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Abstract

Multivariate curve resolution techniques allow to uncoverfrom a series of spectra (of a chemical reaction system) the
underlying spectra of the pure components and the associated concentration profiles along the time axis. Usually a
range of feasible solutions exists due to the so-called rotational ambiguity. Any additional information on the system
should be utilized to reduce this ambiguity.

Sometimes the pure component spectra of certain reactants or products are known or the concentration profiles of
the same or other species are available. This valuable information should be used in the computational procedure of a
multivariate curve resolution technique.

The aim of this paper is to show how such supplemental information on the components can be exploited. The
knowledge of spectra leads to linear restrictions on the concentration profiles of the complementary species and vice
versa. Further affine linear restrictions can be applied to pairs of a concentration profile and the associated spectrum
of a species. These (affine) linear constraints can also be combined with the usual non-negativity restrictions. These
arguments can reduce the rotational ambiguity considerably. In special cases it is possible to determine the unknown
concentration profile or the spectrum of a species only from these constraints.

Key words: chemometrics, factor analysis, pure component decomposition, non-negative matrix factorization,
spectral recovery.

1. Introduction

The aim of a model-free pure component decomposi-
tion is to extract the pure component spectra and the as-
sociated concentration profiles from the series of spec-
tra of the (chemical reaction) system. In the best case
no additional information is used for this computational
procedure; even the number of reacting species is a re-
sult.

Typically the spectroscopic data is provided on a
frequency× time grid in the form of a matrix; this data
matrix is denoted byD. Due to the Lambert-Beer law
a factorization ofD into matrix factorsC andA is de-
sired, whereC column-wise contains the concentration
profiles andA row-wise contains the pure component
spectra (molar extinction coefficients). AsC andA are
non-negative matrices, the pure component decomposi-
tion can be considered as the problem of the computa-
tion of a non-negative matrix factorization. However,
this mathematical problem (aside from singular excep-
tional cases) turns out to have a continuum of possible

solutions. Most of these solutions do not have a chem-
ical/physical meaning or importance and should be dis-
regarded. These (so-called) abstract factors constitute a
considerable obstacle for a fast and stable (hard) model-
free pure component decomposition. There is a vast lit-
erature on these methods, see e.g. [17, 18] and the ref-
erences therein.

Often some additional facts on the chemical reaction
system are known. Sometimes the number of starting
reactants is given and/or some of their pure component
spectra are available. Further the spectra of the main
products might be accessible or even those of interme-
diary products. All these data reduce the set of the math-
ematically feasible factorizations to those factorizations
which are consistent with the pre-given supplemental
data.

The goal of this paper is a systematic analysis of the
relation between such supplemental data and the result-
ing constraints on the set of feasible solutions in order
to extract the relevant and chemically meaningful solu-
tions. We derive the results (in the form of a couple of

∗ Correspondence to: K. Neymeyr, Universität Rostock, Institut für Mathematik, Ulmenstrasse 69, 18057 Rostock, Germany. June 10, 2012



theorems) by combining the Lambert-Beer law with a
singular value decomposition (SVD) of the data matrix
D. To this end we apply various arguments from lin-
ear algebra to the columns of the concentration matrix
C and rows of the absorption matrixA.

The paper is organized as follows. In Section 2 the
problem of a pure component decomposition is intro-
duced and classical approaches to its solution are pre-
sented. Some comments on the enclosure of the range of
admissible solutions follow in Section 3. Section 4 con-
tains the main mathematical results. These results are
linear constraints on “complementary species” and also
affine linear constraints coupling the spectrum and the
concentration profile for particular species. All these re-
strictions are combined with the typical non-negativity
constraints. To demonstrate the usefulness of the ar-
guments we apply the theorems to a three-component
model problem in Section 5. Further a three-component
reaction system which results in the formation of hafna-
cyclopentene is analyzed in Section 6.

2. Self-modeling curve resolution

The Lambert-Beer law only holds in the absence of
error sources like noise and nonlinearities. Its perturbed
form reads

D = CA+ E.

The data matrixD ∈ Rk×n contains in its rowsk spectra
(taken at different times from a chemical reaction sys-
tem); each spectrum is given atn frequencies (or spec-
tral channels). If the reaction system containssspecies,
then the concentration matrixC ∈ R

k×s contains in
its s columns the concentration profiles. The matrix
A ∈ Rs×n holds the associatedspure component spectra
in the rows. The error matrixE ∈ R

k×n comprises the
mentioned deviations from the linear Lambert-Beer law.

The problem of a self-modeling curve resolution
technique (hard model-free analysis) is to compute only
from the given matrixD the number of speciess to-
gether with proper matrix factorsC and A in such a
way that the error matrixD − CA is close to the zero
matrix. For such hard model-free methods we refer to
[16, 17, 18] and the references therein.

2.1. The mathematical factorization problem

Mathematically the (hard) model-free analysis in ab-
sence of error terms is a factorization problem for the
matrix D. The factorsC andA are non-negative matri-
ces. We refer to this problem as

Problem 2.1 (Non-negative matrix factorization). For
D ∈ R

k×n
+ with rank(D) = s the problem is to find non-

negative matrix factors so that

D = CA (1)

with C ∈ Rk×s
+ and A∈ Rs×n

+ .

Therein the ranksof D equals the number of columns
of C and the number of rows ofA. Problem 2.1 is a
so-called inverse problem. It is well known that an ar-
bitrary non-negativek× n matrix D with 2 < rank(D) <
min(k, n), and hence min(k, n) > 3, may have no factor-
ization of the form (1); for a discussion of the existence
and uniqueness of solutions, see [5, 6, 33, 34]. For spec-
tral data matricesD the existence of an “approximate”
factorization (1) can be assumed, sinceD (due to the
Lambert-Beer law) originates from the physical quanti-
ties which are inscribed into the matrix factorsC andA.
The factorization “reverses” the physics of the problem.

