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Abstract

Multivariate curve resolution techniques allow to uncdvem a series of spectra (of a chemical reaction system) the
underlying spectra of the pure components and the assda@ateentration profiles along the time axis. Usually a
range of feasible solutions exists due to the so-callediosial ambiguity. Any additional information on the system
should be utilized to reduce this ambiguity.

Sometimes the pure component spectra of certain reactapteducts are known or the concentration profiles of
the same or other species are available. This valuablenmation should be used in the computational procedure of a
multivariate curve resolution technique.

The aim of this paper is to show how such supplemental infdonan the components can be exploited. The
knowledge of spectra leads to linear restrictions on theeotration profiles of the complementary species and vice
versa. Furtherféine linear restrictions can be applied to pairs of a conceatrarofile and the associated spectrum
of a species. Theseffme) linear constraints can also be combined with the usuairegativity restrictions. These
arguments can reduce the rotational ambiguity considgrabbpecial cases it is possible to determine the unknown
concentration profile or the spectrum of a species only fio@sé constraints.

Key words: chemometrics, factor analysis, pure component deconipiositon-negative matrix factorization,
spectral recovery.

1. Introduction solutions. Most of these solutions do not have a chem-
ical/physical meaning or importance and should be dis-
The aim of a model-free pure component decomposi- regarded. These (so-called) abstract factors constitute a
tion is to extract the pure component spectra and the as-considerable obstacle for a fast and stable (hard) model-
sociated concentration profiles from the series of spec- free pure component decomposition. There is a vast lit-
tra of the (chemical reaction) system. In the best case erature on these methods, see e.g. [17, 18] and the ref-
no additional information is used for this computational erences therein.
procedure; even the number of reacting species is a re- Often some additional facts on the chemical reaction
sult. system are known. Sometimes the number of starting
Typically the spectroscopic data is provided on a reactants is given ayor some of their pure component
frequencyx time grid in the form of a matrix; this data  spectra are available. Further the spectra of the main
matrix is denoted byD. Due to the Lambert-Beer law  products might be accessible or even those of interme-
a factorization ofD into matrix factorsC andA is de- diary products. All these data reduce the set of the math-
sired, whereC column-wise contains the concentration ematically feasible factorizations to those factorizasio
profiles andA row-wise contains the pure component which are consistent with the pre-given supplemental
spectra (molar extinction céiicients). AsC andA are data.
non-negative matrices, the pure component decomposi- The goal of this paper is a systematic analysis of the
tion can be considered as the problem of the computa-relation between such supplemental data and the result-
tion of a non-negative matrix factorization. However, ing constraints on the set of feasible solutions in order
this mathematical problem (aside from singular excep- to extract the relevant and chemically meaningful solu-
tional cases) turns out to have a continuum of possible tions. We derive the results (in the form of a couple of
* Correspondence to: K. Neymeyr, Universitat Rostockiturigtir Mathematik, Ulmenstrasse 69, 18057 Rostock, Gegm June 10, 2012



theorems) by combining the Lambert-Beer law with a Problem 2.1 (Non-negative matrix factorization)~or
singular value decomposition (SVD) of the data matrix D € R with rank(D) = s the problem is to find non-
D. To this end we apply various arguments from lin- negative matrix factors so that
ear algebra to the columns of the concentration matrix
C and rows of the absorption matrx D=CA Q)
The paper is organized as follows. In Section 2 the
problem of a pure component decomposition is intro- with C € RS and Ae R
duced and classical approaches to its solution are pre-
sented. Some comments on the enclosure of the range of Therein the ranisof D equals the number of columns
admissible solutions follow in Section 3. Section 4 con- of C and the number of rows ok Problem 2.1 is a
tains the main mathematical results. These results areso-called inverse problem. It is well known that an ar-
linear constraints on “complementary species” and also bitrary non-negativé x n matrix D with 2 < rank(D) <
affine linear constraints coupling the spectrum and the Min(k, ), and hence mirk(n) > 3, may have no factor-
concentration profile for particular species. All these re- ization of the form (1); for a discussion of the existence
strictions are combined with the typical non-negativity and uniqueness of solutions, see [5, 6, 33, 34]. For spec-
constraints. To demonstrate the usefulness of the ar-tral data matrice® the existence of an “approximate”
guments we apply the theorems to a three-componentfactorization (1) can be assumed, siriggdue to the
model problem in Section 5. Further a three-component Lambert-Beer law) originates from the physical quanti-
reaction system which results in the formation of hafna- ties which are inscribed into the matrix fact@sndA.
cyclopentene is analyzed in Section 6. The factorization “reverses” the physics of the problem.
However, problem 2.1 usually has a continuum of
. . possible solutions. The insertion of an invertible ma-
2. Self-modeling curveresolution trix T € RS and its inverse in (1) results in a further

) factorization
The Lambert-Beer law only holds in the absence of

error sources like noise and nonlinearities. Its perturbed D = (CTY)(TA). )
form reads

If these transformed factor€ T~ and TA are non-
negative matrices (which can be achieved for praper
then a further mathematically feasible solution is found.
Typically the factorization problem does not have a
unigue solution due to the rotational ambiguity induced
by T. We ignore the trivial non-uniqueness which orig-
inates from permuted diagonal matricéssince such
matrices correspond to positively scaled and reordered
solutions. On the uniqueness question see Manne’s the-
orems [20], Malinowski [19] and the work of Rajkd [29]
together with the references therein. For the mathemat-
ical background of this problem see e.g. [7, 31]. To find
the correct and chemically relevant solution within the
set of (mathematically) feasible solutions one can try to
compute or to characterize the whole set of feasible so-
lutions [9, 10, 16, 25]. Then one hopes to detect the
desired solution within this set. Alternatively, one can
apply proper regularizations to the factorization prob-
lem and hopes to steer the factorization procedure in the
correct direction [18, 22, 23, 36].

