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Abstract

The area of feasible solutions (AFS) is a low dimensional representation of the set of
all possible nonnegative factorizations of a given spectral data matrix. The AFS can be
used to investigate the so-called rotational ambiguity of MCR methods in chemometrics,
and the AFS is an excellent starting point for feeding in additional information on the
chemical reaction system in order to reduce the ambiguity up to a unique factorization.

The FAC-PACK program package is a freely available and easy-to-use Matlab toolbox
(with a core written in C and FORTRAN) for the numerical AFS computation for two- and
three-component systems. The numerical algorithm of FAC-PACK is based on the inflation
of polygons and allows a stable and fast computation of the AFS. In this contribution we
explain all functionalities of the FAC-PACK software and demonstrate its application to
a consecutive reaction system with three components.

1 Introduction

Multivariate curve resolution techniques in chemometrics suffer from the non-uniqueness of the nonneg-
ative matrix factorization D = CA of a given spectral data matrix D ∈ R

k×n. Therein C ∈ R
n×s is the

matrix of pure components concentration profiles and A ∈ R
s×n is the matrix of the pure component

spectra. Further, s denotes the number of independent chemical components. This non-uniqueness of
the factorization is often called the rotational-ambiguity. The set of all possible factorizations of D

into nonnegative matrices C and A can be presented by the so-called Area of Feasible Solutions (AFS).

The first graphical representation of an AFS goes back to Lawton and Sylvestre in 1971 [10]. They
have drawn for a two-component system the AFS as a pie-shaped area in the plane; this area contains
all pairs of the two expansion coefficients with respect to the basis of singular vectors, which result
in nonnegative factors C and A. In 1985 Borgen and Kowalski [4] extended AFS computations to
three-component systems by the so-called Borgen plots, see also [14, 22, 1, 2].

In recent years, methods for the numerical approximation of the AFS have increasingly gained impor-
tance. Golshan, Abdollahi and Maeder presented in 2011 a new idea for the numerical approximation
of the boundary of the AFS for three-component systems by chains of equilateral triangles [6]. This
idea has even been extended to four-component systems [7].

An alternative numerical approach for the numerical approximation of the AFS is the polygon infla-
tion method which has been introduced in [18, 19, 20]. The simple idea behind this algorithm is to
approximate the boundary of each segment of the AFS by a sequence of adaptively refined polygons.
A numerical software for AFS computations with the polygon inflation method is called FAC-PACK
and can be downloaded from

http://www.math.uni-rostock.de/facpack/
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The current software revision 1.1 of FAC-PACK appeared in February 2014.

The aim of this contribution is to give an introduction into the usage of FAC-PACK. In Section 2
a sample model problem is introduced, the initial data matrix is generated in MatLab and some
functionalities of the software are demonstrated. In Section 3 this demonstration is followed by the
Users’ guide to FAC-PACK, which appears here for the first time in printed form.

2 A practical case study

2.1 Generation of test data

Let us consider the consecutive system of reactions X → Y → Z with kinetic constants k1 = 0.75
and k2 = 0.25. The time interval for the concentration factor C is assumed to be t ∈ [0, 20] with an
equidistant discretization by k = 21 grid points. The spectral factor A is constructed on the wavelength
interval λ ∈ [0, 100] with an equidistant discretization which uses n = 101 points. The three Gaussian
functions (plus a constant)

a1(λ) = 0.95 exp(−
(λ− 20)2

500
) + 0.3,

a2(λ) = 0.9 exp(−
(λ− 50)2

500
) + 0.25,

a3(λ) = 0.7 exp(−
(λ− 80)2

500
) + 0.2

define the rows of A by their evaluation along the discrete wavelength axis. According to the bilinear
Lambert-Beer model the spectral data matrix D = CA for this reaction is a 21 × 101 matrix with
the rank 3. This model problem is a part of the FAC-PACK software; see the data set example2.mat
in Section 3.3.3. The pure component concentration profiles and spectra together with the mixture
spectra for the sample problem are shown in Figure 1.

The MatLab code to generate data matrix D reads as follows:

t = linspace(0,20,21)’;

x = linspace(0,100,101)’;

k = [0.75 0.25];

C(:,1) = exp(-k(1)*t);

C(:,2) = k(1)/(k(2)-k(1))*(exp(-k(1)*t)-exp(-k(2)*t));

C(:,3) = 1-C(:,1)-C(:,2);

A(1,:) = 0.95*exp(-(x-20).^2./500)+0.3;

A(2,:) = 0.9*exp(-(x-50).^2./500)+0.25;

A(3,:) = 0.7*exp(-(x-80).^2./500)+0.2;

D = C*A;

save(’example2’, ’x’, ’t’, ’D’);

2.2 AFS computation with FAC-PACK

Here we consider the factorization problem which is an inverse problem compared to the construction of
D in Section 2.1. For given D we are looking for matrix factorizations D = CA with nonnegative factors
C and A. The pair of matrices (C,A) as constructed in Section 2.1 is one possible factorization of D
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Figure 1: Pure component concentration profiles and spectra together with the mixture spectra
for the sample problem presented in Section 2.1.
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Figure 2: Initial nonnegative matrix factorization (NMF) for the model problem as computed
by FAC-PACK.

within the set of all nonnegative matrix factorizations of D. The set of all nonnegative factorizations is
described by the area of feasible solutions (AFS), which is a certain low dimensional representation of
these feasible matrix pairs. For geometric techniques to compute the AFS see [4, 14] and the references
therein. For numerical methods to compute the AFS see [1, 6, 2, 7, 18, 19].

