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Abstract

The partial knowledge of the factors in a multivariate curveresolution problem can simplify the factorization prob-
lem. The complementarity and coupling theory (J. Chemometrics 26 (2012), 526-537) provides precise mathematical
conditions for certain unknown parts of the factors. These constraints are based on a singular value decomposition
(SVD) of the data matrix; they have the form of linear or affine linear spaces which contain the unknown parts of the
pure component factors.

This paper presents a new and simple SVD-free form of the complementarity and coupling theory. The derivation
of these theorems is based on elementary arguments of linearalgebra. The new mathematical form of the theory
allows its easy and straightforward applicability.
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1. Introduction

We consider the multivariate curve resolution prob-
lem to find for a given spectral data matrixD the non-
negative matrix factorizationD = CAT into the pure
component factorsC andA. The following problem was
discussed among some members of a recent conference
on chemometrics (SSC14 in Chia, Italy):

Problem: ”If in an s-component system all
but one pure component spectra are known
and if also the spectral data matrixD is given,
is then the remaining spectrum aside from
scaling uniquely determined?”

Answer: No - this is not true.

The simple numerical counterexample

D =

(
4 2
2 2

)
=

(
2 2
0 2

)

︸     ︷︷     ︸
C

(
1 0
1 1

)

︸    ︷︷    ︸
AT

=

(
3 1
1 1

)

︸     ︷︷     ︸
C̃

(
1 0
1 2

)

︸    ︷︷    ︸
ÃT

(1)

shows for a two-component system (s = 2) that the
spectral data matrixD ∈ R

2×2 has two essentially dif-
ferent nonnegative factorizationsD = CAT even though

the first rows ofAT and ÃT are the same. Further, no
scaling operation or reordering of the components ex-
ists, which allows to transform one of these factoriza-
tions into the other one. All predetermined quantities
are underlined, namely the elements ofD and the first
rows ofAT andÃT . The second rows ofAT andÃT are
non-collinear vectors. Thus the remaining spectrum is
not determined by the given information. This proves
that the assumption is not true.

However, the equation (1) also shows that the second
columns ofC andC̃ are the same (aside from scaling).
Collinearity of these columns is not a coincidence, but
is a well-understood result of the so-called complemen-
tarity theorem [16]. In fact, if all but one pure com-
ponent spectra andD are known, then the complemen-
tary concentration profile, i.e. the concentration profile
of the single component with an unknown spectrum, is
uniquely determined aside from scaling.

1.1. Aim and overview

The aim of this paper is to present a comprehensive
and easily accessible analysis of how to exploit partial
knowledge of the nonnegative factorsC ∈ R

k×s and
A ∈ Rn×s in MCR factorizationsD = CAT for D ∈ Rk×n.
Implications on the remaining unknown parts of the fac-
tors are derived.
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In contrast to the complementarity and coupling the-
ory from [16] we do not refer to a singular value de-
composition ofD. Thus all results are presented in an
SVD-free manner. In Section 2 we start with a system-
atic analysis of the problem for rank-2 matricesD. For
these rank-2 matrices all derivations are only based on
elementary linear algebra. The simple rank-2 approach
is generalized to the general problem in Section 3. The
guiding line for this deepened analysis is the rank-2
approach. This analysis results in an SVD-free repre-
sentation of the complementarity and coupling theory.
Finally, Section 4 is devoted to the analysis of various
cases of simultaneously given spectra and concentration
profiles.

2. Analysis of two-component systems

First, we start with the analysis of two-component
systems which are represented by rank-2 matrices. This
analysis has the advantage of being very simple. Nev-
ertheless, the rank-2 approach is capable to explain the
central idea with a few lines of mathematics. LetD ∈
R

k×n be the spectral data matrix of a two-component
system. Assuming noise-free data, the matrixD has
the rank 2 and can be written by a sum of two dyadic
products

D = CAT = (c1, c2) (a1, a2)T = c1aT
1 + c2aT

2 . (2)

Theci ∈ Rk×1 are the concentration profiles and theai ∈
R

n×1 are the spectra. For this two-component system we
consider the following problem:

Problem 2.1. For a given spectral data matrix D let
additionally one of the four vectors a1, a2, c1 and c2 be
known. Which information can then be derived for the
remaining three vectors?