In any case the first step of the computational process

Mathematically the (hard) model-free analysis in ab- is the construction of a truncated singular value decom-
sence of error terms is a factorization problem for the position to construct a basis for the fact@@sand A.
matrix D. The factorsC andA are non-negative matri-  This is the classical approach of Lawton and Sylvestre
ces. We refer to this problem as [16].
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D=CA+E.

The data matriD € R*" contains in its rows spectra
(taken at dfferent times from a chemical reaction sys-
tem); each spectrum is givenmafrequencies (or spec-
tral channels). If the reaction system contasispecies,
then the concentration matri@ € R¥*S contains in
its s columns the concentration profiles. The matrix
A € R®" holds the associatexbure component spectra
in the rows. The error matrig € R¥" comprises the
mentioned deviations from the linear Lambert-Beer law.
The problem of a self-modeling curve resolution
technique (hard model-free analysis) is to compute only
from the given matrixD the number of species to-
gether with proper matrix factor@ and A in such a
way that the error matri® — CAis close to the zero
matrix. For such hard model-free methods we refer to
[16, 17, 18] and the references therein.

2.1. The mathematical factorization problem



2.2. Factorization by the singular value decomposition 3.1. Enclosure of feasible solutions

The singular value decomposition (SVD) [11] fora  The range of admissible solutions for a two-
givenD e R reads component ¢ = 2) system has partly been analyzed
analytically by Lawton and Sylvestre [16]. This work
D=UxV' is among the earliest “chemometric” publications. Fur-
ther Maeder and his coworkers contributed to this topic
with orthogonal matrices) € R* andV € R™". The  [1, 35]: see also the papers of Rajké and Istvan [28, 30].

diagonal matrix € R For dimensionss > 2 a comparable analysis gets
 fori i much harder. For three-component systems Borgen et
Tij= { g' f(())rr: ; i al. did pioneering work [3, 4]. Rajko et al. improved the

analytical solution for three-component systems with

contains the non-negative singular valugdn decreas- ~ COMPUter geometry tools (Borgen plots), see [26, 27]
ing order withi. and the references in these papers. A novel approach to

If D has the ranls, then the SVD can be reduced to compute the boundaries of the set (or manifold) of so-
lutions for three-component systems has been presented

D=U0sVv" 3) by Golshan, Abdollahi and Maeder in 2011 [10].

In some of these works the Perron-Frobenius theo-
whereU is a submatrix olJ which contains thes left rem [21] appears as an important tool. This theorem
singular vectors being associated with the non-zero sin- characterizes the largest eigenvalue (singular value) and
gular values. Furthe¥ is built from the associated the associated singular vector of a non-negative matrix.
right singular vectors anH is the leadings x s subma- Boundaries for the range of possible solutions can be
trix of <. derived by determining all transformations of the first

The SVD provides a factorization @. In the con- two (or three) right singular vectors which resultin non-
text of a self-modeling curve resolution technigu& negative spectra. The associated inverse transforma-

andV' are callecabstract factorsthese factors usually ~ tions can be applied to the left singular vectors and must
contain negative components and cannot be used for aalso result in non-negative concentration profiles. This

chemicalphysical interpretation. The trick from (2) to  approach has been used e.g. in [10, 16] to construct op-
introduce a proper transformation matrix and its inverse timal factorsC andA which also fulfillD ~ CA.

is decisive for a successful solution of the reconstruc-  However, various other hard and soft constraints can

tion problem; see, among many others, the referencesbe applied. Sometimes even a pre-given kinetic model

[1, 10, 16, 18, 22, 35]. By means of a profee RS can be used for the regularization of the optimization
it is possible to recover the factotsandA as follows procedure. This allows to find optimal kinetic constants
by a kinetic regularization together with optimiz€d
D=USTLTV' . (4) andA simultaneously, see [12, 14, 32].
< 5

3.2. Usage of supplementary information

Thus the aim. of a self-modeling curve resoll_Jtion Self-modeling curve resolution techniques &iad
(SMCR) technique is to construct just such a suitable model-freemethods in a sense that no a-priori informa-

transformation matrix. tion on the chemical system is needed for the construc-
tion of the factor<C andA. However, sometimes certain

3. Enclosure of solutions information on the system is available, e.g., some of the

pure component spectra of the starting reactants or of

The rotational ambiguity of the factoS and A is certain products may be known from separate measure-

an annoying fact which complicates the development ments. Further the number of starting reactants or prod-
of universal and stable SMCR algorithms. The com- ucts may be given. Such additional information on the
putational (and sometimes analytical) determination of system should be utilized in order to reduce the range
the range of feasible solutions can help in the analysis of admissible non-negative factorizations. This data can
of chemical reaction systems. Here a brief overview is be used as a hard (or even soft) constrainCoand A
given on classical and more recent analytical and nu- while minimizing the reconstruction err@ — CA. A
merical techniques on the enclosure of feasible solu- mathematical approach of how to exploit such informa-
tions; these techniques are essentially based on the retion in the computational procedure is presented in the
quired non-negativity of the solutions. next section.
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4. Reduction of the rotational ambiguity Further, we use the colon notation to extract sub-
matrices. If 1< i; <ip <nand1< j; < jo <m,

