical argumentation is to some extent re-
lated to the duality theory by Rajkó [24].

In this paper we show how the complementarity and
coupling theory can practically be applied to spectro-
scopic data. User-friendlyMATLAB code is presented
which can be applied to spectral data matricesD as in-
troduced above. Finally, our techniques and program
codes are applied to a series ofk = 2641spectra, each
with n = 664 wavenumbers,from the hydroformylation
of 3,3-dimethyl-1-butene with a rhodium/tri(2,4-di-tert-
butylphenyl)phosphite catalyst inn-hexane. For this ex-
ample problem those parameters are determined which
are associated with feasible nonnegative solutions.

2. The spectral recovery problem

For a given spectral data matrixD ∈ R
k×n, the spec-

tral recovery problem encompasses the computation of

1. the number of independent componentssand
2. the nonnegative matricesC andA with D ≈ CA.

The most established approach to computes and to
compute the factorsC and A is the singular value de-
composition (SVD) ofD [10]. The SVD readsD =
UΣVT with orthogonal matrices of left singular vectors
U ∈ Rk×k and right singular vectorsV ∈ Rn×n. Further,
Σ is a k × n diagonal matrix with the singular values
on its diagonal and zeros elsewhere. For noisefree data
the number of non-zero singular values equals the num-
ber of independent componentss. For noisy data the

numerical ranks of D is the number of singular values
larger than a threshold value (a proper multiple of the
machine precision). The firsts left and right singular
vectors serve as a low dimensional basis for the repre-
sentation of the factorsC andA, see e.g. [16, 18, 21].
In the following we use the same notation for the fac-
torsU, Σ andV of the truncated SVD in whichU and
V contain only theses singular vectors corresponding
to the largest singular values andΣ is thes× sdiagonal
matrix with these singular values on its diagonal. The
direct way to constructC and A with respect to these
bases of singular vectors is to introduce a regular matrix
T ∈ Rs×s and its inverse in the form

D ≈ UΣVT = UΣT−1
︸  ︷︷  ︸

=:C

TVT
︸︷︷︸

=:A

, (2)

see, e.g., [6, 19, 23] on this approach. The introduction
of T and its inverse implies a substantial reduction of
the degrees of freedom for the factorization problem to
computeC andA. The decisive point is thatT has only
s2 matrix elements, butC andA together have (k + n)s
matrix elements. Having reduced the degrees of free-
dom in this way, the so-called rotational ambiguity is
still a difficult obstacle. Usually, a computed solution
(C,A) is not unique and a continuum of solutions ex-
ists if only the nonnegativity constraints are applied, see
e.g. [34, 1]. Any regulars× s matrix R can be used
to construct the new factors̃C = CR−1 and Ã = RA.
Obviously, these factors solve the factorization problem
sinceD = C̃Ã. The new factors are called feasible if
C̃ ≥ 0 and Ã ≥ 0. Typically, numerous feasible so-
lutions exist in the form of one continuum or multiple
continua [32]. Various techniques have been developed
in order to choose proper solutions. For example one
can introduce soft and hard constraints [8, 11], kinetic
models [11, 14] or proper additional information on the
system in order to compute an appropriateT and thus
the factorsC andA. Further valuable tools are the win-
dow and evolving factor analysis [18, 20], the usage of
uniqueness theorems [22] and so on. The book series
[6] is an elaborate reference on the wide range of devel-
opments.

In this paper we are also interested in the construction
of suchT which result in nonnegative factorizations.
However, our focus is somewhat different. We want to
analyze themutual relation of restrictions on the factor
A (for instance by given spectra) on therestrictions for
the feasible concentration profilesand vice versa.
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3. The complementarity and coupling theory

The complementarity and coupling theory is a rig-
orous mathematical analysis of the mutual relation be-
tween the factorsC andA, see [27]. In the following we
explicitly treat the case of known spectra and the result-
ing restrictions on the concentration profiles. However,
the analysis also includes the case of given concentra-
tion profiles and the resulting restrictions on the spectra
sinceC andA are interchangeable in the following the-
orems.

Next the notions “complementarity” and “coupling”
are used in the following sense: If for example the first
s0 pure component spectraA( j, :), j = 1, . . . , s0, are
known, then

- the concentration profilesC(:, i) for the other com-
ponentsi = s0+1, . . . , sare calledcomplementary,

- and the concentration profilesC(:, j) for the com-
ponentsj = 1, . . . , s0 with the same indexes are
calledcoupled.