Without loss of generality Problem 2.1 can be re-
duced to the case thatD and the spectruma1 are known.
This reduction can be justified as follows:

1. If a2 is given, then the problem can be traced back
to the reduced problem of givena1 by simply ex-
changing the indexes 1 and 2.

2. If c1 is given, then transposition of (2) results in

DT = ACT = a1cT
1 + a2cT

2 .

Thereinci and ai have just changed their places.
Thus all results on Problem 2.1 for givena1 can be
translated to Problem 2.1 for the case of givenc1

by simple transposition.

3. If c2 is given, then a combination of the previous
two steps transforms the problem to the reduced
problem with givena1.

All this justifies to present the problem in the follow-
ing general form.

Problem 2.2. Let a k× n rank-2 matrix D be given so
that

D = abT + cdT (3)

with the column vectors a, c ∈ R
k and b, d ∈ R

n. If b
is given, which implications can then be drawn on a, c
and d?

Problem 2.2 complies with Equation (1) and a given
vectorb. A solution is derived by eliminating the un-
knowns in (3). The details of the analysis are presented
in

- Section 2.1 for implications ofb onc,
- Section 2.2 for implications ofb ona,
- Section 2.3 for implications ofb ond.

Remark 2.3. The vector b, whose availability is as-
sumed in the following, must only be known up to scal-
ing. The key point is that for a substitution b→ βb
with β , 0 all results are still valid if the substitution
a→ a/β is applied simultaneously. Then(3) turns into

D = (a/β)(βb)T + cdT .

2.1. From b to c

Let the matrixD and the vectorb be given, i.e. a spec-
trum is predetermined in the sense of (2). Next restric-
tions onc are derived. The complementarity theorem
(Theorem 4.2 in [16]) uses a singular value decompo-
sition (SVD) of D in order to derive restrictions onc.
However, one can easily derive and formulate such re-
strictions without referring to an SVD. The same ob-
servation has already been made by Manne [12] where
in Section 2.1 the same result has been derived for a
two-component system, see also the results of Maeder
[10, 9] and Malinowski [11].

1. Let b ∈ R
n×1 andD ∈ R

k×n be given. Multiplica-
tion of (3) withb results in

Db = a‖b‖2 + c(b, d) (4)

with the Euclidean inner product (x, y) = xTy and
the Euclidean norm‖x‖ = (xT x)1/2.
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Next (4) is used to eliminatea in (3). One gets

D =
Db− c(b, d)
‖b‖2

bT + cdT

or equivalently

D(I − bbT

‖b‖2
) = c (dT − (b, d)

‖b‖2
bT)

︸             ︷︷             ︸
=:yT

. (5)

For givenD andb the left-hand side of (5) can be
computed. The key point is that the right-hand side
of (5) says that this matrix is a rank-1 matrix be-
cause it has the form of a dyadic productcyT for
a vectory ∈ R

n×1. HencecyT is a matrix which
contains in its columns multiples of the vectorc.

We express this relation with thecol operator
which extracts from the rank-1 matrixD(I − bbT

‖b‖2 ) a
normalized vector which is collinear to the desired
vectorc. Thus

ĉ = col
(
D(I −

bbT

‖b‖2
)

)
= c/γ (6)

with an (unknown) nonzero numberγ so that‖̂c‖ =
1.

2. Numerical example: We reconsider Equation (1)
with the known matrixD and with givenb =
(1, 0)T. This yields

D(I − bbT

‖b‖2
) =

(
4 2
2 2

) (
I −

(
1
0

)
(1, 0)

)

(
4 2
2 2

) (
0 0
0 1

)
=

(
0 2
0 2

)
.