However, problem 2.1 usually has a continuum of
possible solutions. The insertion of an invertible ma-
trix T ∈ R

s×s and its inverse in (1) results in a further
factorization

D = (CT−1) (T A). (2)

If these transformed factorsCT−1 and T A are non-
negative matrices (which can be achieved for properT),
then a further mathematically feasible solution is found.
Typically the factorization problem does not have a
unique solution due to the rotational ambiguity induced
by T. We ignore the trivial non-uniqueness which orig-
inates from permuted diagonal matricesT, since such
matrices correspond to positively scaled and reordered
solutions. On the uniqueness question see Manne’s the-
orems [20], Malinowski [19] and the work of Rajkó [29]
together with the references therein. For the mathemat-
ical background of this problem see e.g. [7, 31]. To find
the correct and chemically relevant solution within the
set of (mathematically) feasible solutions one can try to
compute or to characterize the whole set of feasible so-
lutions [9, 10, 16, 25]. Then one hopes to detect the
desired solution within this set. Alternatively, one can
apply proper regularizations to the factorization prob-
lem and hopes to steer the factorization procedure in the
correct direction [18, 22, 23, 36].

In any case the first step of the computational process
is the construction of a truncated singular value decom-
position to construct a basis for the factorsC and A.
This is the classical approach of Lawton and Sylvestre
[16].
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2.2. Factorization by the singular value decomposition

The singular value decomposition (SVD) [11] for a
givenD ∈ Rk×n reads

D = UΣVT

with orthogonal matricesU ∈ Rk×k andV ∈ Rn×n. The
diagonal matrixΣ ∈ Rk×n

Σi, j =

{

σi for i = j,
0 for i , j,

contains the non-negative singular valuesσi in decreas-
ing order withi.

If D has the ranks, then the SVD can be reduced to

D = ŨΣ̃Ṽ
T

(3)

whereŨ is a submatrix ofU which contains thes left
singular vectors being associated with the non-zero sin-
gular values. Further̃V is built from the associateds
right singular vectors and̃Σ is the leadings× s subma-
trix of Σ̃.

The SVD provides a factorization ofD. In the con-
text of a self-modeling curve resolution techniqueŨΣ̃
andṼ

T
are calledabstract factors; these factors usually

contain negative components and cannot be used for a
chemical/physical interpretation. The trick from (2) to
introduce a proper transformation matrix and its inverse
is decisive for a successful solution of the reconstruc-
tion problem; see, among many others, the references
[1, 10, 16, 18, 22, 35]. By means of a properT ∈ R

s×s

it is possible to recover the factorsC andA as follows

D = ŨΣ̃T−1
︸  ︷︷  ︸

C

TṼ
T

︸︷︷︸

A

. (4)

Thus the aim of a self-modeling curve resolution
(SMCR) technique is to construct just such a suitable
transformation matrixT.

3. Enclosure of solutions

The rotational ambiguity of the factorsC and A is
an annoying fact which complicates the development
of universal and stable SMCR algorithms. The com-
putational (and sometimes analytical) determination of
the range of feasible solutions can help in the analysis
of chemical reaction systems. Here a brief overview is
given on classical and more recent analytical and nu-
merical techniques on the enclosure of feasible solu-
tions; these techniques are essentially based on the re-
quired non-negativity of the solutions.

3.1. Enclosure of feasible solutions
The range of admissible solutions for a two-

component (s = 2) system has partly been analyzed
analytically by Lawton and Sylvestre [16]. This work
is among the earliest “chemometric” publications. Fur-
ther Maeder and his coworkers contributed to this topic
[1, 35]; see also the papers of Rajkó and István [28, 30].

For dimensionss > 2 a comparable analysis gets
much harder. For three-component systems Borgen et
al. did pioneering work [3, 4]. Rajko et al. improved the
analytical solution for three-component systems with
computer geometry tools (Borgen plots), see [26, 27]
and the references in these papers. A novel approach to
compute the boundaries of the set (or manifold) of so-
lutions for three-component systems has been presented
by Golshan, Abdollahi and Maeder in 2011 [10].

In some of these works the Perron-Frobenius theo-
rem [21] appears as an important tool. This theorem
characterizes the largest eigenvalue (singular value) and
the associated singular vector of a non-negative matrix.
Boundaries for the range of possible solutions can be
derived by determining all transformations of the first
two (or three) right singular vectors which result in non-
negative spectra. The associated inverse transforma-
tions can be applied to the left singular vectors and must
also result in non-negative concentration profiles. This
approach has been used e.g. in [10, 16] to construct op-
timal factorsC andA which also fulfill D ≈ CA.

However, various other hard and soft constraints can
be applied. Sometimes even a pre-given kinetic model
can be used for the regularization of the optimization
procedure. This allows to find optimal kinetic constants
by a kinetic regularization together with optimizedC
andA simultaneously, see [12, 14, 32].

3.2. Usage of supplementary information
Self-modeling curve resolution techniques arehard

model-freemethods in a sense that no a-priori informa-
tion on the chemical system is needed for the construc-
tion of the factorsC andA. However, sometimes certain
information on the system is available, e.g., some of the
pure component spectra of the starting reactants or of
certain products may be known from separate measure-
ments. Further the number of starting reactants or prod-
ucts may be given. Such additional information on the
system should be utilized in order to reduce the range
of admissible non-negative factorizations. This data can
be used as a hard (or even soft) constraint onC andA
while minimizing the reconstruction errorD − CA. A
mathematical approach of how to exploit such informa-
tion in the computational procedure is presented in the
next section.
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4. Reduction of the rotational ambiguity

As explained in Section 3 any additional information
on the chemical reaction system can be exploited to re-
duce the rotational ambiguity of the solutions of a self-
modeling curve resolution technique. Next we use ar-
guments of linear algebra to prove

1. thecomplementarity theorem4.2 which allows to
impose restrictions on the concentration profiles of
complementary species if certain spectra are given
(and vice versa),

2. the coupling theorems4.5 and 4.6 which prove
affine linear constraints for pairs of a spectrum and
the associated concentration profile,

3. a non-negativity theorem4.7 which provides ad-
missible ranges for the components that can be de-
rived from the non-negativity constraints.

In this section we assume the Lambert-Beer law to
hold exactly, i.e.,D is given as the exact product ofC
and A. Hence we ignore any nonlinearities and error
terms. Therefore the existence of a solution of Problem
2.1 is guaranteed. The results of this section can be ap-
plied to practical data (containing error terms), which is
shown in Section 6. However, with a decreasing signal-
to-noise ratio the application of the results gets harder.