In FAC-PACK the computation of the AFS is based on the polygon inflation algorithm, which is
explained in [18, 19]. The users’ guide to FAC-PACK is contained in Section 3; a quick introduction is
given in Section 3.1 and a detailed introduction is given in Section 3.2. The program starts with the
import of the spectral data, see Section 3.3.2. In the following we consider the model problem from
Section 2.1. For this sample data there is no need for a baseline correction. Otherwise the baseline
correction module as introduced in Section 3.1.1 can be used.

The first step of the polygon inflation algorithm is the computation of a singular value decomposition
(SVD). The SVD is computed automatically after the data matrix is loaded. For the given sample
problem the four largest singular values are

σ1 = 23.920, σ2 = 7.444, σ3 = 2.991, σ4 = 0.000.

Since σ4 = 0, the rank of D equals 3 and D represents a three-component system. After selecting 3 as
the number of components in the AFS computation module, an initial nonnegative matrix factorization
(NMF) can be computed, see Section 3.5.3. This initial NMF often has no physical or chemical meaning
and is sometimes called an abstract factorization. However, this initial NMF provides the starting
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point from which the polygon inflation algorithm inflates the polygons. The initial NMF for the model
problem is presented in Figure 2.

The set of all nonnegative matrix factorizations of D is represented by the area of feasible solutions
(AFS). For a three-component system the AFS is a subset of the two-dimensional plane, see Section
3.5.4 and [18] for the mathematical background of this low-dimensional representation. Section 3.5.4
additionally contains the setting options for the various control parameters of the polygon inflation
algorithm and also the options on the algorithmic variants of the polygon inflation algorithm. The
resulting area of feasible solutions (AFS) for the spectral factor A is denoted by MA and is shown in
Figure 3. This AFS consists of three separated segments (isolated subsets) shown by a blue, a green
and a red set.
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Figure 3: The spectral AFS MA for the model problem from Section 2.1. The three markers
(+) in green, red and blue indicate the components of the initial NMF. These three
points are the starting points for the polygon inflation method. Furthermore, the
series of points marked by the symbol ◦ represent the single spectra, which are rows
of the spectral data matrix D.

Each of the three segments of the spectral AFS MA is approximated by an adaptively generated
polygon. The AFS MC for the concentration factor C can be computed in a similar way; then the
complete algorithm is applied to the transposed data matrix DT . In some cases the AFS consists
of only one segment with a hole or of more than three segments. Then the AFS is computed by a
modification of the method which is called the inverse polygon inflation algorithm [19]. In this modified
algorithm first the superset FIRPOL of the AFS is computed and in a second step points not belonging
to the AFS are eliminated by inflation a second polygon in the interior of FIRPOL.

2.3 Reduction of the rotational ambiguity by the complementarity
theorem

The bilinear Lambert-Beer model D = CA results in two factors and so two areas of feasible solutions
can be constructed. The spectral AFS MA has been considered in Section 2.2. The concentrational
AFS MC can be constructed in the same way if the algorithm is applied to the transposed data
matrix DT . The simultaneous representation of MA and MC can be very advantageous. In this way
restrictions can be analyzed of the partial knowledge of one factor on the other factor. This mutual
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dependence of the factors is a consequence of the factorization

D = UΣV T = UΣT−1

︸ ︷︷ ︸

C

TV
T

︸ ︷︷ ︸

A

.

where partial knowledge of A implies some restrictions on the matrix elements of the s × s matrix T ,
this implies some restrictions on T−1 and so the factor C is to some extent predetermined. Therein
s is the rank of D, which is the number of independent components. A systematic analysis of these
restrictions appeared in [17] and has led to the complementarity theorem. The application of the
complementarity theorem to the AFS is analyzed in [20], see also [3].

For the important case of an s = 3-component system a given point in one AFS (either a given spectrum
or concentration profile) is associated with a straight line in the other AFS. The form of this straight
line is specified by the complementarity theorem. Only points which are located on this line and which
are elements of the AFS are consistent with the pre-given information. In case of a four-component
system a given point in MA (or MC) is associated with a plane in MC (or MA) and so on.

For three-component systems this simultaneous representation of MA and MC together with a rep-
resentation of the restrictions of the AFS by the complementarity theorem is a functionality of the
Complementarity & AFS module of FAC-PACK. This module, its options and results are explained
in the users’ guide in Section 3.1.3. This module gives the user the opportunity to fix a number of
up to three points in the AFS. These points correspond to known spectra or known concentration
profiles. For example such information can be available for the reactants or for the final products of a
chemical reaction. Typically any additional information on the reaction system can be used in order to
reduce the rotational ambiguity for the remaining components. Within the AFS computation module
the locking of spectra (or concentration profiles) results in smaller AFS segments for the remaining
components, see Section 3.5.6. Here we focus on the simultaneous representation of the spectral and
the concentrational AFS and the mutual restrictions of the AFS by adding partial information on the
factors. Up to three points (for a three-component system) in an AFS can be fixed. These three points
determine a triangle in this AFS and also a second triangle in the other AFS. These two triangles
correspond to a factorization of D into nonnegative factors C and A. All this is explained in the
users’ guide in Section 3.6. The reader is invited to experiment with the MatLab GUI of FAC-PACK,
to move the vertices of the triangles through the AFS by using the mouse pointer and to watch the
resulting changes for all spectra and concentration profiles. This interactive graphical representation
of the system provides the user with the full control of the factors and supports the selection of a
chemically meaningful factorization.