The columns of this matrix are multiples of the nor-
malized column vector (1/

√
2, 1/

√
2)T . It holds

that

ĉ = col(
(

0 2
0 2

)
) =

(
1/
√

2
1/
√

2

)

andc = γ̂c with an unknown real numberγ. In
other words the second columns ofC andC̃ in (1)
have been recovered aside from scaling.

2.2. From b to a

Let the matrixD and the vectorb be given. Restric-
tions ona are derived next. The coupling theorem (The-
orem 4.5 in [16]) uses a singular value decomposition
of D in order to derive information ona. Once again,
all this can be done without referring to singular vectors
of D.

1. For givenD ∈ R
k×n andb ∈ R

n×1 one can writec
by (6) in the form

c = γ̂c = γ col(D(I − bbT

‖b‖2
)).

If c = γ̂c with known ĉ and unknownγ is inserted
in (3), then we get

D = abT + γ̂cdT .

Right-multiplication withb results in

Db = a‖b‖2 + γ̂c(b, d).

This equation can be solved fora, which yields

a =
Db
‖b‖2

+ (−γ)
(b, d)
‖b‖2︸      ︷︷      ︸
=:α

ĉ (7)

This is a representation ofa in the form of an affine
space whereα ∈ R is a single degree of freedom
(and where the other quantities are known).

2. Numerical example: TakingD from Equation (1)
and withb = (1, 0)T we get by evaluating (7)

a =
Db
1
+ α

(
1/
√

2
1/
√

2

)
=

(
4
2

)
+ α

(
1/
√

2
1/
√

2

)
.

In fact, settingα = −2
√

2 results ina = (2, 0)T.
This is the first column ofC in (6). Alternatively,
α = −

√
2 givesa = (3, 1)T, which is the first col-

umn ofC̃ in the second factorization in (1).

2.3. From b to d

The non-unique factorization in Equation (1) shows
thatd cannot be uniquely determined from givenD and
b. Next the underlying equations are derived systemati-
cally.

1. Equation (3) reads in transposed form

DT = baT + dcT .

For knownD andb, the vectorc is determined by
Equation (6) in the formc = γ̂c with an unknown
parameterγ. Hence,

DT = baT + γd̂cT .

Right-multiplication withĉ together with the nor-
malization condition‖̂c‖ = 1 yield

DT ĉ = b(a, ĉ) + γd.
3



Equation (7) allows to eliminatea. Thus

DT ĉ = b(
Db
‖b‖2

+ α̂c, ĉ) + γd.

Henced satisfies

γd = DT ĉ− b
‖b‖2

(Db, ĉ) − αb. (8)

Unfortunately, this equation has two free parame-
tersα andγ. For the given two-component system
(or rank-2 system) the three vectorsd, DT ĉ andb
are necessarily linearly dependent. In other words,
the right-hand side of (8) allows to representany
vector in the two-dimensional plane spanned by
DT ĉ andb. Hence, no additional information can
be derived ond.

2. Numerical example: For the factorization in Equa-
tion (1) with b = (1, 0)T we have already deter-
minedĉ = (1, 1)T/

√
2. The two linearly indepen-

dent vectorsb and̂c span the 2D plane. Hence, the
vectord = (1, 1)T, i.e. the second column ofA, and
also the vectord = (1, 2)T, i.e. the second column
of Ã, can be represented by linear combinations of
b andĉ. This underpins the non-uniqueness of the
factorization in Equation (1).

3. General analysis fors-component systems

The results on two-component systems from Section
2 are next generalized to generals-component systems.
To this end letD ∈ R

k×n be a rank-s matrix, which de-
scribes ans-component system so that

D = CAT =

s∑

i=1

cia
T
i .

In order to analyze the impact of partial knowledge of
the factors on the remaining parts, we consider the fol-
lowing partitioning ofC andA

C1 = [c1, . . .cs0] ∈ Rk×s0,

C2 = [cs0+1, . . . cs] ∈ Rk×s−s0,

C = [C1,C2] ,

A1 = [a1, . . .as0] ∈ Rn×s0,

A2 = [as0+1, . . .as] ∈ Rn×s−s0,

A = [A1,A2] .