It is worth to note that the complementarity-coupling
theorems are different from the duality results as in-
troduced by Henry [13] for multivariate receptor mod-
eling and discussed by Rajkó [24] in the SMCR con-
text. This duality approach uses the non-negativity con-
straints to find restrictions on the feasible regions and
works with the ”external” matrices̃U andṼ in (4). In
contrast to this, the complementarity-couplingapproach
is based on the partial knowledge of the factorsC or A
and uses the coupling through the ”inner” matrix pair
T andT−1 in (4) in order to derive restrictions on the
feasible regions. The mathematical arguments also rely
on rank/dimension arguments which are combined with
non-negativity constriants.

4.1. The colon notation
A useful notation to specify a row or a column of a

matrix is thecolon notation. For a matrixM ∈ Rn×m its
kth row is denoted by

M(k, :) = (mk1, . . . ,mkm)

and itskth column is

M(:, k) =





m1k
...

mnk





.

Further, we use the colon notation to extract sub-
matrices. If 1≤ i1 ≤ i2 ≤ n and 1≤ j1 ≤ j2 ≤ m,
thenM(i1 : i2, j1 : j2) is the submatrix ofM which results
from extracting the rowsi1 throughi2 and the columns
j1 through j2. For example one gets

M(3 :4, 2:5)=

(

m32 m33 m34 m35

m42 m43 m44 m45

)

.

Then-by-n identity matrix is denoted byIn with

In = (e1, . . . , en)

whereek is the standard basis vector

ek = ( 0, . . . , 0
︸  ︷︷  ︸

(k−1)−times

, 1, 0, . . . , 0
︸  ︷︷  ︸

(n−k)−times

)T . (5)

Sub-matrices of the identity matrix can be used to ex-
tract sub-matrices ofM in the following way

M(:, k: l) = M I (:, k: l) and M(k: l, :) = I (k: l, :) M.

In words, the right-multiplication withI (:, k : l) extracts
columns fromM and left-multiplication withI (k : l, :)
extracts rows fromM.

4.2. The complementarity theorem

Next we consider the situation that one (or even more
than one) of the pure component spectra are known. A
typical case is that these known spectra are those of the
reactants of the chemical reaction; sometimes the spec-
tra of certain products are also given. This supplemen-
tary knowledge of the chemical system should be ex-
ploited within the computation of the pure component
factorization ofD. Theorem 4.2 shows that such addi-
tional information on the columns ofA imposes restric-
tions on thecomplementarycolumns of the concentra-
tion matrix C. These restrictions are expressed in the
form of linear equations and can be used to reduce the
rotational ambiguity of the decomposition.

The special case thats− 1 pure component spectra
are known within ans-component system is discussed
in Corollary 4.3. For this problem the complementarity
principle shows that the concentration profile of the sin-
gle remaining component is unique (aside from scaling).
In Sec. 4.3 further theorems are proved, which charac-
terize the concentration profiles of the same species for
which the spectra are available.

Lemma 4.1 proves an auxiliary result which is re-
quired for the proof of Theorem 4.2.
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Lemma 4.1. Let T ∈ Rs×s be a regular matrix and1 ≤
s0 < s. Then

T(1 : s0, :)y = 0

holds if and only if y∈ Rs is of the form

y = T−1(:, s0 + 1 : s)z

for a proper z∈ Rs−s0.

Proof. Any regular matrixT satisfies

TT−1 = I .

Left-multiplication of this equation withI (1 : s0, :) ex-
tracts the firsts0 rows and right-multiplication with
I (:, s0 + 1:s) extracts the lasts− s0 columns so that

T(1 : s0, :)T−1(:, s0 + 1 : s) = 0 ∈ Rs0×s−s0, (6)

i.e. thes0 × s− s0 zero-matrix.

If y = T−1(:, s0 + 1 : s)z with z ∈ R
s−s0, then left

multiplication withT(1 :s0, :) together with (6) yield

T(1 :s0, :)y = T(1 :s0, :)T−1(:, s0 + 1:s)z= 0z= 0.

To prove the other direction just observe that the
columns ofT−1(:, s0 + 1 : s) build a basis of the null
space ofT(1 : s0, :). This argument reads in detailed
form as follows: LetN be the null space (or kernel)
of T(1 : s0, :) ∈ R

s0×s, i.e. any y ∈ N satisfies
T(1 : s0, :)y = 0 and vice versa. AsT is a regular ma-
trix the rank of its submatrixT(1 : s0, :) is s0 and the
dimension of its null spaceN equalss− s0.

Further the dimension of the column space (or image)
M of T−1(:, s0 + 1 : s) equalss− s0 (once again due to
the regularity ofT).

Equation (6) proves thatM is a subspace ofN and
dimM = dimN proves thatM = N. Thus anyy ∈ N
with T(1 : s0, :)y = 0 can be represented by az ∈ R

s−s0

so thaty = T−1(:, s0 + 1:s)z. �

The central theorem is as follows; thereinRn×m
+ de-

notes the set ofn-by-m real matrices with non-negative
entries.

Theorem 4.2. Let D ∈ R
k×n
+ with rank(D) = s be de-

composable in a way that D= CA with C ∈ R
k×s
+ and

A ∈ R
s×n
+ . The truncated singular value decomposition

of D, see (3), reads D= ŨΣ̃Ṽ
T

with Ũ and Ṽ having
the rank s.

We assume that s0 rows (i.e., s0 spectra) of the factor
A are known with s0 < s. Without loss of generality
these known spectra can be placed in the first s0 rows of
A. Thus A(1 :s0, :) ∈ Rs0×n is given.

Then the complementary columns C(:, i), i = s0 +

1, . . . , s, of C are contained in the(s− s0)-dimensional
vector space

{ŨΣ̃y : y ∈ Rs with A(1 :s0, :)Ṽ y= 0}, (7)

which is a linear subspace of theRk. (In words (7) de-
fines the set of all vectors̃UΣ̃y, where y is a vector in
theRs satisfying A(1 : s0, :)Ṽ y = 0. Alternatively, one
can describe the set (7) as the kernel (null space) of the
matrix A(1 : s0, :)Ṽ which is multiplied from the left by
ŨΣ̃.)