3.1. The colon notation

The colon notation allows a succinct representation
of the complementarity and coupling theorems and their
mathematical background from linear algebra. This no-
tation allows to extract single or multiple columns or
rows from a matrix. For a matrixM the notationM(i, :)
defines theith row of M, andM(i1 : i2, :) is the subma-
trix of the rowsi1 to i2 of M. Everything works similarly
in transposed form, e.g.,M(:, j) is the jth column ofM.
MATLAB also uses this notation.

3.2. The complementarity theorem

The complementarity theory says that if a number
of s0 spectra of ans-component system is known, the
complementary concentration profiles are restricted to
an s − s0-dimensional linear subspace. The most re-
strictive case (aside from the trivial cases = s0 that all
spectra are available) is thens0 = s− 1. The latter case
is treated by the next theorem.

Theorem 3.1 (Simplified complementarity theorem). If
all but one pure component spectra are known, then the
concentration profile of the remaining pure component
is uniquely determined aside from scaling.

The fundamental idea behind the complementarity
theory is to analyze the impact of a given spectrum on
T. This implies an effect onT−1 which can finally be
expressed as a restriction on the factorC. The full com-
plementarity theorem reads as follows; the proof is con-
tained in [27].

Theorem 3.2 (Complementarity theorem). If s0 pure
component spectra are known, then the remaining con-
centration profiles are elements of the s−s0-dimensional
subspace

C := {UΣ y : y ∈ Rs
, T(1 : s0, :) y = 0}

with T(1 : s0, :) = A(1 : s0, :) V.

In Section 4 we explain how these mathematical
statements can be transformed into a practically appli-
cable form. To this endMATLAB code is presented
which can directly be applied to the spectroscopic data.
However, the mathematical theorystrictly holds for
noisefree data and in absence of any numerical round-
ing errors - but the results still holdapproximatelyfor
experimental and slightly noisy data. For a more de-
tailed discussion of the impact of noise see Section 5
and Section 6 for an application to experimental data.

3.3. The coupling theorem

As introduced in Section 3 the coupling theory pro-
vides a relation between theith pure component spec-
trum A(i, :) and theith concentration profileC(:, i).

Theorem 3.3 (Coupling theorem). If s0 pure com-
ponent spectra are known (without loss of generality
we assume these components to be indexed by i=

1, . . . , s0), then the coupled concentration profiles C(:, i)
fulfill

C(:, i) ∈ C(i) for i = 1, . . . , s0.

Therein theC(i) are the s− s0-dimensional affine linear
subspaces

C(i) := {UΣ y : y ∈ Rs
, T(1 : s0, :) y = ei} (3)

with T(1 : s0, :) = A(1 : s0, :) V.

Each of the spacesC(i) is an affine linear space. It
results (by left-multiplication withUΣ) of the solution
y of the underdetermined system of linear equations

T(1 : s− 1, :) y = ei . (4)

Thereinei ∈ R
s−1 is theith standard basis vector, which

is just theith column of thes× s identity matrix. Since
T(1 : s0, :) has the ranks0, its null space has the di-
mensions− s0 and the space of solutions of (4) has the
dimensions− s0. See Section 4.3 for the graphical vi-
sualization of the set of feasible profilesC(:, i).
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Algorithm 1 Simplified complementarity.

Require: D ∈ Rk×n
, A ∈ R(s−1)×n

, s
Ensure: Complementary concentrationc = C(:, s)

1: [U,S,V] = svd(D);
2: for i=1:s
3: if -min(V(:,i)) > max(V(:,i))
4: U(:,i) = -U(:,i);
5: V(:,i) = -V(:,i);
6: end;
7: end;
8: T = A*V(:,1:s);
9: y = null(T);

10: c = U*S(:,1:s)*y;
11: if -min(c) > max(c)
12: c = -c;
13: end;
14: plot(c);

3.4. Nonnegative solutions

The restrictions of the complementarity and coupling
theory are still to be combined with the nonnegativity
constraint. While Theorem 3.1 provides a unique solu-
tion (aside from scaling with a positive scaling parame-
ter), the other theorems result in linear and affine linear
subspaces including one or more degrees of freedom.
Subsets of these subspaces are to be identified which
contain only the nonnegative concentration profiles. In
the following we consider two types of restrictions:

I. Explicit nonnegativeness:C(:, i) ≥ 0 is addition-
ally required for any concentration profile as pre-
dicted by the complementarity and coupling the-
ory.