Typically we assumes0 spectra ors0 concentration pro-
files to be given, i.e.C1 or A1 are assumed to be given.
With these matrices it holds that

D =
s∑

i=1

cia
T
i = C1AT

1 +C2AT
2 . (9)

Remark 3.1. The partitioning introduced above does
not restrict the generality of the approach. If for s0 com-
ponents, either the spectra or the concentration profiles,
are known, then let

K = {i1, i2, . . . , is0}

(”K” for known) be the index set of the known compo-
nents. Further, let

U = {1, 2, . . . , s} \ K

be the set of the remaining indexes of the unknown (”U”
for unknown) components. With these two sets the fol-
lowing theory works in the same way for the matrices

C1 = [ci ] i∈K , C2 = [ci ] i∈U , C = [C1,C2] ,

A1 = [ai ] i∈K , A2 = [ai] i∈U , A = [A1,A2] .

3.1. The complementarity theory

Let eitherA1 orC1 be given. Then the complementar-
ity theorem 4.2 in [16] provides conditions on the com-
plementary factor, i.e. either onC2 or onA2. The math-
ematical analysis in [16] is based on a singular value
decomposition ofD. There the restricting space is con-
structed as the image of the null space of the matrix
A1V, whereV contains in its columns the firsts0 right
singular vectors ofD. For details see Equation (7) in
[16]. The new theorem provides the same information
without referring to an SVD ofD. The new proof is a
direct analog of the vectorial argumentation in Section
2.1. Moreover, this presentation of the complementarity
theory is strongly related to the first theorem of Manne
in [12]. Manne uses an orthonormal basis by the vectors
wm of the known parts of the factor and constructs from
these basis vectorswm a matrixW. Then I −WWT is
used as an orthogonal projector from the spectral data
matrix on the unknown part of the factor. The following
representation of the complementarity theorem does the
same; the relationship to orthogonal projectors is dis-
cussed in Section 3.1.1.

Theorem 3.2 (Complementarity theorem). Let D to-
gether with s0 linearly independent spectra be given.
These spectra form the columns of A1. Then the(s− s0)-
dimensional column space of the matrix C2, which is
spanned by the concentration profiles of the comple-
mentary components, is equal to the column space of
the matrix

D
(
I − A1(AT

1 A1)−1AT
1

)
. (10)

If, alternatively, C1 with linearly independent columns
is given, then the column space of A2, which is spanned

4



by the spectra of the complementary components, is
equal to the(s− s0)-dimensional column space of the
matrix

DT
(
I −C1(CT

1 C1)−1CT
1

)
. (11)

Proof. Right-multiplication of (9) withA1 results in

DA1 = C1AT
1 A1 +C2AT

2 A1.

Thes0 given spectra are linearly independent so thatA1

is a rank-s0 matrix. ThusAT
1 A1 is an invertibles0 × s0

matrix. Hence the last equation can be solved forC1

C1 = (DA1 −C2AT
2 A1)(AT

1 A1)−1. (12)

Insertion of (12) in (9) yields

D = C1AT
1 +C2AT

2

= (DA1 −C2AT
2 A1)(AT

1 A1)−1AT
1 +C2AT

2 ,

which can be written as

D
[
I − A1(AT

1 A1)−1AT
1

]

= C2

[
AT

2 − AT
2 A1(AT

1 A1)−1AT
1

]
.

(13)

This matrix equation says that the column space ofC2

is spanned by the columns of the matrix on the left-hand
side of (13), i.e.D[ I − A1(AT

1 A1)−1AT
1 ].

Equation (11) follows by applying the first statement
to the transposed form of (9)

DT = A1C
T
1 + A2C

T
2 . (14)

Thus (11) can be derived from (10) by substitutingD→
DT andA1→ C1 in (10).