Proof. A regular matrixT ∈ R
s×s exists which relates

the factors inD = CA to the factors inD = (ŨΣ̃)Ṽ
T

in
a way that

C = ŨΣ̃T−1 and A = TṼ
T
;

for a proof see, e.g., Lemma 2.1 in [22].
The pre-given firsts0 rows ofA can be written as

I (1 :s0, :) A = A(1 :s0, :) = T(1 :s0, :)Ṽ
T
.

Right multiplication withṼ yields

A(1 :s0, :)Ṽ = T(1 :s0, :)Ṽ
T
Ṽ = T(1 :s0, :) (8)

so that the firsts0 rows ofT are also known.
Further fromC = ŨΣ̃T−1 we get for itss− s0 last

columns

C(:, s0 + 1:s) = C I(:, s0 + 1:s) = ŨΣ̃T−1(:, s0 + 1:s).

The image (or column space) of this matrix is

I = {ŨΣ̃T−1(:, s0 + 1:s)z for z ∈ Rs−s0}.

Lemma 4.1 allows to rewrite this space as

I = {ŨΣ̃y : with y ∈ Rs so thatT(1 :s0, :)y = 0}.

Insertion of (8) allows to eliminateT(1 : s0, :) and
proves the proposition. �

Next we consider the extremal case thats0 = s− 1.
This means that only one pure component spectrum is
unknown. Then Theorem 4.2 shows that the concentra-
tion profile of this single component is uniquely deter-
mined (aside from scaling).

Corollary 4.3. On the assumptions of Theorem 4.2 as-
sume the first s−1 rows of A to be given. Then the com-
plementary concentration profile C(:, s) is unique (aside
from scaling).
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Proof. The (s− 1 × s)-matrix A(1 : s− 1, :)Ṽ has the
maximal ranks− 1 since rank(D) = s. Hence its null
space is a one-dimensional space and has the form{ty :
t ∈ R} for a propery , 0. Theorem 4.2 shows that the
concentration profile readsC(:, s) = ŨΣ̃yt with a proper
scaling constantt ∈ R. �

Remark 4.4. The complementarity theorem 4.2 can
also be formulated for pre-given columns of C and the
resulting implications on the complementary rows of A.
This means that for known concentration profiles (i.e.,
some of the columns of C are given) the spectra of the
complementary species are characterized by a condition
like (7). The direct pendant of Corollary 4.3 reads as
follows: If (for some reason) the concentration profiles
of s− 1 components are available, then the spectrum
of the single remaining species is uniquely determined
(aside from non-negative scaling).

4.3. The coupling theorems

In Sec. 4.2 we have analyzed the way in which the
knowledge ofs0 spectra imposes restrictions on the
concentration profiles of thecomplementaryspecies in-
dexed withs0 + 1, . . . , s. Next we analyze the way in
which the knowledge of certain pure component spec-
tra affects the concentration profiles of just the same
species. This analysis results in affine-linear constraints
which are formulated in thecoupling theorem4.5. Ad-
ditionally, the non-negativity constraints can be used to
formulate further restrictions (in order to reduce the ro-
tational ambiguity); this is the topic of Sec. 4.4.

The theorem (once again) exploits the relation of the
pure component factorization ofD with the truncated
singular value decomposition (4). The key observation
is that the “subtraction” of a single component from the
system can be represented by

D −C(:, i)A(i, :),

whereC(:, i)A(i, :) is a dyadic productwith the rank 1.
If A(i, :) is known, then the correct concentration profile
C(:, i) as an element from the column space ofD satis-
fies the constraint rank(D − C(:, i)A(i, :)) = s− 1, since
the subtraction ofC(:, i)A(i, :) “removes” theith species
from the system. In other words the rank reduction by 1
is a constraint on the unknown profileC(:, i).

Theorem 4.5. Let D ∈ R
k×n
+ with rank(D) = s be

decomposable so that D= CA with C ∈ R
k×s
+ and

A ∈ R
s×n
+ . Let ŨΣ̃Ṽ

T
be a truncated singular value

decomposition of D.

If the ith row of A is known, then the associated col-
umn C(:, i) is an element of the(s − 1)-dimensional
affine-linear space

{ŨΣ̃y : y ∈ Rs with A(i, :)Ṽy− 1 = 0} ⊂ R
k. (9)

Proof. The proof is similar to that of Theorem 4.2. The
ith row of matrixT is known sinceT(i, :) = A(i, :)Ṽ.
The ith diagonal element ofTT−1 = I is T(i, :)T−1(:
, i) = 1. HenceA(i, :)ṼT−1(:, i) = 1. Therefore theith
column vectorT−1(:, i) is an element of the affine-linear
space{y ∈ R

s : A(i, :)Ṽy = 1} with the dimension
s − 1. SinceC(:, i) = ŨΣ̃T−1(:, i) the affine space of
admissible solutionsC(:, i) has the form{ŨΣ̃y : y ∈
R

s, A(i, :)Ṽy− 1 = 0} which is a subset of theRk. �

This theorem can also be formulated in a form which
treats the case thats0 ≥ 1 pure component spectra are
known. Then the space of admissible concentration pro-
files is an (s− s0)-dimensional subspace. This form of
the Theorem 4.5 is similar to Theorem 4.2.

Theorem 4.6. Let D ∈ Rk×n
+ with rank(D) = s which is

decomposable in D= CA with C∈ Rk×s
+ and A∈ Rs×n

+ .
Let ŨΣ̃Ṽ

T
be the truncated singular value decomposi-

tion of D. We assume that the first s0 rows of A are
known.

Then for each i, i= 1, . . . . , s0, it holds that the con-
centration profile C(:, i) is contained in the affine-linear
vector space

{ŨΣ̃y : y ∈ Rs,A(1 : s0, :)Ṽy= ei} ⊂ R
k (10)

whose dimension is s− s0. Therein ei ∈ R
s0 is the ith

standard basis vector, see (5).