In Figure 4 the results of the application of the Complementarity & AFS module are shown for
the sample problem from Section 2.1. The four rows of this figure show the following:

1. First row: A certain point in the AFS MA is fixed and the associated spectrum A(1, :) is
shown. This point is associated with a straight line in the concentrational AFS MC . This line
intersects two segments of MC . The complementary concentration profiles C(:, 2) and C(:, 3)
are restricted to the two continua of the intersection. Up to now no concentration profile is
uniquely determined.

2. Second row: A second point in MA is fixed and this second spectrum A(2, :) is shown (green
color). A second straight line (green) is added to MC by the complementarity theorem. The
intersection of these two lines in MC uniquely determines the complementary concentration
C(:, 3).

3. Third row: Three points are fixed in MA which uniquely determines the factor A. The triangle in
MA corresponds with a second triangle in MC . All this determines a nonnegative factorization
D = CA.



2.3 Reduction of the rotational ambiguity by the complementarity theorem 6

−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1 fixed point in MA

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1 spectrum

0 2 4 6 8
−10

−5

0

5

1 line in MC

−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

2 fixed points in MA

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

2 spectra

0 2 4 6 8
−10

−5

0

5

2 lines in MC

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1 unique profile

−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

3 fixed points in MA

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

3 spectra

0 2 4 6 8
−10

−5

0

5

3 lines in MC

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Unique factor C

−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

3 fixed points in MA

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

3 spectra

0 2 4 6 8
−10

−5

0

5

3 lines in MC

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Unique factor C

Figure 4: Successive reduction of the rotational ambiguity. First row: one fixed spectrum is
associated with a straight line in MC . Second row: two fixed spectra in MA result
in two straight lines in MC . The point of intersection uniquely determines one
concentration profile. Third row: three fixed points in MA uniquely determine a
complete factorization D = CA. Fourth row: This complete factorization reproduces
the original factors from Section 2.1.
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4. Fourth row: A second nonnegative factorization is shown, which exactly reproduces the original
components of the model problem from Section 2.1.

2.3.1 Soft constraints and the AFS

Multivariate curve resolution methods often use soft-constraints in order to favor solutions which are
particularly smooth, monotone, unimodal or that have other comparable properties. While moving
vertices of triangle-factors interactively through the AFS the user might be interested to see where in
the AFS solutions with certain properties can be found.

To this end the Complementarity & AFS module of FAC-PACK provides the option to plot the
level set contours for certain constraint functions within the AFS window. Contour plots are available
for estimating the

• monotonicity of the concentration profiles (in MC),

• the smoothness of spectra (in MA) or concentration profiles (in MC),

• the Euclidean norm of the spectra (in MA) in order to estimate the total absorbance of the
spectra,

• and the closeness to an exponentially decaying function (in MC) in order to find concentration
profiles of reactants which are degraded in a first order reaction.

In Figure 5 two contour plots are shown. First, in MA the closeness of a concentration profile to an
exponentially decaying function is shown. The smallest distance, which is shown by the lightest grey
has the coordinates (α, β) ≈ (7.2714,−8.5516). This point is the same which is shown in the fourth row
and third column of Figure 4 and which can be identified with the reactant X in the model problem
from Section 2.1. Second, the contours of the Euclidean norm of the spectra within the MA window.
These contours serve to estimate the total absorbance of the spectra and can for instance be used in
order to identify spectra with few and narrow peeaks.
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Figure 5: Contour plots within the (α, β)-plane close to the areas of feasible solutions MC and
MA for the data from Section 2.1. Left: Contours of closeness of a concentration
profile to an exponentially decaying function in the MC window. Right: The contour
plot of the Euclidean norm (total absorbance) of the pure component spectra within
the MA window.
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3 Users’ guide to FAC-PACK

Here the users’ guide on the revision 1.1 of FAC-PACK follows.

FAC-PACK is an easy-to-use software for the computation of nonnegative multi-component factoriza-
tions and for the numerical approximation of the area of feasible solutions (AFS). Revision 1.1 contains
new functionalities for the reduction of the rotational ambiguity.

Important features of FAC-PACK are:

• a fast C program with a graphical user interface (GUI) in MatLab,

• baseline correction of spectral data,

• computation of a low-rank approximation of the spectral data matrix and initial nonnegative
matrix factorization,

• computation of the spectral and concentrational AFS by the polygon inflation method,

• applicable to two- and three-component systems,

• live-view mode and factor-locking for a visual exploration of all feasible solutions,

• reduction of the AFS by factor-locking,

• simultaneous representation of the spectral and concentrational AFS,

• reduction of the rotational ambiguity by the complementarity theorem.

3.1 Quick start

Download the FAC-PACK software from

http://www.math.uni-rostock.de/facpack/

Then extract the software package facpack.zip, open a MatLab desktop window and start facpack.m.
The user can now select one of the three modules of FAC-PACK, see Figure 6.

3.1.1 Baseline correction module

Step 1: If the baseline needs a correction (e.g., if a background subtraction has partially turned the
series of spectra negative), then the Baseline correction button can be pressed. This simple
correction method only works for spectral data in which frequency windows with a distorted
baseline are clearly separated from the main signal groups of the spectrum; see Figure 7.

Step 2: Load the spectral data matrix. Sample data shown above is example0.

Step 3: One or more frequency windows should be selected in which more or less only the distorted
background signal is present and which are clearly separated from the relevant spectral signals.
In each of these frequency windows (marked blue) the series of spectra is corrected towards
zero. However, the correction is applied to the full spectrum. In order to select these frequency
windows click the left mouse button within the raw data window, move the mouse pointer and
release the mouse button. This procedure can be repeated.
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Figure 6: The start window of FAC-PACK

Step 4: Select the correction method, e.g. polynomial degree 2.

Step 5: Compute the corrected baseline.

Step 6: Save the corrected data.