II. Consistency:The rank-reduced spectral data ma-
trix D −C(:, i)A(i, :), which represents the spectral
data matrixD after subtraction of theith pure com-
ponent, must again be nonnegative.

For more details see [27].

3.5. Usefulness of the complementarity and coupling
theory

Multivariate curve resolution methods suffer from the
rotational ambiguity. The extraction of the ”true” so-
lution is a difficult problem which can approximately
be solved by introducing hard and soft models (regu-
larizations). Often some additional knowledge on the
factors is available. The complementarity and coupling
theory is a mathematically rigorous technique to exploit

this knowledge for the computation of a proper factor-
ization D=CA. Formally the complementarity and cou-
pling theory can be understood as a hard model for
the reduction of the rotational ambiguity. However,
noisy data can result in problems if the truncated SVD
UΣ(:, 1 : s)V(:, 1 : s)T is only a poor approximation of
D. Then‖D − UΣ(:, 1 : s)V(:, 1 : s)T‖F is not small and
the residual may contain unconsidered pure component
information. See Section 5 for more details.

4. Practical implementation of the complementarity
and coupling theory

In this section we give a detailed guidance on how to
apply the complementarity and coupling theory to spec-
tral data matrices. The spectral data matrix isD ∈ Rk×n,
and we assumes0 pure component spectra to be given.
These spectra are inscribed row-wise into the matrix
A ∈ Rs0×n.

The program code is provided for the very popular
MATLAB (MATrix LABoratory) numerical comput-
ing environment. Algorithms from numerical linear al-
gebra are easily accessible inMATLAB as high-level
language elements. With some additional effort the pro-
gram code can be transferred to any other program lan-
guage.

4.1. Initial steps

The initial steps for the implementation of each al-
gorithm is to compute an SVD ofD (line 1 in each al-
gorithm) and to ensure a proper orientation of the sin-
gular vectors (lines 2–7 in each algorithm). By testing
max(V(:, i)) ≥ −min(V(:, i)) and optional multiplication
of the ith left and right singular vector by -1 the singu-
lar vectors get an orientation which is numerically re-
producible. Otherwise, some annoying sign-ambiguity
would interfuse the representation of the numerical re-
sults - especially if the complementarity and coupling
theory is considered in the context of the computation
of the Area of Feasible Solutions (AFS), cf. [31]. In
line 8 the transformationT according to (2) is defined.

4.2. Implementation of the complementarity theorem

Algorithm 1 is an implementation of the simplified
complementarity theorem 3.1. All but one spectra are
given, i.e.,s0 = s−1. The null space ofT is represented
by the variabley (in line 9) and left-multiplication with
UΣ results in the complementary concentration profile
C(:, s) which is unique aside from scaling. Once again,
the proper sign ofC(:, s) is ensured by lines 11-13.
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The implementation of the general complementarity
theorem is more complicated. Algorithm 2 is an im-
plementation of the cases0 = s − 2; for the impor-
tant case of ans = 3-component system this remain-
ing option s0 = 1 stands for a single given spectrum
and is the only remaining non-trivial case. In the lines
10 and 11 the column vector ofY, whose first compo-
nent has the largest modulus, is swapped to the first
column of Y. The division byY(1, 1) guarantees that
the resulting matrixY fulfills Y(1, 1) = 1. In line 13
the basis of the null space is modified in a way that
Y(1, 2) = 0. With these preparations and with a proper
interval [a, b] which guarantees nonnegative concentra-
tion profiles, these profiles are plotted in line 16. There
is only one such bounded interval [a, b], and a minimal
a as well as a maximalb are to be computed so that the
concentration profiles are nonnegative, cf. Section 3.4.
The two restrictions from Section 3.4, namely explicit
nonnegativeness and consistency, are used to construct
the two endpoints of the interval. Our construction of
the first column ofY together with the Perron-Frobenius
theory guarantee that this approach works properly.

In the lines 14–16 of Algorithm 2 a plot of a series of
mnonnegative concentration profiles is generated. Rec-
ommended values form are 10, 15 or 20. All this is
demonstrated in Section 6.2 for spectroscopic data from
the Rhodium-catalyzed hydroformylation.

4.3. Implementation of the coupling theorem

The initial steps in the lines 1–8 of Algorithm 3 are
explained in Section 4.1. The main difference compared
with the implementation of the complementarity theo-
rem is that the solution space is now anaffine linear
subspace.