Proof. We proceed as in the proof of Thm. 4.5. How-
ever, we considerT( j, :) = A( j, :)Ṽ and we getT( j, :
)T−1(:, i) = 0 if j , i. Therefore,A( j, :)ṼT−1(:, i) = 0.
From this one gets thatC(:, i) is an element of{ŨΣ̃y :
y ∈ R

s, A( j, :)Ṽy = 0}. Combining this with the re-
sult of Thm. 4.5 shows thatA(1 : s0, :)Ṽy = ei with the
standard basis vectorei . �

4.4. Non-negativity

Let us review what is known on the columns ofC and
the rows ofA. First, by definition, the columns ofC are
vectors from theRk and the rows ofA are from theRn.
Second, the singular value decomposition providess-
dimensional subspaces (namely the column space ofŨ
and the column space of̃V) which contain the desired
concentration profiles and spectra. Third, the Theorems
4.2 and 4.5 impose additional constraints on these solu-
tions. These constraints are valuable in order to reduce
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the rotational ambiguity, i.e., to reduce the set of ad-
missible factorizations. Sometimes (in favorable cases)
certain concentration profiles or spectra are uniquely de-
termined (as in Corollary 4.3).

Additionally, there are thenon-negativity constraints
on the factorsC andA. These constraints can be merged
with the spaces given in (7) and (9). Due to the nature
of these non-negativity constraints (which imply bounds
on the scaling factors) one getssubsetsof admissible
solutions of the linear and affine-linear spaces (7) and
(9). Theorem 4.7 deals with the case of an affine-linear
space; in the case of a vector space only (non-useful)
lower bounds equal to 0 can be derived.

Theorem 4.7. On the assumptions of Theorem 4.5 let
c̄(i) ∈ Rk be a vector (of upper bounds for C(:, i)) whose
components are defined as

(c̄(i)) j := min
ℓ = 1, . . . , n,

Aiℓ > 0

D jℓ

Aiℓ
, for j = 1, . . . , k.

Then the set(9) of admissible concentration profiles can
be reduced to

{ŨΣ̃y : y ∈ Rs with A(i, :)Ṽy= 1

and0 ≤ ŨΣ̃y ≤ c̄(i)}.
(11)

In (11) the vector inequalities are to be interpreted
component-wise.

Proof. The matricesC andA are component-wise non-
negative. Therefore for allj, ℓ, i it holds that

C ji Aiℓ ≤

s∑

k=1

C jkAkℓ = D jℓ,

which impliesC ji ≤ D jℓ/Aiℓ if Aiℓ , 0. Thus

C ji ≤ min
ℓ = 1, . . . , n,

Aiℓ > 0

D jℓ

Aiℓ
, i = 1, . . . , k. (12)

The right-hand side defines the upper bound (¯c(i)) j . The-
orem 4.5 provides the space (9) of possible solutions for
the concentration profilesC(:, i). The combination of
the bound (12) with (9) proves the proposition. �

Theorem 4.7 can be generalized to the case that sev-
eral spectra are known; this can be stated in a form sim-
ilar to Theorem 4.6.

4.5. Noisy data and perturbations

The analytical results of this section have been de-
rived on the assumption of the idealized pure compo-
nent decompositionD = CA. However, for any prac-
tical spectroscopic data matrixD nonlinearities and er-
rors of the measurement result in a perturbed factoriza-
tion problemD = CA + E. For such a problem not
only the factorsC andA are to be determined but also
a small perturbation matrixE is desired, i.e.,E should
be close to the zero-matrix. The reconstruction prob-
lem with pre-given (known) spectra is stable as long as
these spectra can be well constructed from the right sin-
gular vectors, i.e., the error‖A(i, :)−A(i, :)ṼṼ

T
‖ is small.

Moreover,ŨΣ̃Ṽ
T

has to be a good approximation ofD,
which means that the singular valueσs+1 is small com-
pared toσ1, . . . , σs. If this is the case, then the singular
vectors corresponding to thes largest singular values al-
low a good approximation of the linear and affine-linear
subspaces which are determined in the Theorems 4.2
and 4.5. According to our experience difficulties may
occur in the application of the interval restrictions (11)
to noisy data. Such problems appear if for a given spec-
trumA(i, :) and for certainl bothAi j andDil are close to
zero.

5. A three-component model problem

In this section we apply the theoretical results to
a three-component (artificial) catalytic model reaction.
We consider the following system of second order reac-
tions

X + Y
k1
−→ K,

X + K
k2
−→ 3Y.

(13)

The initial concentrations of the speciesX, Y andK are
the components of the column vectorc(0) which is as-
sumed asc(0) = (1, 0.1, 0)T. The kinetic constants are
taken ask1 = 0.05, k2 = 1. The numerical solution of
the initial value problem fort ∈ [0, 100] is computed
by the ode15smulti-step solver for stiff problems of
Matlab. This highly accurate solution is restricted to
an equidistant grid withk = 101 nodes in [0, 100].

The absorption spectra of the three componentsX, Y
andK are taken as linear combinations of Gaussians in

7
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Figure 1: Model problem: concentration profiles with limt→∞ c2(t)/c3(t) = 21.7577 (left), absorption spectra (center) and mixture spectra (right).
ComponentX (solid line), componentY (dashed line) and componentK (dotted line).

the form (we use the indexes 1,2,3 forX, Y, K)

a1(λ) =3 exp(−
(λ − 250)2

200
) + 2 exp(−

(λ − 300)2

200
),

a2(λ) =2 exp(−
(λ − 50)2

30000
) + 1.3 exp(−

(λ − 200)2

1000
),

a3(λ) =3 exp(−
(λ − 200)2

100
) +

3
2

exp(−
(λ − 250)2

100
)

+
3
2

exp(−
(λ − 150)2

100
)

with λ ∈ [0, 500]. These spectra are evaluated on an
equidistant grid withn = 501 nodes.

Due to the Lambert-Beer law the absorption of the
mixture at the timet and the wave-lengthsλ reads

d(t, λ) =
3∑

i=1

ci(t)ai(λ).

Its evaluation on the 101× 501 discrete grid defines the
data matrixD ∈ R101×501. Figure 1 shows the concentra-
tion profiles and the associated pure component spectra
together with the mixture spectra.