Aﬁ expr)]laln_edlln Seqtlon 3 any additional |n|fqrmat|on thenM(is :i», j1: j») is the submatrix oM which results
on the chemical reaction system can be exploited to re- ¢, eyiracting the rows throughi, and the columns
duce the rotational ambiguity of the solutions of a self- 1 throughj.. For example one gets

modeling curve resolution technique. Next we use ar-

guments of linear algebra to prove M(3:4,2:5)= Mey Mes Mas Mas )
1. thecomplementarity theorerh.2 which allows to ' Mgz Myz Muyg Mys

impose restrictions on the concentration profiles of
complementary species if certain spectra are given  Then-by-nidentity matrix is denoted by, with
(and vice versa),

2. the coupling theoremst.5 and 4.6 which prove In=(€1,.... &)
affine linear constraints for pairs of a spectrum and
the associated concentration profile,

3. anon-negativity theorem.7 which provides ad-

whereeg is the standard basis vector

_ T
missible ranges for the components that can be de- &= (u -1, U) : )
rived from the non-negativity constraints. (k-1)-times  (n-K)-times

In this section we assume the Lambert-Beer law to Sub-matrices of the identity matrix can be used to ex-
hold exactly, i.e.D is given as the exact product Gf tract sub-matrices dfl in the following way
and A. Hence we ignore any nonlinearities and error
terms. Therefore the existence of a solution of Problem M(:;,k:1) = MI(;,k:1) and M(k:l,:) = I(k:l,:) M.

2.1 is guaranteed. The results of this section can be ap-

plied to practical data (containing error terms), which is In words, the right-multiplication with(:, k: 1) extracts
shown in Section 6. However, with a decreasing signal- columns fromM and left-multiplication withl(k : I, :)
to-noise ratio the application of the results gets harder. extracts rows fronM.

It is worth to note that the complementarity-coupling
theorems are dierent from the duality results as in-
troduced by Henry [13] for multivariate receptor mod-
eling and discussed by Rajko [24] in the SMCR con-  Next we consider the situation that one (or even more
text. This duality approach uses the non-negativity con- than one) of the pure component spectra are known. A
straints to find restrictions on the feasible regions and typical case is that these known spectra are those of the

4.2. The complementarity theorem

works with the "external” matrice§l andV in (4). In reactants of the chemical reaction; sometimes the spec-
contrast to this, the complementarity-coupling approach tra of certain products are also given. This supplemen-
is based on the partial knowledge of the factGrer A tary knowledge of the chemical system should be ex-

and uses the coupling through the "inner” matrix pair ploited within the computation of the pure component
T andT~*in (4) in order to derive restrictions on the factorization ofD. Theorem 4.2 shows that such addi-
feasible regions. The mathematical arguments also rely tional information on the columns & imposes restric-
on rankdimension arguments which are combined with  tions on thecomplementarycolumns of the concentra-

non-negativity constriants. tion matrixC. These restrictions are expressed in the
form of linear equations and can be used to reduce the
4.1. The colon notation rotational ambiguity of the decomposition.
A useful notation to specify a row or a column of a The special case that— 1 pure component spectra
matrix is thecolon notation For a matrixM € R™™ its are known within ars-component system is discussed
kth row is denoted by in Corollary 4.3. For this problem the complementarity

M(K.) = ( ) principle shows that the concentration profile of the sin-

)= Ma, -, Mkm gle remaining componentis unique (aside from scaling).
and itskth column is In Sec. 4.3 further theorems are proved, which charac-
terize the concentration profiles of the same species for

Mk which the spectra are available.
M(:,K) = N Lemma 4.1 proves an auxiliary result which is re-
Mhk quired for the proof of Theorem 4.2.



Lemma4.l. Let T € R¥S be a regular matrix and. <
S < S. Then
T(l:%,:)y=0

holds if and only if ye R® is of the form
y=T, s+1:9z
for a proper ze RS %,
Proof. Any regular matrixT satisfies
TT =1,

Left-multiplication of this equation with(1 : s, :) ex-
tracts the firstsy rows and right-multiplication with
I(:, 30+ 1:9) extracts the las$ — 5 columns so that

T1:s0, )T, s0+1:9 =0eRY>S%  (6)

i.e. thesy x s— 59 zero-matrix.

Ify = T, s+ 1:9zwith z € RS, then left
multiplication withT(1: s, ;) together with (6) yield

T(1:s,)y=T(1:, )T, 0+ 1:92=0z=0.

To prove the other direction just observe that the
columns of T™1(:, s + 1 : ) build a basis of the null
space ofT(1 : ,:). This argument reads in detailed
form as follows: LetN be the null space (or kernel)
of T(1 : s,:) € R®S je. anyy € N satisfies
T(1:%,:)y = 0 and vice versa. A3 is a regular ma-
trix the rank of its submatrix (1 : s,:) is s and the
dimension of its null spacs/ equalss — .

Further the dimension of the column space (or image)

Mof T71(;, 55+ 1:9) equalss — 59 (once again due to
the regularity ofT).

Equation (6) proves thaM is a subspace oV and
dimM = dimN proves thatM = N. Thus any € N
with T(1:s,:)y = 0 can be represented byz& RS
sothaty = T™1(;, s+ 1:9)z O

The central theorem is as follows; theré{™ de-
notes the set af-by-mreal matrices with non-negative
entries.