The matrix (10) can easily be computed for givenD
andA1 by solvings0 linear systems of equations within
the regulars0 × s0 matrix AT

1 A1. Analogously (11) can
be computed fromD andC1.

Corollary 3.3. If all but one spectra are known, i.e. s0 =

s− 1, then the concentration profile of the last compo-
nent cs is uniquely determined (aside from scaling). It
holds that

cs = col(D(I − A1(AT
1 A1)−1AT

1 )),

with the column space operatorcol as defined in(6).
Similarly, if s−1 concentration profiles are given by C1,
then the spectrum of the complementary component is
given by

as = col(DT [ I −C1(CT
1 C1)−1CT

1 ]).

Algorithm 1 Simplified complementarity.

Require: D ∈ Rk×n, A ∈ Rn×(s−1), s.
Ensure: Complementary concentrationc.

1: C=D*(eye(n)-A*inv(A’*A)*A’);
2: c=sqrt(diag(C’*C));
3: if max(c) < -min(c), c = -c; end
4: plot(c);

Algorithm 2 Simplified complementarity - noisy data.

Require: D ∈ Rk×n, A ∈ Rn×(s−1), s.
Ensure: Complementary concentrationc.

1: C=D*(eye(n)-A*inv(A’*A)*A’);
2: [c,si,v]=svds(C,1);
3: if max(c) < -min(c), c = -c; end
4: plot(c);

Proof. The matrix (I − A1(AT
1 A1)−1AT

1 ) is a rank-1 ma-
trix and the assertion is just a special case of Theorem
3.2 for s0 = s− 1.

In [17], see Algorithm 1, the Matlab code is provided
for an implementation of the complementarity theory
for the special case ofs0 = s− 1. With the simplified
form (10) or (11) the implementation is possible without
referring to the SVD ofD. In line 1 of Algorithm 1 the
matrixC whose columns are all multiples of the desired
complementary concentration profilec is constructed by
a single command. In line 2 the vectorc is extracted in
a numerically stable way. A possibly wrong sign ofc is
corrected in line 3 and finally the concentration profile
is plotted.

In the case of perturbed data, that isD has a rank
larger thans, the matrixD ∗ (eye(n, n)−A(AT ∗A)−1AT)
is no longer a rank-1 matrix. Then line 2 in Algo-
rithm should be substituted by a better suited way to
extract the vector, which generates the dominant part.
The dominant left-singular vector is the optimal choice,
see Algorithm 2.

3.1.1. Complementarity and projection operators
The complementarity theorem comprises a funda-

mental structure from linear algebra. The right-hand
factors in Equations (10) and (11) are orthogonal pro-
jection operators. This is explained in the following.

Remark 3.4.

1. In Equation(10) the right-hand factor

P = I − A1(AT
1 A1)−1AT

1
5



.

.
< A1 >

< A2 >

P

< PA2 >, 0

< PA1 >= 0

AT
1 AT

2

PC1

C1

C2

C2+

+

=

( )

0 (PA2)T

Figure 1: The geometry of the projectionP. Left: P maps the column space< A1 > of the matrixA1 to null space. It also projects the column
space ofA2 to the orthogonal complement< A1 >

⊥. Right: The same projection applied from the right-hand side toD = C1AT
1 +C2AT

2 maps the
column space ofD to the desired column space ofC2.

is an orthogonal projection operator on the or-
thogonal complement of the column space of A1 ∈
R

n×s0. For basic properties of orthogonal projec-
tion operators see monographs on matrix algebra,
e.g. Section 2.5.1 in [6] or Section 5.13 in [13].
See also Figure 1 for an illustration of the geomet-
ric properties.

Similarly, the matrix Q= I −C1(CT
1 C1)−1CT

1 is an
orthogonal projection operator on the orthogonal
complement of the column space of C1 ∈ Rk×s0.

2. The fundamental functionality of the complemen-
tarity theory can be expressed with respect to the
projection operator notation as follows. Equation
(10) is rewritten as

DP = CATP

= [C1,C2][A1,A2]
TP

= [C1,C2]

(
AT

1 P
AT

2 P

)
= [C1,C2]

(
(PA1)T

(PA2)T

)

= [C1,C2]

(
0

(PA2)T

)

= 0+C2(PA2)T .