From now on we only use the data matrixD. Numer-
ically we get rank(D) = 3 (singular values close to the
machine precision are ignored). The next step is to re-
cover the factorsC ∈ R

101×3 andA ∈ R
3×501 from the

given mixture dataD ∈ R
101×501. There are many ad-

missible (e.g. non-negative) factorizations ofD and ad-
ditional information on the system is required to com-
pute the correct factors. In the following Sections 5.1
and 5.2 we make use of the knowledge on the initial con-
centrationsC(1, :) = (1, 0.1, 0). Further we assume that
the pure component spectra of the componentsX andY
are given; i.e., the rowsA(1, :) and A(2, :) are known.
Finally the correct factorsC andA are recovered in Sec-
tion 5.3 due to linear and nonlinear regression with a
kinetic model of (13).

The given data are summarized:

0 50 100
0

0.2

0.4

0.6

0.8

1

time [s]

Normalized profilec3(t)

Figure 2: Normalized concentration profilec3(t) of the unknown in-
termediate speciesK.

- The data matrixD ∈ R101×501,

- the initial concentrationsC(1, :) = (1, 0.1, 0),

- two pure component spectraA(1, :) andA(2, :).

Data to be recovered are:

- Three concentration profilesC ∈ R101×3
+ ,

- one pure component spectrumA(3, :) ∈ R1×501
+ .

5.1. The complementary concentration profile

Two spectraA(1, :) andA(2, :) of the three-component
system (13) are known. Hence Theorem 4.2 and Corol-
lary 4.3 can be used to reconstruct the complementary
concentration profileC(:, 3) (which is uniquely deter-
mined aside from scaling). Therefore ify , 0 is a vector
in the null space ofA(1 : 2, :)Ṽ, then a real constantγ
exists so that

C(:, 3) = γŨΣ̃y.

This normalized (the maximum is set equal to 1) con-
centration profile is shown in Fig. 2.
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5.2. The associated concentration profiles
The coupling theorems of Section 4.3 allow us to for-

mulate restrictions on the unknown two concentration
profilesC(:, 1 : 2) which correspond to the known ab-
sorption spectraA(1, :) and A(2, :). First Theorem 4.6
allows to construct one-dimensional affine subspaces
which contain the profilesC(:, 1) andC(:, 2). Then the
non-negativity constraints of Theorem 4.7 reduce these
subspaces to smaller and bounded sets.

Due to Theorem 4.6 the associated concentration pro-
files satisfy

C(:, 1) ∈ {ŨΣ̃(υ1 + αw) : α ∈ R},

C(:, 2) ∈ {ŨΣ̃(υ2 + βw) : β ∈ R}.

Thereinw is a non-zero element of the null space of
A(1 : 2, :)Ṽ, which means thatA(1 : 2, :)Ṽw = 0. The
vectorsυ1 andυ2 are solutions of the under-determined
linear systems

A(1 : 2, :)Ṽυ1 = (1, 0)T ,

A(1 : 2, :)Ṽυ2 = (0, 1)T .
(14)

These affine spaces can be reduced, by means of The-
orem 4.7, to the bounded sets

C(:, 1) ∈ {ŨΣ̃(υ1 + αw) : α ∈ I1},

C(:, 2) ∈ {ŨΣ̃(υ2 + βw) : β ∈ I2},

with intervalsI1 = [l1, u1] and I2 = [l2, u2].
Without loss of generality we can assume thatŨΣ̃w

is a componentwise non-negative vector (i.e.ŨΣ̃w ≥ 0)
sinceŨΣ̃w = γC(:, 3) with a real constantγ. With the
solutionsυ1 andυ2 of (14) we get the intervals

I1 = [−0.0221, 0.2229],

I2 = [−2.001, −0.0182].
(15)

All this allows us to represent the concentration matrix
C in the form

C(:, 1) = ŨΣ̃(υ1 + αw),

C(:, 2) = ŨΣ̃(υ2 + βw), (16)

C(:, 3) = ŨΣ̃w

with (α, β) ∈ I1 × I2 as given by (15).
This set of feasible solutions is further restricted by

the constraintA(3, :) ≥ 0. For the present model
problem the influence of this constraint appears to be
marginal. (Later for the practical problem in Section
6 the same argument appears to be more useful, see
Fig. 10.)

To summarize, the factorC in (16) has a two-
parametric, bounded representation. The continuum of
admissible solutions is shown in Fig. 3; the separate so-
lution c3(t) is shown in Fig. 2.
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Figure 3: Continuum of admissible non-negative concentration pro-
files c1(t) andc2(t) of the componentsX andY.
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Figure 4: The functionG(α, β) on a subregion ofI1 × I2.

5.3. Best fit with the kinetic model

The set of admissible solutions (16) still depends on
the two parametersα andβ. Next we apply techniques
of linear and nonlinear regression in order to find opti-
mal (α∗, β∗) in a way that the concentration profiles of
the kinetic model of (13) (with optimized kinetic con-
stants (k1, k2) fit best the solution (16).

Our aim is to minimize the function

G :I1 × I2→ R,

(α, β) 7→ min
(k1,k2)∈R2

+

‖C(S)(α, β) −C(ode)(k1, k2)‖2F .

Therein‖ · ‖2F is the squared Frobenius norm (sum of
the squares of all components). FurtherC(S) is given by
(16) with a proper scaling of the columns. Linear least
squares are used to compute these scaling constants so
that the columns ofC(S) result in a best fit of the columns
of C(ode)(k1, k2). The matrixC(ode)(k1, k2) contains the
concentration profiles which result from a numerical so-
lution of the ordinary differential equation for (13) with
the given initial valuesc(0) = (1, 0.1, 0)T at t = 0. Addi-
tionally, the kinetic constantsk1 andk2 are determined
by a nonlinear regression so thatG for given (α, β) takes
its minimum. Fig. 4 showsG on a proper subregion of
I1 × I2.