Theorem 4.2. Let D € R¥" with rank(@D) = s be de-
composable in a way that B CA with C e R and

A € R¥". The truncated singular value decomposition
of D, see (3), reads &= USV' with U andV having
the rank s.

We assume thapsows (i.e., § spectra) of the factor
A are known with ¢ < s. Without loss of generality
these known spectra can be placed in the figsbs/s of
A. Thus Al:s,:) € R®" s given.

Then the complementary columng,©, i = s +
1,...,s, of C are contained in ths — s)-dimensional
vector space

{USy: ye RS with Al:s0,)Vy=0}, (7)
which is a linear subspace of tiRX. (In words (7) de-
fines the set of all vectotrdXy, where y is a vector in
the R® satisfying AL : s0,:)Vy = 0. Alternatively, one
can describe the set (7) as the kernel (null space) of the
matrix A1 : so, 1)V which is multiplied from the left by
ux)

Proof. A regular matrixT € RS exists which relates

the factors inD = CAto the factors irD = (UE)V' in
a way that
C=U05T! and A=TV":

for a proof see, e.g., Lemma 2.1 in [22].
The pre-given firsg, rows of A can be written as

I(1:s0, ) A=A(l:s,2) = T(1:s0, )V
Right multiplication withV yields

Al )V =TL:is)V'V=T1:%:) (8
so that the firstg rows ng are also known.

Further fromC = UXT ! we get for itss — s last
columns

C(so+1:9)=Cl(,so+1:9=UST Y, s0+1:9).
The image (or column space) of this matrix is
T ={UST7I(;, 0+ 1:9z for ze RS}
Lemma 4.1 allows to rewrite this space as
7 ={U%y: withye RSso thatT(1:s,:)y = O}.

Insertion of (8) allows to eliminat@ (1 : ,:) and
proves the proposition. O

Next we consider the extremal case thgat= s— 1.
This means that only one pure component spectrum is
unknown. Then Theorem 4.2 shows that the concentra-
tion profile of this single component is uniquely deter-
mined (aside from scaling).

Corollary 4.3. On the assumptions of Theorem 4.2 as-
sume the first s 1 rows of A to be given. Then the com-
plementary concentration profile(Cs) is unique (aside
from scaling).



Proof. The (s — 1 x s)-matrix A(L : s— 1,:)V has the
maximal ranks — 1 since rankD) = s. Hence its null
space is a one-dimensional space and has the figrm

t € R} for a propety # 0. Theorem 4.2 shows that the
concentration profile read(;, s) = ULyt with a proper
scaling constartte R. O

Remark 4.4. The complementarity theorem 4.2 can
also be formulated for pre-given columns of C and the
resulting implications on the complementary rows of A.
This means that for known concentration profiles (i.e.,

If the ith row of A is known, then the associated col-
umn :,i) is an element of thés — 1)-dimensional
affine-linear space

{USy: yeR® with Al,:)Vy—-1=0}cRK (9)
Proof. The proof is similar to that of Theorem 4.2. The
ith row of matrix T is known sinceT(i,:) = A, :)V.
The ith diagonal element of T = | is T(i,:)T(:
,i) = 1. HenceA(i,:)VT(;,i) = 1. Therefore théth
column vectoi ~X(:, i) is an element of theffine-linear
spacely € RS : A(i,:)Vy = 1} with the dimension

some of the columns of C are given) the spectra of the ;_ ¢ SinceC(;,i) = UST-1(, i) the dfine space of
complementary species are characterized by a condition 5 ymissible solut’ionﬁ(: i) has ’the formUSy : y e

like (7). The direct pendant of Corollary 4.3 reads as

follows: If (for some reason) the concentration profiles

of s— 1 components are available, then the spectrum
of the single remaining species is uniquely determined
(aside from non-negative scaling).

4.3. The coupling theorems

In Sec. 4.2 we have analyzed the way in which the
knowledge ofsy spectra imposes restrictions on the
concentration profiles of theomplementargpecies in-
dexed withsy + 1,...,s. Next we analyze the way in
which the knowledge of certain pure component spec-
tra dfects the concentration profiles of just the same
species. This analysis results iffiae-linear constraints
which are formulated in theoupling theorend.5. Ad-
ditionally, the non-negativity constraints can be used to
formulate further restrictions (in order to reduce the ro-
tational ambiguity); this is the topic of Sec. 4.4.

The theorem (once again) exploits the relation of the
pure component factorization @ with the truncated
singular value decomposition (4). The key observation
is that the “subtraction” of a single component from the
system can be represented by

D - C( DA, ),

whereC(:,)A(i, ) is adyadic productwith the rank 1.

If A(i, ) is known, then the correct concentration profile
C(:,i) as an element from the column spacebo$atis-
fies the constraint rank(— C(:,1)A(i, :)) = s— 1, since
the subtraction o€(:, i)A(i, :) “removes” theth species
from the system. In other words the rank reduction by 1
is a constraint on the unknown profii¥:, i).

Theorem 4.5. Let D € R¥" with rank@) = s be
decomposable so that B CA with C € RS and
A e RN Let USV' be a truncated singular value
decomposition of D.
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RS, Ai,)Vy— 1 = 0} which is a subset of theX. [

This theorem can also be formulated in a form which
treats the case thay > 1 pure component spectra are
known. Then the space of admissible concentration pro-
files is an 6 — 5)-dimensional subspace. This form of
the Theorem 4.5 is similar to Theorem 4.2.

Theorem 4.6. Let D € R®" with rank@®) = s which is
decomposable in B CA with C e R¥S and Ae RS",
Let USV' be the truncated singular value decomposi-
tion of D. We assume that the firg ®ws of A are
known.