This again shows that the column space of the ac-
cessible matrix DP provides the column space of
the unknown matrix C2. The right subplot of Figure
1 illustrates the impact of the projection operator
P in the sum of dyadic products D= C1AT

1 +C2AT
2 .

3.2. The coupling theory

Once again, we assumes0 pure component spectra in
the columns ofA1 to be given. We derive implications
on the concentration profiles of the remaining compo-
nents, i.e.C2. The following theorem is the SVD-free
counterpart of Theorem 4.6 in [16].

Theorem 3.5 (Coupling theory). Let D together with
A1 be given. Then the ith concentration profile ci for
i = 1, . . . , s0 is contained in the(s − s0)-dimensional
affine subspace

ci ∈ DA1(AT
1 A1)−1ei + span{Z} (15)

with
Z = D

[
I − A1(AT

1 A1)−1AT
1

]
.

Therein ei is the ith standard basis vector (the ith col-
umn of the identity matrix) andspan{Z} is the(s− s0)-
dimensional column space of Z.

Secondly, if C1 with linearly independent columns is
given, then for i= 1, . . . , s0 the ith spectrum ai is con-
tained in the(s− s0)-dimensional affine subspace

ai ∈ DTC1(CT
1 C1)−1ei + span{Y} (16)

with
Y = DT

[
I −C1(CT

1 C1)−1CT
1

]
.

Proof. Right multiplication of (12) with theith standard
basis vectorei an i ∈ {1, . . . , s0} yields theith concen-
tration profile

ci = C1ei = DA1(AT
1 A1)−1ei −C2AT

2 A1(AT
1 A1)−1ei .

(17)

In this equationA2 is unknown and thusci cannot be
determined in a unique way. However, the (s − s0)-
dimensional column space ofC2 according to (13) is
equal to the column space of

Z = D
[
I − A1(AT

1 A1)−1AT
1

]
.

Hence,
ci ∈ DA1(AT

1 A1)−1ei + span{Z}.
A direct application of this first result to the transposed
decomposition (14) results in (16).
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4. Analysis of cases of simultaneously known spec-
tra and concentration profiles

Up to now only those cases have been analyzed in
which either pure component spectra or pure component
concentration profiles are known. This theory can be
extended to cases of simultaneously known spectra and
concentration profiles.

As in Section 3 we consider a rank-smatrixD ∈ Rk×n

and its dyadic-sum representation

D =
s∑

i=1

cia
T
i (18)

with the column vectorsci ∈ R
k andai ∈ R

n. We ana-
lyze in

- Section 4.1 the case of simultaneously givencℓ and
aℓ (same indexℓ),

- Section 4.2 the case of givencℓ andam with differ-
ent indexesℓ , m.

4.1. Simultaneously given pairs(cℓ, aℓ) and matrix de-
flation

If for the same component, i.e. the same indexℓ, the
concentration profilecℓ is given together with the spec-
trumaℓ, then thisℓ-th component can completely be re-
moved from the system. Mathematically this is a sub-
traction of the rank-1 matrixcℓaT

ℓ
. Then

D − cℓa
T
ℓ =

s∑

i=1
i,ℓ

cia
T
i

is a “deflated” rank-(s− 1) matrix. The pure compo-
nent factorization problem can then be considered for
the deflated matrix. This makes the problem more sim-
ple. This problem of splitting-off certain components
is well-known from the Rank Annihilation Factor Anal-
ysis (RAFA), see, e.g., [8, 1]. See also [4] on rank-1
downdates in the thematic frame of nonnegative matrix
factorizations.

However, in typical applicationscℓ andaℓ are only
known up to scaling (as spectra from the shelf or typ-
ical assumptions on the concentration profiles are not
given in absolute values). Instead ofcℓ we consider a
collinear (nonzero) vector̃cℓ and instead ofaℓ we con-
sider the collinear vector̃aℓ. We assume that onlỹcℓ and
ãℓ are known in order to express the loss of the scaling
information. Then we consider the matrix

D̃ = D − ωc̃ℓãℓ
T
.