The numerical minimization ofG shows that its mini-
mum is attained in (α∗, β∗) = (−2.0686·10−2, −1.8221·
10−2) together with the optimized kinetic constants
(k∗1, k

∗
2) = (0.05, 0.99999)T. These constants can be

9



accepted as very good approximations of the initial (of
the model problem) kinetic constants (k(orig)

1 , k(orig)
2 ) =

(0.05, 1.0)T. For the reconstructed columns ofC we get
the following relative deviations from the original data

εi =
‖C(orig)(:, i) −C(:, i)‖2
‖C(orig)(:, i)‖2

, i = 1, 2, 3,

with ε = (8.95 · 10−9, 6.82 · 10−11, 5.33 · 10−8)T . For
the single spectrum we get the error

‖A(orig)(3, :) − A(3, :)‖2
‖A(orig)(3, :)‖2

= 1.17 · 10−7.

Therefore the reconstruction problem for the con-
centration profiles and the spectrum has been solved
successfully. The rotational ambiguity of this three-
component system has first been reduced to the two-
parametric representation (16). In a second step a
unique solution, which is a good approximation of the
initial data, has been found by means of a least squares
fit to the underlying kinetic model.

6. A three component catalytic system: Formation
of hafnacyclopentene

A part of the catalytic cycle from ethylene to lin-
earα-olefines with a hafnium-complex as catalyst can
be described kinetically as a linear consecutive reaction

X
k1
−→ Y

k2
−→ Z with k1 ≫ k2. This is a chemical reaction

system with three dominant components; we consider
the formation of hafnacyclopentene which is denoted as
componentZ. See [2, 8] for the details and conventional
approaches to determine the kinetic constants.

Experimentally we have combined a stopped-flow in-
strument with a UV-VIS diode array so that each 5ms a
separate spectrum can be taken. The spectral data ma-
trix D is formed fromk = 500 single spectra which
are recorded in the time interval [0, 2.495]s. Each spec-
trum containsn = 381 spectral-channels which are dis-
tributed equidistantly in the interval [420, 800]nm. A
2D plot of the series of the spectra is shown in Fig. 5.

At the start of the reaction only the reactantX (rac-
(ebthi)-Hf(η2-Me3SiC2SiMe3) with ebthi= 1,2-ethylen-
1,1’-bis(η5-tetrahydroindenyl)) contributes to the ab-
sorption within the spectral range [420, 800]nm. The
distribution of the singular values ofD (see Fig. 6)
clearly indicates that only three independent chemical
components can be found. In other words the perturba-
tion matrix E in D = CA+ E seems to be close to the
zero-matrix. Therefore a truncated singular value de-
composition ofD ∈ R

500×381
+ is to be determined with

factorsC ∈ R500×3
+ andA ∈ R3×381

+ .
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Figure 5: Series of spectra in the rows of the matrixD.
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Figure 6: Semi-logarithmic plot of the 20 largest singular values of
data matrixD.

The initial concentration of X is cX(0) =

0.01309 mol L−1. Assuming that the conversion
to Z at t = 2.495s is complete the last spectrum is
that of the pure componentZ (only traces ofX andY
are present). Therefore fairly accurate spectra of the
reactantX and the productZ are available, see Fig. 7.
We use the following notation and plot-line-style for
the three components

C(i, 1) = cX(ti), A(1, j) = aX(λ j), (line: solid),

C(i, 2) = cY(ti), A(2, j) = aY(λ j), (line: dashed),

C(i, 3) = cZ(ti), A(3, j) = aZ(λ j), (line: dash-dotted)

with i = 1, . . . , 500 and j = 1, . . . , 381. HenceA(1, :)
andA(3, :) are known parts of the factorizationD = CA.

6.1. The complementary concentration profile

Two spectra of the three-component system are
known. Thus Theorem 4.2 and Corollary 4.3 determine
the concentration profileC(:, 2) of the (unknown) in-
termediateY. This concentration profile, see Fig. 8, is
uniquely determined aside from (positive) scaling.

6.2. The associated concentration profiles

The coupling theorem 4.6 can be applied to derive
affine linear representations of the unknown concentra-
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(ebthi)Hf(η2-Me3SiC2SiMe3) (dash-dotted).
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Figure 8: Concentration profile (arbitrarily scaled) of theintermediate
Y.

tion profilesC(:, 1) andC(:, 3) in the form

C(:, 1) = ŨΣ̃(υ1 + αw),

C(:, 3) = ŨΣ̃(υ2 + βw).

The vectorsυ1, υ2,w ∈ R
3 are determined as follows

(cf. Theorem 4.6 and Section 5.2)

A([1, 3], :)Ṽυ1 = (1, 0)T ,

A([1, 3], :)Ṽυ2 = (0, 1)T ,

A([1, 3], :)Ṽw= (0, 0)T .

Once again the complementarity theorem 4.2 is ap-
plied. It allows to conclude from the two profilesC(:, 1)
andC(:, 3) on the remaining spectrumA(2, :) of the in-
termediate. AsC(:, 1) andC(:, 3) depend onα andβ the
spectrumA(2, :) given by

A(2, :) = γ1Ṽ(:, 1)+ γ2Ṽ(:, 2)+ γ3Ṽ(:, 3) (17)

also depends on these constants. ThereinṼ(:, i) are right
singular vectors andγi = γi(α, β) are real constants.

This results in the following two-parametric approxi-
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Figure 9: Continua of concentrations profilesC(:, 1)[α] andC(:, 3)[β].

mate factorizationD ≈ CAwith

C = (C(:, 1)[α], C(:, 2), C(:, 3)[β]),

A =





D(1, :)
A(2, :)[α, β]

D(k, :)




.

(18)

Therein the dependence of certain columns and rows
on the parametersα andβ is expressed by rectangular
brackets.

6.3. Non-negativity constraints

Only a componentwise non-negative concentration
factor C makes sense. For the vectorsυ1, υ2,w ∈ R

3

and Ṽ(:, i) ∈ R
n (which are known from Section 6.2)

only α ∈ [−0.078, 0.245] andβ ∈ [−1.186, 0.0278] re-
sult in a non-negative matrixC, cf. Theorem 4.7. The
resulting continua for the concentration profilesC(:, 1)
andC(:, 3) are shown in Fig. 9.