Algorithm 3 is an implementation of the coupling the-
orem fors0 = s− 1, i.e., all but one spectra of the pure
components are known. In line 9 particular solutions for
thes−s0 inhomogeneous and under-determined systems
of linear equations

T(1 : s0, :) W(:, i) = ei , for i = 1, . . . , s0,

are computed simultaneously. Theith column ofW is a
particular solution of theith linear system. In line 10 the
null space ofT is computed. The null space is in general
s−s0 dimensional; fors0 = s−1 this linear space is one-
dimensional. Hence, each solution has a single degree
of freedom. For eachi, i = 1, . . . , s0, a proper maximal
interval [a(i), b(i)] is to be determined so that the two
restrictions (I./II.) for the coupled concentration profile
C(:, i) from Section 3.4 are fulfilled. The restriction I. is

Algorithm 2 Complementarity fors0 = s− 2.

Require: D ∈ Rk×n
, A ∈ R(s−2)×n

, s
Ensure: Complementary concentration profilesC(:
, [s− 1, s]) are plotted

1: [U,S,V] = svd(D);
2: for i=1:s
3: if -min(V(:,i)) > max(V(:,i))
4: U(:,i) = -U(:,i);
5: V(:,i) = -V(:,i);
6: end;
7: end;
8: T = A*V(:,1:s);
9: Y = null(T);

10: [mi,i] = max(abs(Y(1,:)));
11: Y(:,[1 i]) = Y(:,[i 1]);
12: Y(:,1) = Y(:,1)/Y(1,1);
13: Y(:,2) = Y(:,2)-Y(1,2)/Y(1,1)*Y(:,1);

A suitable interval [a, b] with maximal lengthb−a,
so that all concentration profiles are nonnegative,
is to be determined with the two restrictions (I./II.)
from Section 3.4. If a minimala and a maximalb
have been determined, then an equidistant subdivi-
sion with m = 20 nodes appears to be sufficient in
order to plot a series of feasible solutions.

14: m = 20;
15: g = linspace(a, b, m);
16: plot(U*S(:,1:s)*(Y(:,1)*ones(1,m)+Y(:,2)*g));

related with one endpoint of the interval and the restric-
tions II. is related with the other endpoint. The resulting
profiles are plotted with respect to an equidistant subdi-
vision of [a(i), b(i)] in the lines 13 and 14 of Algorithm
3.

The coupling theorem for generals0 ∈ {1, . . . , s−1} is
implemented in a very similar way. Especially, the lines
13 and 14 are to be changed as the higher dimensional
null space ofT requires a higher dimensional grid for
the graphical representation of the feasible solutions.

5. Noisy and experimental data

The complementarity and coupling theorems 3.1-3.3
are formulated for noisefree data. A continuity argu-
ment shows that the results of the complementarity and
coupling theorems still hold approximately for noisy
or perturbed data if the signal-to-noise ratio is large
enough. However, if for a certain trace component the
signal-to-noise ratio is very small, then the complemen-
tarity and coupling theory cannot be applied even if its
pure component spectrum could be extracted by elab-
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Figure 2: Singular value decomposition of data matrixD from Rhodium-catalyzed hydroformylation. Left: the first three left singular vectors.
Middle: the first 30 singular values in a logarithmic plot. Right: the first three right-singular vectors.

Algorithm 3 Coupling fors0 = s− 1.

Require: D ∈ Rk×n
, A ∈ R(s−1)×n

, s
Ensure: Coupled concentration profiles C(:, 1 : s− 1)

1: [U,S,V] = svd(D);
2: for i=1:s
3: if -min(V(:,i)) > max(V(:,i))
4: U(:,i) = -U(:,i);
5: V(:,i) = -V(:,i);
6: end;
7: end;
8: T = A*V(:,1:s);
9: W = T\eye(s-1,s-1);

10: y = null(T);
Each coupled concentration profile is an element of
a one-dimensional affine subspace. For eachi =
1, . . . , s− 1 a proper interval [ai , bi] with maximal
lengthbi − ai is to be determined which guarantee
nonnegative concentration profiles.

11: i = 1; % i = 2; i = 3; ...
12: m = 20;
13: g = linspace(a(i), b(i), m);
14: plot(U*S(:,1:s)*(W(:,i)*ones(1,m)+y*g));

orated techniques. References on the extraction of pure
component spectra for trace components with a very
low signal-to-noise ratio and their successful confirma-
tion, e.g. by DFT computations, are [17] in Sec. 4.4 or
[36, 35, 37].