The problem is to determine the parameterω so thatD̃
is a deflated rank-(s− 1) matrix.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω

σ
2

Second singular value ofD − ωc̃1ã1
T

Figure 2: The second singular value ofD − ωc̃1ã1
T as a function of

ω ∈ [0, 0.5]. Forω = 1/4 the second singular value is zero. Thus the
matrix has the rank 1.

This problem can easily be solved numerically by
computing thesth singular value of the matrix̃D as a
function ofω. This is demonstrated numerically for the
example problem (1). We consider the first row of Equa-
tion (1) with

D =

(
4 2
2 2

)

andc̃1 = (4, 0)T andã1 = (2, 0)T. Hence

D̃ = D − ωc̃1ã1
T
=

(
4 2
2 2

)
− ω

(
8 0
0 0

)

=

(
4− 8ω 2

2 2

)
.

Only for ω = 1/4 the matrixD̃ is a rank-1 matrix and
the second singular value of this matrix equals 0.

The numerical evaluation ofσ2(D − ωc̃1ã1
T ), where

σ2 denotes the second singular value of theω-
dependent matrix, is shown in Figure 2 forω ∈ [0, 0.5].
The clear minimum atω = 1/4 confirms the correct-
ness.

4.2. Independent pairs(cℓ, am) with ℓ , m

In order to illustrate that for independent indexesℓ
and m one cannot extract very much information, we
reconsider the rank-2 model problem

D − abT = cdT

from Section 2. We assume thatD, b and c are the
known quantities. It is an interesting fact that even then
the factorization is not unique. Different factorizations
exist, which cannot be converted into each other by triv-
ial scaling or reordering operations. This is illustrated,
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once again, by the example matrixD from (1).

D =

(
4 2
2 2

)
=

(
2 2
0 2

)

︸     ︷︷     ︸
C

(
1 0
1 1

)

︸    ︷︷    ︸
AT

=

(
3 2
1 2

)

︸     ︷︷     ︸
C̃

(
1 0
1
2 1

)

︸    ︷︷    ︸
ÃT

(19)

Given matrix elements are underlined, namelyD as well
as b and c. The first columns ofC and C̃ are non-
collinear vectors. The same holds for the second rows
of A and Ã. Hencec andd cannot be uniquely deter-
mined. Hence essentially different nonnegative factor-
izations exist.

5. Numerical studies in the literature

The complementarity and coupling theory has al-
ready successfully been applied to model and experi-
mental FT-IR data from the hydroformylation process
in [16] and to UV-VIS data from the formation of haf-
nacyclopentene in [18]. Aspects of its implementation
in its SVD-bound form are presented in [17]. Further,
implications on the Area of Feasible Solutions (AFS)
are treated in [19].

Beyramysoltan et al. [3, 2] and Rajkó et al. [15] apply
the complementarity theory, also called duality theory
[5, 14], primarily to model data. In the recent work [7]
Hemmateeneejad et al. use the theory in order to extract
spectral information on methanol-water associates.

The new SVD-free approach to the complementarity
and coupling theory for all these model and experimen-
tal data sets produces the same mathematical results.
For perturbed experimental data for ans-component
system, one can apply the theory to the rank-sapproxi-
mation of the spectral data matrix.

6. Conclusion

In recent years the complementarity/duality theory
with its conceptual basis by Manne, Maeder and Ma-
linowski has increasingly gained importance as a valu-
able tool for extracting pure component information
from systems with partially known factors. The SVD-
free approach to the complementarity and coupling the-
ory can hopefully foster the widespread application of
these techniques. The results of the SVD-free com-
plementarity theory are equivalent to the Manne theory.
The SVD-free coupling theory is a new generalization.

Finally, a deepened understanding of the complemen-
tarity/coupling theory is supported by its interpretation
in terms of orthogonal projection operators, see Remark
3.4, due to the simple and evident geometry of a projec-
tion step.
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