The Cartesian product interval (α, β) ∈

[−0.078, 0.245] × [−1.186, 0.0278] can fur-
ther be restricted asA(2, :) also depends onα
and β, see Equation (17). The subregion of
[−0.078, 0.245] × [−1.186, 0.0278] which guaran-
tees non-negative spectraA(2, :)[α, β] is shown in
Fig. 10. This subregion of admissible parameters is
denoted byΩ. These further restrictions are derived in
a way which is comparable to (FIRPOL in) the Borgen
approach [4].

6.4. Best fit with a kinetic model

Up to now the rotational ambiguity of the solu-
tion matricesC and A has considerably been reduced
and the remaining ambiguity, see Eq. (18), has been
parametrized in the parametersα andβ. The concentra-
tion profile of the intermediateY has been determined
uniquely. Further the concentration profiles of the reac-
tant and the product one-parameter representations have
been derived. The spectrumA(2, :) has a two-parameter
form.
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A(2, :)[α, β].

The next step is to find in the region of parameter-
pairs (α, β), see Fig. 10, those solutions which are con-
sistent with a kinetic model

X
k1
−→ Y

k2
−→ Z. (19)

The computational procedure is as follows: For the
pairs (α, β) ∈ Ω the factors (18) are computed. Then
the concentration factorC[α, β] is fitted to the kinetic
model associated with (19) andk1 andk2 are determined
simultaneously. This is a hard-model-fit for each admis-
sible pair (α, β). We are interested in determining those
(α, β) ∈ Ω which are responsible for the best possible
fit. The concentration profiles inC ∈ R

500×3 are scaled
in a way that the sum

∑3
i=1 C(:, i) equals the initial con-

centrationcX(0) at any time (due to the mass balance).
Then a nonlinear regression is used to compute the ki-
netic constantsk1 andk2 in a way that the kinetic equa-
tions for (19) fit the concentration profiles.

The optimal kinetic constantsk∗1, k∗2 and optimal pa-
rametersα∗ andβ∗ minimize the functional

G :R2
+ ×Ω→ R, (k1, k2, α, β) 7→
3∑

i=1

500∑

j=1

γ−2
i

(

(C ji (α, β) −C(ode)
ji (k1, k2))

)2
.

(20)

The matrixC(ode) ∈ R
500×3 contains (the values on the

time×wavelength grid of) the solution of the initial
value problem

dcX(t)
dt

= −k1cX(t), cX(0) = 0.01309,

dcY(t)
dt
= k1cX(t) − k2cY(t), cY(0) = 0,

dcZ(t)
dt
= k2cY(t), cZ(0) = 0.
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Figure 11: Error by fitting the kinetic model on the decomposition
depending on (α, β), error plot and contour lines.

Its analytic solution reads

C(ode)(t; k1, k2) =





cX(0) exp(−k1t)
cX(0)k1

k2−k1
(exp(−k1t) − exp(−k2t))

cX(0)(1+ k2 exp(−k1t)−k1 exp(−k2t)
k1−k2

)





.

Additionally scaling factors

γi = max
l=1,...,500

Cli , i = 1, 2, 3,

are used in Equation (20) for a proper relative weighting
of the errors for the three speciesX, Y andZ.

As k1 and k2 depend onα and β the minimization
problem reads

Ḡ : Ω→ R, (α, β) 7→ min
k1,k2∈R+

G(k1, k2, α, β). (21)

The contour lines ofḠ together with a 3D plot are
shown in Fig. 11. The numerical minimization results
in α∗ = −0.078 andβ∗ = −1.186. The associated opti-
mal kinetic constants arek∗1 = 93.99s−1 (instable result
due to the poor ratio of the injection phase (5ms) and
the reaction phase (45ms) with spectra taken every 5ms)
andk∗2 = 2.152s−1. The concentration profiles of the re-
actantX, of the intermediateY and of the productZ are
shown in Fig. 12. The solutionsC(ode)(t; k∗1, k

∗
2) are con-

sistent with the concentration profilesC(:, i), i = 1, 2, 3.
The remaining small errors att ≈ 0 are caused by the
computational procedure which for all quantities guar-
antees non-negativity – a regularized SMCR approach
as in [15, 22] can produce nearly accurate approxima-
tions.

6.5. Critical remark

The results which have been derived in this section
can also be extracted by using conventional approaches:
First chemometric tools allow to recover the kinetic
constants from the spectroscopic data together with the
knowledge of the kinetic model. This allows to con-
struct the concentration profiles and then to compute

12



0 0.5 1 1.5 2
0

0.002

0.004

0.006

0.008

0.01

0.012

time [s]

co
n

ce
n

tr
at

io
n

[m
o

l/L
]

Factors and kinetic profiles for (α∗, β∗)

Figure 12: Concentration profiles ofX, Y and Z (solid shaky line)
together with the concentration profiles of the kinetic model (dashed
line).

the associated pure component spectra by a linear re-
gression. Our approach leads to the same results, but
is completely different: We used the complementarity
theorems to parametrize the continuum of admissible
solutions, which resulted in the setΩ. Then the con-
centration factorC[α, β] is fitted to the kinetic model
for each admissible pair (α, β). The optimal fit is at-
tained in the minimum of the functional (21). A draw-
back of our approach is that it is to be adapted to each
new problem. The benefit is its mathematical rigoros-
ity which is based on a parametrization of the rotational
ambiguity. We have used this simple reaction system to
demonstrate the usefulness of the approach. The analy-
sis of more complex systems (for which conventional
approaches do not result in a complete analysis) is a
topic for future work.

7. Conclusion

A couple of mathematical theorems have been intro-
duced and proved, which allow to reduce the rotational
ambiguity of the solutions of multivariate curve reso-
lution techniques. These theorems exploit supplemen-
tal information on the chemical reaction in a rigorous
way. Available information on the reaction system like
concentration profiles or spectra of certain components
impose (affine) linear restrictions on the remaining un-
known concentration profiles and spectra. In favorable
cases these restrictions can determine certain factors
completely.

The usefulness of the complementarity and coupling
theorems has been demonstrated for a model problem
as well as for a simple catalytic reaction system. We
hope that the presented new mathematical results enrich

the toolbox of chemometric methods and help to reduce
the rotational ambiguity of the range of admissible so-
lutions successfully.
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