Next we would like to discuss the influence of ran-
dom and systematic noise on the results as well as its
dependence on the ratio of total absorbance of a certain
species to the level of noise. The effects also depend on
the used spectroscopic technique.
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0

0.01

0.02

0.03

0.04
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0.08

wavenumber [1/cm]

Series of spectra

Figure 1: Selection of 34 ofk = 2621 spectra for thek = 2621× n =
664 spectral data matrixD for the Rhodium-catalyzed hydroformyla-
tion process.

5.1. Low rank approximation by the SVD

A key step in spectral recovery techniques is the low
rank approximation ofC and A by using only thes
largest singular values and the associateds left and right
singular vectors. If the reconstruction errorD − U(:, 1 :
s)Σ(1 : s, 1 : s)V(:, 1 : s)T is small, then multivariate
curve resolution methods can work very well. However
in the presence of systematic noise and if the signal-to-
noise ratio for a specific component is not small, then
the truncated SVD is not a reliable basis for the recon-
struction of the correct solutions [7, 35, 23, 33]. In this
case the low rank representationT(:, 1 : s) = A(1 : s, :
)V cannot reconstruct the spectral data very well as the
errorA(1 : s, :) − A(1 : s, :)VVT is not small. Then an
application of the complementarity and coupling theory
cannot be recommended.

5.2. Trace components with a low signal-to-noise ratio

If the noise level is relatively small and the signals
of a trace component are of a size comparable to the
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noise level, i.e. the signal-to-noise level for this compo-
nent is large, then a successful strategy is to work with
z singular vectors in order to construct a number ofs
spectra withz > s. Then the matrixT in (2) is a rect-
angulars × z matrix andT−1 is to be replaced by its
pseudoinverseT+, see [35]. For this more general sit-
uation the complementarity and coupling theory cannot
be applied, since it has only been formulated for square
matricesT ∈ Rs×s.

5.3. Further spectroscopic techniques

Up to now we have successfully applied the com-
plementarity and coupling theory to UV/Vis and FT-
IR data, see Section 6 and [27, 28, 31]. Especially for
UV/Vis data the size and type of the noise is not in-
terfering the computational procedure. However, for
FT-IR data a potential baseline correction is a critical
step whose proper implementation is crucial for the sub-
sequent computations. In principle the complementar-
ity and coupling arguments appear to be useful build-
ing blocks for extracting pure component information
if proper adscititious information on the chemical sys-
tem is available. These techniques might be a part of a
prospective automatic analysis of mixtures, cf. with the
automatic analysis in X-ray powder diffraction [3, 2].

6. Application to the Rhodium-catalyzed hydro-
formylation process

In this section the numerical algorithms and program
codes are applied to in situ FTIR spectroscopic data
from the Rhodium-catalyzed hydroformylation process.
For the experimental details see [15]. Within the spec-
tral interval [1960, 2120]cm−1 three dominant active
species can be identified; two of the pure component
spectra of the three components are known. These are
ideal preconditions for the application of the comple-
mentarity and coupling theory.

6.1. Spectral data and two pure component spectra

A series of k = 2641 spectra were taken from
the hydroformylation of 3,3-dimethyl-1-butene with
a rhodium/tri(2,4-di-tert-butylphenyl)phosphite catalyst
([Rh] = 3 · 10−4mol/L) in n-hexane at 30◦C, p(CO)=
1.0 MPa and p(H2) = 0.2 MPa. Each spectrum is a
vector withn = 664 absorbance values in the interval
[1960, 2120]cm−1. Figure 1 shows 34 of these spectra.
Within this spectral interval the reactant 3,3-dimethyl-
1-butene as well as the hydrido and acyl rhodium com-
plexes are the prevailing components, cf. [15]. This
statement is supported by the distribution of the singular

1980 2000 2020 2040 2060 2080 2100
wavenumber [1/cm]

Given pure component spectra

Figure 3: The two known pure component spectra. The olefin (com-
ponent 1) is shown by a blue line and the hydrido complex (component
3) by a red dash-dotted line.

values. The three largest singular values are character-
istically larger than the remaining singular values which
are close to zero. Thus we sets= 3. Figure 2 shows the
singular values together with the left and right singular
vectors.

Two spectra of the reaction subsystem are known:
The spectrum of the olefin 3,3-dimethyl-1-butene is
available, and the spectrum of the hydrido complex is
known. These two specta are shown in Figure 3.