Then for each i, & 1,...., %, it holds that the con-
centration profile @:, i) is contained in the gine-linear
vector space

{USy: ye RS A(L: s, :)Vy=g} c R (10)
whose dimension is-s 5. Therein ¢ € R% is the ith
standard basis vector, see (5).

Proof. We proceed as in the proof of Thm. 4.5. How-
ever, we considef (j,:) = A(j,:)V and we gefT(j,:
)T-1(,i) = 0if j #i. Therefore A(j, )VT (i) = 0.
From this one gets th&l(;, i) is an element ofUZy :

y € RS, A(j,:))Vy = 0}. Combining this with the re-
sult of Thm. 4.5 shows thak(1 : s, :)Vy = & with the
standard basis vectery. O

4.4. Non-negativity

Let us review what is known on the columns®and
the rows ofA. First, by definition, the columns & are
vectors from theR* and the rows oA are from theR".
Second, the singular value decomposition provides
dimensional subspaces (namely the column spaté of
and the column space ®f) which contain the desired
concentration profiles and spectra. Third, the Theorems
4.2 and 4.5 impose additional constraints on these solu-
tions. These constraints are valuable in order to reduce



the rotational ambiguity, i.e., to reduce the set of ad- 4.5. Noisy data and perturbations

missible factorizations. Sometimes (in favorable cases)

certain concentration profiles or spectra are uniquely de-

termined (as in Corollary 4.3). The analytical results of this section have been de-
Additionally, there are theon-negativity constraints  rived on the assumption of the idealized pure compo-

on the factor€ andA. These constraints can be merged nent decompositio® = CA. However, for any prac-

with the spaces given in (7) and (9). Due to the nature tical spectroscopic data matrix nonlinearities and er-

of these non-negativity constraints (which imply bounds rors of the measurement result in a perturbed factoriza-

on the scaling factors) one getsbsetof admissible tion problemD = CA+ E. For such a problem not

solutions of the linear andfne-linear spaces (7) and only the factorsC andA are to be determined but also

(9). Theorem 4.7 deals with the case of diine-linear a small perturbation matrik is desired, i.e.E should

space; in the case of a vector space only (non-useful)be close to the zero-matrix. The reconstruction prob-

lower bounds equal to 0 can be derived. lem with pre-given (known) spectra is stable as long as

these spectra can be well constructed from the right sin-
Theorem 4.7. On the assumptions of Theorem 4.5 let gular vectors, i.e., the err(i, 1) -A(i, ;)\7\7T|| is small.

c® e R* be a vector (of upper bounds fo(Ci)) whose  Moreover,USV" has to be a good approximationdf

components are defined as which means that the singular value,; is small com-
pared toory, ..., 0. If thisis the case, then the singular
@);:= min % forj=1,....k vectors corresponding to tfsdargest singular values al-
4 :A‘l’; N n Aie low a good approximation of the linear anfiiae-linear
NE

subspaces which are determined in the Theorems 4.2
and 4.5. According to our experiencefitiulties may
occur in the application of the interval restrictions (11)
to noisy data. Such problems appear if for a given spec-
{L]iy: y € RS with A, :)\7y= 1 a tZr(laJrr(r)]A(i, ;) and for certain bothA;; andD; are close to

Then the sef9) of admissible concentration profiles can
be reduced to

and0 < USy < c@).

In (11) the vector inequalities are to be interpreted

component-wise.
P 5. A three-component model problem

Proof. The matrice andA are component-wise non-

negative. Therefore for ajl ¢, it holds that , ) )
In this section we apply the theoretical results to

s a three-component (artificial) catalytic model reaction.
CjiAic < Z CikAx = Dy, We consider the following system of second order reac-
k=1 tions
which impliesC; < Dj¢/Ay if A # 0. Thus X+Y 5K
13)
k
. Dj, . X +K = 3Y.
Cji < min —_—, i=1,....k (12)
t=1,..., n, Aié’
A >0 The initial concentrations of the speci¥sY andK are

the components of the column vectgf) which is as-
The right-hand side defines the upper bour¥)(" The-  sumed as(0) = (1,0.1,0)T. The kinetic constants are
orem 4.5 provides the space (9) of possible solutions for taken as; = 0.05,k, = 1. The numerical solution of
the concentration profile€(:,i). The combination of  the initial value problem fot € [0,100] is computed
the bound (12) with (9) proves the proposition. [ by the odel5smulti-step solver for sff problems of
Matlab. This highly accurate solution is restricted to
Theorem 4.7 can be generalized to the case that sev-2n equidistant grid with = 101 nodes in [0100].
eral spectra are known; this can be stated in a form sim-  The absorption spectra of the three compon&ité
ilar to Theorem 4.6. andK are taken as linear combinations of Gaussians in
7



Concentration profiles Absorption spectra

3
25
2p-- o
= .
51.5
1
21, 0.5
GO 50 100 0 100 200 300 400 500
time [s] A

Figure 1: Model problem: concentration profiles with {igg, cx(t)/c3(t) = 217577 (left), absorption spectra (center) and mixture specight).
ComponeniX (solid line), componenY (dashed line) and componet(dotted line).

the form (we use the indexes 1,2,3 %rY, K) . Normalized profilecs(t)

Cmn o, (1- 2507 , (1300 os
a1(1) =3 exp¢ 200 ) + 2 exp¢ 200 ), 0-6

B (1 - 50) (1 - 200y :
2(1) =2 expC—35550") + 13 expE—555): 04

B (1-200¢, 3 (1 - 250¥% 02
ag(4) =3 expt-——5-—") + 5 eXp——50—) S

+ 3 exp U157 ’ e s o
2 ¥PC 100 [¢]

with 1 € [0 500] These spectra are evaluated on an Figure 2: Normalized concentration profitg(t) of the unknown in-
- E termediate species.
equidistant grid wittm = 501 nodes.
Due to the Lambert-Beer law the absorption of the
mixture at the time and the wave-lengthsreads - The data matrisD e R102x501
3
d(t, 1) = Z c(Ha() - the initial concentration€(1,:) = (1,0.1,0),
1) - { .