3.1.2 AFS computation module

Step 1: Press the Button AFS computation in order to compute the AFS.

Step 2: Select example2 as sample spectral data matrix.

Step 3: Select 3 as the number of components.

Step 4: Compute an initial nonnegative matrix factorization (NMF).

Step 5: Choose Polygon inflation.

Step 6: Compute the AFS which consists of three segments (a blue, red and green segment).

Step 7: Plot the range of spectral factors associated with segment 1 (blue segment) of the AFS.

A second test problem is shown in Figure 9:

Step 1: Select example3 as the data matrix.

Step 2: Select 3 as the number of components.

Step 3: Compute an initial nonnegative matrix factorization (NMF).

Step 4: Choose Inverse polygon inflation. The AFS consists of only one segment with a hole.

Step 5: Compute the AFS.

Step 6: Select live-view on.

Step 7: Move the mouse pointer through the AFS and watch the interactively computed solutions.

3.1.3 Complementarity & AFS module

Step 1: Press the button Complementarity & AFS to activate this GUI.

Step 2: The sample data example2 can be selected.

Step 3: Select FIRPOL to plot two supersets including the AFS for C and A and/or select full to show
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Figure 7: Baseline correction within 6 steps.

the AFS for the spectral and the AFS for concentrational factor. The sets FIRPOL can easily
and quickly be computed; the computation of the AFS for C and for A may be time-consuming.

Step 4: Click the button first and move the mouse pointer through the spectral AFS (factor A). A first
spectrum A(1, :) can be locked by clicking in the AFS. The associated spectrum is shown in the
spectral factor window (right-upper window).

Step 5: Click the button second and move the mouse pointer once again through the AFS for A. While
moving the mouse pointer through the AFS a second spectrum A(2, :) is shown in the spectral
factor window together with the unique (by the complementarity theorem) concentration profile
of the remaining third component. A certain second spectrum A(2, :) can be locked by clicking
in the AFS.

Step 6: Finally, a third spectrum A(3, :) can be selected by moving the mouse pointer through the
spectral AFS. The resulting predictions on the spectral factor are shown interactively. This
third spectrum can also be locked.

Step 7: These last three buttons and also the buttons first, second, third can be clicked and then a
spectrum or concentration profile can be modified by moving the mouse pointer through the
AFS. This allows to modify the two triangles in the spectral and concentrational AFS which
uniquely determine a feasible factorization of the given spectral data matrix.

In the following sections the functionalities of FAC-PACK are explained in detail.

3.2 Introduction to FAC-PACK

FAC-PACK is a software for the computation of nonnegative multi-component factorizations and for
the numerical approximation of the area of feasible solutions (AFS). Currently, the software can be
applied to systems with s = 2 or s = 3 components.

Given a nonnegative matrix D ∈ R
k×n, which may even be perturbed in a way that some of its entries

are slightly negative, a multivariate curve resolution (MCR) technique can be used to find nonnegative
matrix factors C ∈ R

k×s and A ∈ R
s×n so that

D ≈ CA. (1)

Some references on MCR techniques are [10, 8, 12, 11, 15]. Typically the factorization (1) does not
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Figure 8: Quickstart in 6 steps.

result in unique nonnegative matrix factors C and A. Instead a continuum of possible solutions
exists [12, 22, 9]; this non-uniqueness is called the rotational ambiguity of MCR solutions. Sometimes
additional information can be used to reduce this rotational ambiguity, see [5, 16] for the use of kinetic
models.

The most rigorous approach is to compute the complete continuum of nonnegative matrix factors
(C,A) which satisfy (1). In 1985 Borgen and Kowalski [4] found an approach for a low dimensional
representation of this continuum of solutions by the so-called area of feasible solutions (AFS). For
instance, for a three-component system (s = 3) the AFS is a two-dimensional set. Further references
on the AFS are [21, 14, 22, 1]. For a numerical computation of the AFS two methods have been
developed: the triangle-boundary-enclosure scheme [6] and the polygon inflation method [18]. FAC-
PACK uses the polygon inflation method.

FAC-PACK works as follows: First the data matrix D is loaded. The singular value decomposition
(SVD) is used to determine the number s of independent components underlying the spectral data in D.
FAC-PACK can be applied to systems with s = 2 or s = 3 predominating components. Noisy data is not
really a problem for the algorithm as far as the SVD is successful in separating the characteristic system
data (larger singular values and the associated singular vectors) from the smaller noise-dependent
singular values. Then the SVD is used to compute a low rank approximation of D. After this an
initial nonnegative matrix factorization (NMF) is computed from the low rank approximation of D.
This NMF is the starting point for the polygon inflation algorithm since it supplies two or three
points within the AFS. From these points an initial polygon can be constructed, which is a first
coarse approximation of the AFS. The initial polygon is inflated to the AFS by means of an adaptive
algorithm. This algorithm allows to compute all three segments of an AFS separately. Sometimes the
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Figure 9: Quick start with live-view mode in 7 steps.

AFS is a single topologically connected set with a hole. Then an "inverse polygon inflation" scheme
is applied. The program allows to compute from the AFS the continuum of admissible spectra. The
concentration profiles can be computed if the whole algorithm is applied to the transposed data matrix
DT . Alternatively, the spectral and the concentrational AFS can be computed simultaneously within
the “Complementarity & AFS” graphical user interface (GUI).

FAC-PACK provides a live-view mode which allows an interactive visual inspection of the spectra (or
concentration profiles) while moving the mouse pointer through the AFS. Within the live-view mode
the user might want to lock a certain point of the AFS, for instance, if a known spectrum has been
found. Then a reduced and smaller AFS can be computed, which makes use of the fact that one
spectrum is locked. For a three-component system this locking-and-AFS-reduction can be applied to
a second point of the AFS.