6.2. Application of the complementarity theorem

The complementarity theorem can easily be applied.
Two of the three pure component spectra are available
so that the simplified complementarity theorem 3.1 can
be used. The concentration profile of the third compo-
nent (acyl complex) is uniquely determined aside from
scaling. Algorithm 1 withs = 3 results in the concen-
tration profileC(:, 2) of the acyl complex, see Figure 4.

6.3. Application of the coupling theorem

Since all but one pure component spectra are avail-
able, Algorithm 3 can directly be applied. Next we ex-
plain the computation of the concentration profile of the
olefin. The profile for the hydrido complex can be com-
puted similarly. After the initialization phase a particu-
lar solutionW of the under-determined system of inho-
mogeneous linear equationsT W(:, 1) = (1, 0)T is com-
puted, see line 9 in Algorithm 3. In Figure 5UΣW(:, 1)
is shown by the solid line. Then the null space ofT is
computed. Figure 5 showsUΣy as a broken line for a
y , 0 from this null space. The affine linear spaceC(1)

in Theorem 3.3 is then spanned by allC(:, 1) = UΣz
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Figure 4: The application of the simplified complementaritytheorem
in the form of Algorithm 1 yields the concentration profileC(:, 2) nor-
malized to maximum 1. Left ordinate shows the non-scaled concen-
tration as resulting from Algorithm 1; the right ordinate shows the
absolute concentration of the acyl complex by using a kinetic model
[26].

with z = W(:, 1) + γy andγ ∈ R. Finally, a real in-
terval forγ is to be determined so thatC(:, 1) satisfies
the two restrictions (I. and II.) from Section 3.4. For
the given data we getγ ∈ [a1, b1] = [1.19, 1.98]. (For
all otherγ eitherC(:, 1) has negative components or the
rank-reduced matrixD−C(:, 1)A(i, :) has negative com-
ponents.)
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Figure 5: Construction of the affine linear space forC(:, 1). All linear
combinations of the particular solutioncp = UΣW(:,1) (solid line)
and the homogeneous solutionsch = UΣy (broken line) span the affine
subspaceC(1) as given in (3). ThenC(:, 1) = cp + γch for feasible
values ofγ.

Figure 6 shows the resulting feasible concentration
profiles for the olefin. Similarly, the feasible concentra-
tion profiles of the hydrido complex are also contained
in a one-dimensional affine subspace. Together with
the nonnegativity restrictions the remaining profiles are
shown in Figure 7.
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Figure 6: Olefin component: Feasible non-scaled concentration pro-
filesC(:, 1) according to the coupling theorem and withγ ∈ [a1, b1] =
[1.19, 1.98].
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Figure 7: Hydrido complex: Feasible non-scaled concentration pro-
files C(:, 3) according to the coupling theorem and which satisfy the
two nonnegativity restriction in Section 3.4 are shown by red curves.

6.4. Complete solution

We have shown above that the complementarity and
coupling theory with two given pure component spectra
uniquely determines one concentration profile and re-
stricts the concentration profiles of the remaining two
components to one-dimensional affine subspaces. Thus
the complete factorizationD = CA has still a single de-
gree of freedom.

If some kinetic model is added (in the form of a soft
constraint), then this remaining single degree of free-
dom can be removed, see [15, 26] for the details. The
resulting factors are shown in Figure 8.

7. Conclusion

The complementarity and coupling theory provides
advantageous tools for multivariate curve resolution
techniques in order to exploit the mutual dependence

8
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Figure 8: Complete factorization of the hydroformylation reaction
system. Blue solid line: olefin component, green broken line: the
acyl complex, red dash-dotted line: the hydrido complex.

of the partial knowledge of one factor and the result-
ing restrictions on the other factor. The mathematical
background and the proofs of the complementarity and
coupling theorems have been presented in [27].

However, it is not evident how these theorems can
practically be applied to spectroscopic data. The cur-
rent paper fills this gap and makes available short pro-
grams inMATLAB which can easily be applied and
adapted to the needs of the users. The application of the
software and the interpretation of its results have been
explained step-by-step. The usefulness of the software
is demonstrated for FTIR spectroscopic data from the
Rhodium-catalyzed hydroformylation process.

Something which is not considered in this paper is the
so-called area of feasible solutions (AFS) and its com-
bination with the complementarity theory. The simul-
taneous representation of all feasible nonnegative solu-
tions in the form of a spectral AFS and a concentrational
AFS is a very helpful and intuitive user interface for the
application of the complementarity theory. For further

details see [4, 29, 31].
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