=t - two pure component spectidl, :) andA(2, ).

Its evaluation on the 10% 501 discrete grid defines the

data matrixD € R19%50 Figure 1 shows the concentra- ~ Data to be recovered are:
tion profiles and the associated pure component spectra ) ) 1013
together with the mixture spectra. - Three concentration profil&s € Ri™,

From now on we only use the data matbx Numer-
ically we get rankD) = 3 (singular values close to the

machine precision are ignored). The next step is to re- ) ]
cover the factor€ € R19%38 and A e R0 from the 5.1. The complementary concentration profile

given mixture dateD € R'*>*%%. There are many ad- Two spectrai(1, :) andA(2, :) of the three-component
missible (e.g. non-negative) factorizationslbeind ad-  system (13) are known. Hence Theorem 4.2 and Corol-
ditional information on the system is required to com- |ary 4.3 can be used to reconstruct the complementary
pute the correct factors. In the following Sections 5.1 concentration profil€(;, 3) (which is uniquely deter-
and 5.2 we make use of the knoWIedge on the initial con- mined aside from Sca”ng)_ Thereforqlif# 0O is a vector
centrationsC(1, 1) = (1,0.1,0). Further we assume that  jn the null space ofA(1 : 2,:)V, then a real constant

- one pure component Spectruk(B, ;) € R>®0%,

the pure component spectra of the componrasdY exists so that

are given; i.e., the row#\(1,:) and A(2,:) are known.

Finally the correct factor€ andA are recovered in Sec- C(;, 3) = yUZy.

tion 5.3 due to linear and nonlinear regression with a

kinetic model of (13). This normalized (the maximum is set equal to 1) con-
The given data are summarized: centration profile is shown in Fig. 2.
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5.2. The associated concentration profiles

The coupling theorems of Section 4.3 allow us to for-
mulate restrictions on the unknown two concentration
profilesC(:,1 : 2) which correspond to the known ab-
sorption spectra\(1,:) and A(2,:). First Theorem 4.6
allows to construct one-dimensiondfine subspaces
which contain the profile€(:, 1) andC(:, 2). Then the
non-negativity constraints of Theorem 4.7 reduce these
subspaces to smaller and bounded sets.

Due to Theorem 4.6 the associated concentration pro-
files satisfy

C(,1) e (US(vr + aW) : @ € R},

C(,2) € {US(va +BW) : Be R}
Thereinw is a non-zero element of the null space of
A(1 : 2:)V, which means thafA(1 : 2 :)Vw = 0. The
vectorsv; anduv; are solutions of the under-determined
linear systems

A1 :2:)Vus = (1, 0),
A2 :)Vu, = (0, 1).

These #ine spaces can be reduced, by means of The-
orem 4.7, to the bounded sets

C(, 1) e {US(v1 +aw) : @€ lq),
C(:,2) e {US(vo + W) : B e I},
with intervalsly = [l1, us] andl, = [l2, uz]. .
Without loss of generality we can assume thiaw
is a componentwise non-negative vector W&w > 0)
sinceUXw = yC(:, 3) with a real constant. With the
solutionsv; andw, of (14) we get the intervals
I; =[-0.0221 0.2229]
I, =[-2.001, -0.0182]
All this allows us to represent the concentration matrix
Cinthe form
C(:, 1) = US(v1 + aw),
C(;, 2) = US(vz + W),
C(:,3) = Usw
with (a,B) € 11 x |, as given by (15).
This set of feasible solutions is further restricted by
the constraintA(3,:) > 0. For the present model

problem the influence of this constraint appears to be
marginal. (Later for the practical problem in Section

(14)

(15)

(16)

Admissible curves;(t)
1

0.8

0.6

0.4

0.2

50
time [s]

100
time [s]

Figure 3: Continuum of admissible non-negative conceiotigbro-

files c1(t) andc,(t) of the componentX andY.

G(a, B)

Figure 4: The functiors(«, 8) on a subregion offy x 5.

5.3. Best fit with the kinetic model

The set of admissible solutions (16) still depends on
the two parameterg andg. Next we apply techniques
of linear and nonlinear regression in order to find opti-
mal (@*, %) in a way that the concentration profiles of
the kinetic model of (13) (with optimized kinetic con-
stants ki, ko) fit best the solution (16).

Our aim is to minimize the function

Gilixl, >R,
(@p)—~ min_[C®(a,p) - CO%) Ky, ko)l12.
(kl,kg)ERi

Therein]|| - ||§ is the squared Frobenius norm (sum of
the squares of all components). Furt@é? is given by
(16) with a proper scaling of the columns. Linear least

squares are used to compute these scaling constants so

that the columns o™ result in a best fit of the columns
of C©%)(k;, k;). The matrixC©%)k,, k;) contains the
concentration profiles which result from a numerical so-
lution of the ordinary dterential equation for (13) with
the given initial values(0) = (1,0.1,0)" att = 0. Addi-
tionally, the kinetic constants; andk; are determined
by a nonlinear regression so tt@&for given (, 8) takes

6 the same argument appears to be more useful, sedts minimum. Fig. 4 show§ on a proper subregion of

Fig. 10.)