Within the GUI "Complementarity & AFS" the user can explore the complete factorization D = CA

simultaneously in the spectral and the concentrational AFS. The factorization D = CA is represented
by two triangles. The vertices of these triangles can be moved through the AFS and can be locked to
appropriate solutions. During this procedure the program always shows the associated concentration
profiles and spectra for all components. In this way FAC-PACK gives the user a complete and visual
control on the factorization. It is even possible to import certain pure component spectra or concentra-
tion profiles in order to support this selection-and-AFS-reduction process within the "Complementarity
& AFS" GUI.
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Figure 10: The complementarity & AFS module.

3.3 Get ready to start

Please download FAC-PACK from

http://www.math.uni-rostock.de/facpack/

Then extract the file facpack.zip. Open a MatLab desktop and run facpack.m.

This software is shareware that can be used by private and scientific users. In all other cases (e.g. com-
mercial use) please contact the authors. We cannot guarantee that the software is free of errors and
that it can successfully be used for a particular purpose.

3.3.1 Program structure

The current revision of FAC-PACK consists of three graphical user interface (GUI) windows to solve
the following problems in multivariate curve resolution:

1. Correction of the baseline for given spectroscopic data or pre-processed data, e.g., after back-
ground subtraction,

2. Computation of the area of feasible solutions for two- and three-component systems,

3. Simultaneous representation of the spectral and concentrational AFS and interactive reduction
of the rotational ambiguity up to uniqueness by means of the complementarity theorem [17, 20].

Once FAC-PACK is started it is necessary to select one of the three GUIs "Baseline correction", "AFS
computation" or "Complementarity & AFS". No additional MatLab toolboxes are required to run
the software.

Baseline correction This GUI has the following two windows:
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1. Raw data window (Left window): The raw data window shows the k raw spectra which are the

rows of the data matrix D ∈ R
k×n.

2. Baseline corrected data window (Right window): This window shows the control parameters for
the baseline computation together with the corrected spectra. Seven simple functions (polyno-
mials, Gaussian- and Lorentz curves) can be used to approximate the baseline.

AFS computation The GUI uses four windows:

1. Data window (Upper-left window): The data window shows the k rows (spectra) of the data

matrix D ∈ R
k×n in a 2D-plot. The number of spectra k is printed together with the number of

spectral channels n. The four largest singular values of D are shown. By transposing the data
matrix D it is possible to compute the AFS for the concentration factor C (instead of the AFS
for the spectral factor A).

2. NMF window (Upper-right window): This window allows to set the number of components to
s = 2 or s = 3 and to compute an initial NMF. The smallest minimal components of C and A

are printed. The figure shows the profiles of the so-called abstract matrix factors. The buttons
allow to compute the profiles of C and/or A.

3. AFS window (Lower-left window): Various control parameters allow to make certain settings for
the AFS computation in order to control the approximation quality or maximal number of edges.
Pressing the Compute AFS button starts the AFS computation. The live-view mode is active
after the AFS has been drawn. Just move the mouse pointer to (and through) the AFS.

4. Factor window (Lower-right window): This window shows the spectral factors (or concentration
profiles if the transpose option has been activated in the first window) for the grid points shown
in the AFS window.

Complementarity & AFS The GUI is built around four windows and a central control bar:

1. Pure factor windows (Upper row): These windows show three concentration profiles and three
spectra of a factorization D = CA which is computed by a step-wise reduction of the rotational
ambiguity for a three-component system.

2. C, A - AFS windows (Lower row): Here FIRPOL, a superset which includes the AFS, and/or
the AFS can be shown for the factors C and A. A feasible factorization D = CA is associated
with two triangles whose vertices represent the concentration profiles and spectra.

3. Control bar (Center): Includes all control parameters for the computations, the live-view mode,
the import of pure component spectra or concentration profiles as well as the control buttons
for adding contour plots on certain soft constraints.

3.3.2 Importing initial data

Spectral data are imported to FAC-PACK by means of a MAT-file ∗.mat. This file must contain
the matrix D ∈ R

k×n whose rows are the k spectra. Each spectrum contains absorption values at
n frequencies. The file may also contain a vector x with n components representing the spectral
wavenumbers/frequencies and a time-coordinates vector t ∈ R

k.

The spectral data matrix D is loaded by pressing one of the buttons (1)1, (18) or (64) depending on
the active GUI. The dimension parameters k and n are shown in the GUI. The four largest singular
values are shown in the fields (22)-(25) or (71)-(74). These singular values allow to determine the
numerical rank of the data matrix and are the basis for assigning the number of components s.

1Red numbers refer to Section 3.7.
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3.3.3 Sample data

FAC-PACK provides some sample data matrices:

example0.mat: k = 51 spectra, n = 201 channels, s = 3 components with a
baseline turning negative to demonstrate the baseline correction.

example1.mat: k = 51 spectra, n = 101 channels, s = 2 components.
example2.mat: k = 21 spectra, n = 101 channels, s = 3 components,

the AFS has three clearly separated segments.
example3.mat: k = 21 spectra, n = 101 channels, s = 3 components,

the AFS is one topologically connected set with a hole.
example4.mat: some random noise has been added to data matrix D given in

example2.mat, the AFS has three clearly separated segments.