To summarize, the facto€ in (16) has a two-
parametric, bounded representation. The continuum of
admissible solutions is shown in Fig. 3; the separate so-
lution c3(t) is shown in Fig. 2.

9

|1 X |2.

The numerical minimization d& shows that its mini-
mum is attained in¢*, 8*) = (-2.0686- 1072, —1.8221-
107?) together with the optimized kinetic constants
(ki.k5) = (0.05, 0.99999Y. These constants can be



accepted as very good approximations of the initial (of Series of spectra
the model problem) kinetic constanté(?, k") = ‘
(0.05,1.0)". For the reconstructed columns®©fwe get

the following relative deviations from the original data

_ ICCC i) - CC. Dl
' ICOC, i,

with ¢ = (8.95- 10°°, 6.82- 1071, 533-10%)T. For
the single spectrum we get the error

[IA©C19)(3, 1) — A3, 2)ll2
|ACT9)(3, 1)

Therefore the reconstruction problem for the con- -
centration profiles and the spectrum has been solved 10°
successfully. The rotational ambiguity of this three-
component system has first been reduced to the two- 10t
parametric representation (16). In a second step a
unique solution, which is a good approximation of the 1
initial data, has been found by means of a least squares x
fit to the underlying kinetic model. . X xxxx

absorption

=123,

500 600 700 800
wavelength [nm]

-117-107". Figure 5: Series of spectra in the rows of the malix

singular values

oi(D)

6. A three component catalytic system: Formation

of hafnacyclopentene Figure 6: Semi-logarithmic plot of the 20 largest singulafues of

data matrixD.

A part of the catalytic cycle from ethylene to lin-
eara-olefines with a hafnium-complex as catalyst can  The initial concentration of X is cx(0) =
be described kinetically as a linear consecutive reaction 0.01309 mol L.  Assuming that the conversion

X 9 v X% Z with ky > k. This is a chemical reaction 10 Z att = 2.495s is complete the last spectrum is
system with three dominant components; we consider that of the pure componet (only traces ofX andY

the formation of hafnacyclopentene which is denoted as are present). Therefore fairly accurate spectra of the
componenE. See [2, 8] for the details and conventional reactantX and the product are available, see Fig. 7.
approaches to determine the kinetic constants. We use the following notation and plot-line-style for

Experimentally we have combined a stopped-flowin- the three components
strument with a UV-VIS diode array so that each 5msa _ .. . o
separate spectrum can be taken. The spectral data ma—C(" 1) =cx(t). AL])=ax(1)). (line: solid)
trix D is formed fromk = 500 single spectra which ~ C(i.2) = cv(t)), A(2 ]) = ay(4j). (line: dashed)
are recorded in the time interval,[2495]s. Each spec-  C(i,3) = cz(ti), A3, j) =az(4;), (line: dash-dotted)
trum contains1 = 381 spectral-channels which are dis-
tributed equidistantly in the interval [42800jnm. A Withi =1,...,500 andj = 1,...,381. HenceA(l,:)
2D plot of the series of the spectra is shown in Fig. 5. andA(3,:) are known parts of the factorizatiéh= CA.

At the start of the reaction only the reactafi{rac- ) i
(ebthi)-Hf(7?-Me;SiC,SiMes) with ebthi= 1,2-ethylen- 6.1. The complementary concentration profile
1,1'-bis@;>-tetrahydroindenyl)) contributes to the ab- ~ Two spectra of the three-component system are
sorption within the spectral range [4BD0lnm. The known. Thus Theorem 4.2 and Corollary 4.3 determine
distribution of the singular values db (see Fig. 6)  the concentration profil€(:, 2) of the (unknown) in-
clearly indicates that only three independent chemical termediateY. This concentration profile, see Fig. 8, is
components can be found. In other words the perturba- uniquely determined aside from (positive) scaling.
tion matrixE in D = CA+ E seems to be close to the
zero-matrix. Therefore a truncated singular value de- 6.2. The associated concentration profiles
composition ofD € R3%*381 js to be determined with The coupling theorem 4.6 can be applied to derive
factorsC € R39% andA € R3*381, affine linear representations of the unknown concentra-
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Figure 7: Spectra ofrac-(ebthi)Hf(C4Hg) (solid) and rac-

Spectra of reactant and product

(ebthi)Hf(72-Me3SiC,SiMes) (dash-dotted).

Concentration profile.
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Figure 8: Concentration profile (arbitrarily scaled) of theermediate
Y.

tion profilesC(:, 1) andC(:, 3) in the form

C(:, 1) = US(v1 + aw),
C(;,3) = UZ(v; + BW).

The vectorsuy, vo,w € R3 are determined as follows
(cf. Theorem 4.6 and Section 5.2)

A1, 3], )V = (1,0)T,
A([1,3], )V, = (0,1)",
A([1,3],:)Vw = (0,0)".

Once again the complementarity theorem 4.2 is ap-
plied. It allows to conclude from the two profil€X:, 1)
andcC(:, 3) on the remaining spectru(2, :) of the in-
termediate. A€(:, 1) andC(:, 3) depend o andg the
spectrumA(2, 1) given by

A2) = 7V + 7V (L, 2)+9aV(,38)  (17)
also depends on these constants. Tharéiri) are right
singular vectors angh = y;(«a,8) are real constants.