3.3.4 External C-routine

All time-consuming numerical computations are externalized to a C-routine in order to accelerate
FAC-PACK. This C-routine is AFScomputationSYSTEMNAME.exe, wherein SYSTEMNAME stands
for your system including the bit-version. For example AFScomputationWINDOWS64.exe is used on
a 64 bit Windows system. The external routine is called if any of the buttons Initial nmf (30),
Compute AFS (43), no. 1 (57) or no. 2 (59) is pressed. Pre-compiled versions of the C-routine for
the following systems are parts of the distribution:

- Windows 32/64 bit,

- Unix 32/64 bit and

- Mac 64 bit.

The execution of the external routine can always be stopped by CTRL + C in the command window.
If the C-routine takes too much computation time, the reason for this can be large values for k, n, max
fcls (40) or max edges (41) or too small values for ε-bound (38) or δ-stopping (39).

3.3.5 Further included libraries

The C-routine AFScomputationSYSTEMNAME.exe includes the netlib library lapack and the ACM rou-
tine nl2sol. Any use of FAC-PACK must respect
the lapack license, see http://www.netlib.org/lapack/LICENSE.txt, and
the nl2sol license, see http://www.acm.org/publications/policies/softwarecrnotice.

3.4 Baseline correction module

AFS computations depend sensitively on distorted baselines and negative components in the spectral
data. Such perturbing signals can pretend further components in the reaction system and negative
components are not consistent with the nonnegative factorization problem. The Baseline correction

GUI tries to correct the baseline and is accessible by pressing the button Baseline correction on the
FAC-PACK start window, see a screen shot on page 32. Data loading is explained in Section 3.3.2.
The Transpose button (2) serves to transpose the data matrix D.

The Baseline correction GUI is a simple tool for spectral data preprocessing. It can be applied to
series of spectra in which the distorted baseline in some frequency windows is well separated from the
relevant signal. We call such frequency intervals, which more or less show the baseline, zero-intervals.
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The idea is to remove the disturbing baseline from the series of spectra by adapting a global correction
function within in the zero-intervals to the baseline. See Figure 11 where four zero-intervals have been
marked by blue columns. The zero-intervals are selected in the raw data window (8) by clicking in the
window, dragging a blue zero-interval and releasing the mouse button. The procedure can be repeated
in order to define multiple zero-intervals. The Reset intervals button (7) can be used in order to
reset the selection of all zero-intervals.
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Raw spectra

Figure 11: Four zero-intervals are marked by blue columns. In these intervals the spectral data
is corrected towards zero. Data: example0.mat.

Mathematically every spectrum is treated separately. Let a ∈ R
n be a certain spectrum. Then the

aim is to compute a baseline function b ∈ R
n so that the norm of the residuum a− b is minimal within

the selected intervals. The baseline-corrected spectrum is then anew = a− b. Once again, this explains
the naming zero-intervals, since there the spectrum is assumed to be zero.

The sum of the interval lengths of these zero-intervals should be as large as possible in order to ensure
a reliable baseline approximation. However, the required number of frequency grid points depends on
the degrees of freedom of the type of the baseline function. The text field (11) shows the information
"ok"/"not ok" in order to indicate whether or not the selected intervals are large enough for the
baseline approximation. Data cutting is a further functionality of the baseline correction GUI: If only
a certain frequency subinterval is to be analyzed or the baseline correction is only to be applied to a
subinterval, then this subinterval can be marked by mouse clicking and dragging and then the Cut

data-button can be pressed. The user can always return to the initial data by pressing the Reset

cutting-button (6).

3.4.1 Type of the baseline

Four types of baselines are available:

• Polynomials of order zero up to order four,

• a Gauss curve,

• or a Lorentz curve.

The most recommended baselines are polynomials with the degrees 0, 1 or 2. A polynomial of degree 0
is a constant function so that a constant is added or subtracted for each spectral channel of a spectrum.
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The baselines "Gauss curve" and "Lorentz curve" can be used to remove single isolated peaks from the
series of spectra. Once again, the curve profile is fitted in the least-squares sense to the spectroscopic
data within the selected frequency interval. Then the fitted profile is subtracted from the spectrum.

3.4.2 Program execution and data export

The baseline correction by an external C-procedure is started by pressing the Correct baseline-button
(12). The computation times for data wrapping and for solving the least-squares problem are shown
in the text fields (13) and (14). The corrected series of spectra (in black) is shown in the window (16)
together with the original data (in gray). The baseline-corrected data can be stored in a MatLab file
by pressing the Save-button (15).

By clicking the right mouse button in a figure a separate MatLab figure opens. The figure can now
be modified, printed or exported in the usual way. If for some reason (e.g. program runs too long)
the external C-procedure for the baseline correction is to be stopped, then CTRL + C only works the
MatLab command window (and not in the GUI).
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Baseline corrected series of spectra

Figure 12: Sample problem example0.mat with corrected baseline by a 2nd order polynomial.

3.5 AFS computation module

This section describes how to compute the area of feasible solutions (AFS) for two- and three-
component systems with FAC-PACK.

3.5.1 Initial steps

The AFS computation module can be started by pressing the AFS computation button on the FAC-
PACK start window. Data loading by the Load button (18) is explained in Section 3.3.2. The loading
process is followed by a singular value decomposition (SVD) of the data matrix. The computing time
is printed in the field Computing time info (47). The dimensions of D are shown in the data window
together with the singular values σ1, . . . , σ4. These singular values allow to determine the "numerical
rank" of the data matrix and are the basis for assigning the number of components s in the NMF
window.
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FAC-PACK provides some sample data matrices. These sample data sets are introduced in Section
3.3.3. Figure 13 shows the series of spectra from example2.mat. Three clearly nonnegative singular
values indicate a three-component system.

3.5.2 Transposing the problem

FAC-PACK computes and displays the spectral matrix factor A, see (1), together with its AFS. In
order to compute the first matrix factor C and its AFS, press the Transpose button (19) to transpose
the matrix D and to interchange x and t.

3.5.3 Initial NMF

To run the polygon inflation algorithm an initial NMF is required. First the number of components
(either s = 2 or s = 3) is to be assigned. In the case of noisy data additional singular vectors can be
used for the decomposition by selecting a larger number of singl vcts (29). For details on this option
see [13], wherein the variable z equals singl vcts.

The initial NMF is computed by pressing the button Initial nmf (30). The NMF uses a genetic
algorithm and a least-squares minimizer. The smallest relative entries in the columns of C and rows of
A, see [18] for the normalization of the columns of C and rows of A, are also shown in the NMF window,
see (34) and (35). These quantities are used to define an appropriate noise-level ε; see Equation (6) in
[18] for details.

The initial NMF provides a number of s interior points of the AFS; see Equations (3) and (5) in [18].

The buttons plot C and A (31), plot C (32) and plot A (33) serve to display the factors C and A

together or separately. Note that these abstract factors are associated with the current NMF. After
an NMF computation the A factor is displayed.

Figure 14 shows the factor A for an NMF for example2.mat. The relative minimal components in both
factors are greater than zero (9.9 · 10−4 and 10−3). So the noise-level e-neg. entr.: (37) can be set
to the lower bound e-neg. entr.: 1 · 10−12.

3.5.4 Computation of the AFS

For two-component systems (s = 2) the AFS consists of two real intervals. FAC-PACK represents the
associated AFS by the two orthogonal sides of a rectangle. The sides are just the intervals of admissible
values for α and β where

T =

(
1 α

1 β

)

is the transformation matrix which constitutes the rotational ambiguity. See [1, 2] for the AFS for the
case s = 2. However in [1], see Equation (6), the entries of the second row of T are interchanged.

For three-component systems (s = 3) the AFS is formed by all points (α, β) so that

T =





1 α β

1 s11 s12
1 s21 s22





is a transformation which is associated with nonnegative factors C and A, see [18]. A permutation
argument shows that with (α, β) the points (s11, s12) and (s21, s22) belong to the AFS, too.
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Figure 13: Test matrix example2.mat loaded by pressing the Load button (18).
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Figure 14: The initial NMF for example2.mat with s = 3 components.
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The initial NMF is the starting point for the numerical computation of the AFS since it provides first
α and β in the AFS.

Next various control parameters for the numerical computation of the AFS are explained. Further two
ways of computing different kinds of the AFS are introduced.

Control parameters Five control parameters are used to steer the adaptive polygon inflation algo-
rithm. FAC-PACK aims at the best possible approximation of the AFS with the smallest computational
costs. Default values are pre-given for these control parameters.

• The parameter e-neg. entr. (37) is the noise level control parameter which is denoted by ε in
[18]. Negative matrix elements of C and A do not contribute to the penalization functional if their
relative magnitude is larger than −ε. In other words, an NMF with such slightly nonnegative
matrix elements is accepted as valid.

• The parameter e-bound (38) controls the precision of the boundary approximation and is de-
noted by εb in [18]. Decreasing the value εb improves the accuracy of the positioning of new
vertices of the polygon.

• The parameter d-stopping (39) controls the termination of the adaptive polygon inflation pro-
cedure. This parameter is denoted by δ in Section 3.5 of [18] and is an upper bound for change-
of-area which can be gained by a further subdivision of any of the edges of the polygon.

• max fcls. (40) and max edges (41) are upper bounds for the number of function-calls and for
the number of vertices of the polygon.

Type of polygon inflation FAC-PACK offers two possibilities to apply the polygon inflation method
for systems with three components (s = 3). The user should select the proper method according to
the following explanations:

1. The "classical" version of the polygon inflation algorithm is introduced in [18] and applies best
to an AFS which consists of three clearly separated segments. Select Polygon inflation by
pressing the upper button (42). A typical example is shown in Figure 15 for the test problem
example2.mat. In each of the segments an initial polygon has been inflated from the interior.
Interior points are accessible from an initial NMF.

2. Alternatively, the Inverse polygon inflation procedure is activated by pressing the lower
button in (42). This should be done if the AFS is only one topologically connected set (with a
hole) or if the isolated segments of AFS are in close neighborhood. See Figure 16 for an example.

The inverse polygon inflation method is more expensive than the classical version. First the
complement of the AFS is computed and then some superset of the AFS is computed. A set
subtraction results in the desired AFS. The details are explained in [20].

The user should always try the second variant of the polygon inflation algorithm if the results of the
first variant are not satisfying or if something appears to be doubtful.

3.5.5 Factor representation & live-view mode

Next the plotting of the spectra and/or concentration profiles is described. These factors can be
computed from the AFS by certain linear combinations of the right and/or left singular vectors. The
live-view mode allows an interactive representation of the factors by moving the mouse pointer through
the AFS.
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Figure 15: An AFS with three clearly separated segments as computed by the "classical"
polygon inflation algorithm. Data: example2.mat.
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Figure 16: An AFS which consists of only one segment with a hole. For the computation the
inverse polygon inflation algorithm has been applied to example3.mat.