This results in the following two-parametric approxi-
11

Continuum ofC(:, 1)[«]

Continuum ofC(:, 3)[A]

time [s] B time [s]

Figure 9: Continua of concentrations profi@§g, 1)[«] andC(:, 3)[A].

mate factorizatio® ~ CAwith

C = (C(:, D)[al, C(,2), C,3)[AD,
D(1,2) (18)
A = A(25 :)[a’lB] .

D(k, )

Therein the dependence of certain columns and rows
on the parameterg andg is expressed by rectangular
brackets.

6.3. Non-negativity constraints

Only a componentwise non-negative concentration
factor C makes sense. For the vectargv,,w € R3
andV(;,i) € R" (which are known from Section 6.2)
only @ € [-0.078 0.245] andB € [-1.186 0.0278] re-
sult in a non-negative matri, cf. Theorem 4.7. The
resulting continua for the concentration profileg, 1)
andcC(:, 3) are shown in Fig. 9.

The Cartesian product interval «,(B) €
[-0.0780.245] x [-1.1860.0278] can  fur-
ther be restricted asA(2,:) also depends onx
and B, see Equation (17). The subregion of
[-0.078 0.245] x [-1.1860.0278] which guaran-
tees non-negative spectr&(2,:)[a,B] is shown in
Fig. 10. This subregion of admissible parameters is
denoted byQ. These further restrictions are derived in
a way which is comparable to (FIRPOL in) the Borgen
approach [4].

6.4. Best fit with a kinetic model

Up to now the rotational ambiguity of the solu-
tion matricesC and A has considerably been reduced
and the remaining ambiguity, see Eq. (18), has been
parametrized in the parameterandg. The concentra-
tion profile of the intermediat¥ has been determined
uniquely. Further the concentration profiles of the reac-
tant and the product one-parameter representations have
been derived. The spectrui(2, :) has a two-parameter
form.



Subregion for &, 8)

-0.4
«Q -06

-0.8

-1.2

-0.05 0 005 01 015 02

(2

Figure 10: Regiom of pairs ¢, 8) which guarantee non-negative con-
centration profile<C(;, 1)[a], C(:, 3)[8] and a non-negative spectrum
A2, :)[a, Bl

The next step is to find in the region of parameter-
pairs @, f), see Fig. 10, those solutions which are con-
sistent with a kinetic model

X5 vk 7 (19)

The computational procedure is as follows: For the
pairs @,8) € Q the factors (18) are computed. Then
the concentration factdC[«, f] is fitted to the kinetic
model associated with (19) akgdandk, are determined
simultaneously. This is a hard-model-fit for each admis-
sible pair ¢, 8). We are interested in determining those
(a,B) € Q which are responsible for the best possible
fit. The concentration profiles i@ € R%%3 are scaled
in a way that the surﬁ‘il C(:,1) equals the initial con-
centrationcy(0) at any time (due to the mass balance).
Then a nonlinear regression is used to compute the ki-
netic constantk; andk; in a way that the kinetic equa-
tions for (19) fit the concentration profiles.

The optimal kinetic constants, k; and optimal pa-
rametersy* andg* minimize the functional

G:R?xQ — R, (ki ko, . 8) =
3 500

D (Ch ) - Ok k)

i=1 j=1

(20)

The matrixC©%) ¢ R59%3 contains (the values on the
timex wavelength grid of) the solution of the initial
value problem

—dcgt(t) = —kgcx (1), cx(0) = 0.01309
dCJt(t) - leX(t) - kZCY(t), CY(O) =0,
dC;t(t) = Kooy (1), 60— 0
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Figure 11: Error by fitting the kinetic model on the decompiosi
depending ond, ), error plot and contour lines.

Its analytic solution reads

cx(0) exp(-kat)

CO%Yt kg, ko) = | T3 (exp(-at) — expl-kst))
ko exp(kit)—k; expkat)

Cx (0)(1 + ki —ka )
Additionally scaling factors
Yi = |:T.?5)§)oc"’ =123,

are used in Equation (20) for a proper relative weighting
of the errors for the three speci¥sY andZ.

As k; andk, depend onr and B the minimization
problem reads

G:Q->R, (0.f) min Gk, ke, . 8). (21)
1,K2€IR 4

The contour lines of5 together with a 3D plot are
shown in Fig. 11. The numerical minimization results
in @ = —0.078 ands* = —1.186. The associated opti-
mal kinetic constants afg = 93.99s! (instable result
due to the poor ratio of the injection phase (5ms) and
the reaction phase (45ms) with spectra taken every 5ms)
andk; = 2.152s™. The concentration profiles of the re-
actantX, of the intermediat®& and of the producZ are
shown in Fig. 12. The solutior@©%t; ki, k;) are con-
sistent with the concentration profil€g:,i),i = 1,2, 3.

The remaining small errors &t~ 0 are caused by the
computational procedure which for all quantities guar-
antees non-negativity — a regularized SMCR approach
as in [15, 22] can produce nearly accurate approxima-
tions.

6.5. Critical remark

The results which have been derived in this section
can also be extracted by using conventional approaches:
First chemometric tools allow to recover the kinetic
constants from the spectroscopic data together with the
knowledge of the kinetic model. This allows to con-
struct the concentration profiles and then to compute
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the toolbox of chemometric methods and help to reduce
the rotational ambiguity of the range of admissible so-
lutions successfully.
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