3.5 AFS computation module 22

0 20 40 60 80 100
0

channel / time

Figure 17: The live-view mode for the two-component system example1.mat. By moving the
mouse pointer through the AFS the transformation to the factors C and A is com-
puted interactively and all results are plotted in the factor window. The spectra are
drawn by solid lines and the concentration profiles are represented by dash-dotted
lines.
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Figure 18: The AFS for the problem example2.mat consists of three separated segments. The
blue segment of the AFS is covered with grid points (dark blue points). For each of
these points the associated spectrum is plotted in the right figure.
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Figure 19: The live-view mode is active for the 3 component system example2.mat. In the
green AFS-segment the mouse pointer is positioned in the left upper corner at the
coordinates (0.9896,−0.4196). The associated spectrum is shown in the right figure
together with the mouse pointer coordinates.
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Two-component systems For two-component systems a full and simultaneous representation of
the factors C and A is possible. In order to get an overview of the range of possible spectra one
can discretize the AFS-intervals equidistantly. For each point of the resulting 2D discrete grid the
associated spectrum is plotted in the factor window. The discretization parameter (subinterval length)
is selected in the field (50) and/or (51). The plot of the spectra is activated by pressing button AFS

1 (52) or button AFS 2 (53).

Live-view mode: The live-view mode can be activated in the field (55). By moving the pointer through
the AFS the associated solutions are shown interactively. Figure 17 shows a typical screen shot. The
y-axis labels are turned off.

Three component systems For three-component systems the range of possible solutions is pre-
sented for each segment of the AFS separately. The user can select with the buttons AFS 1 (52),
AFS 2 (53) and AFS 3 (54) a specific AFS which is then covered by a grid. First the boundary of the
AFS segment (which is a closed curve) is discretized by a number of bnd-pts nodes. The discretization
parameters for the interior of this AFS segment are step size x (50) and step size y (51); the interior
points are constructed line by line. The resulting nodes are shown in the AFS window by symbols
× in the color of the AFS segment. For each of these nodes the associated spectrum is drawn in the
factor window. For the test problem example2.mat the bundle of spectra is shown in Figure 18. The
resolution can be refined by increasing the number of points on the boundary or by decreasing the step
size in the direction of x or y.

If the admissible concentration profiles are to be printed, then the whole procedure is to be applied to
the transposed data matrix D; activate the Transpose button (19) at the beginning and recompute
everything.

Live-view mode: The live-view mode can be activated in the field (55). By moving the pointer through
the AFS, the associated solutions are shown interactively. An example is shown in Figure 19.

Additionally, a certain point in the AFS can be locked by clicking the left mouse button; then the
AFS for the remaining two components is re-computed. The resulting AFS is a smaller subset of the
original AFS, which reflects the fact that some additional information is added by locking a certain
point of the AFS. See Section 3.5.6 for further explanations.

3.5.6 Reduction of the rotational ambiguity

With the computation of the AFS FAC-PACK provides a continuum of admissible matrix factoriza-
tions. All these factorizations are mathematically correct in the sense that they represent nonnegative
matrix factors, whose product reproduces the original data matrix D. However, the user aims at the
one solution which is believed to represent the chemical system correctly. Additional information on
the system can help to reduce the so-called rotational ambiguity. FAC-PACK supports the user in this
way. If, for instance one spectrum within the continuum of possible spectra is detected, which can
be associated with a known chemical compound, then this spectrum can be locked and the resulting
restrictions can be used to reduce the AFS for the remaining components.

Locking a first spectrum After computing the AFS, activate the live-view mode (55). While
moving the mouse pointer through any segment of the AFS, the factor window shows the associated
spectra. If a certain (known) spectrum is found, then the user can lock this spectrum by clicking the
left mouse button. A × is plotted into the AFS and the button no. 1 (56) becomes active. By pressing
this button a smaller subset of the original AFS is drawn by solid black lines in the AFS window. This
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Figure 20: Reduction of the AFS for the test problem example2.mat. Left: the reduced AFS
is shown by black solid lines after locking a first spectrum (marker ×). Right: The
AFS of the remaining third component is shown by a black broken line.

smaller AFS reflects the fact that some additional information on the system has been added. The
button esc (57) can be used for unlocking any previously locked point.

Locking a second spectrum Having locked a first spectrum and having computed the reduced
AFS the live-view mode can be reactivated. Then a second point within the reduced AFS can be
locked. By pressing button no. 2 (58) the AFS for the remaining component is reduced for a second
time and is shown as a black broken line. Once again, the button esc (59) can be used for unlocking
the second point.

Figure 20 shows the result of such a locking-and-AFS-reduction procedure for the test problem exam-
ple2.mat. For this problem the AFS consists of three clearly separated segments and the final reduction
of the AFS is shown by the black broken line in the red segment of the AFS. The live-view mode al-
lows to display the possible spectra along this line. The resulting restrictions on the complementary
concentration factor C can be computed by the module AFS & Complementarity, see Section 3.6.

3.5.7 Save data and extract axes

To save the results in a MatLab *.mat file press either Save AFS (60) or Save all (61). A proper
file name is suggested.

Save AFS saves the data D, the factors U , S, V of the singular value decomposition, the factors
Cinit, Ainit of the initial NMF and the AFS. The AFS has the data format of a structure which
contains the following variables:

• For s = 2 the AFS consists of two segments: AFS{1} ∈ R
2 and AFS{2} ∈ R

2 with α ∈
[AFS{1}(1), AFS{1}(2)] and β ∈ [AFS{2}(1), AFS{2}(2)] and vice versa.

• For s = 3 and an AFS consisting of three segments: AFS{i} ∈ R
mi×2 with i = 1, 2, 3 is a

polygon whose x-coordinates are AFS{i}(:, 1) and whose y-coordinates are AFS{i}(:, 2).

• For s = 3 and an AFS consisting of one segment with a hole: AFS{1} ∈ R
m×2 is the outer

polygon (AFS{1}(:, 1) the x-coordinates and AFS{1}(:, 2) the y-coordinates) and AFS{2} ∈
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R
ℓ×2 is the inner polygon surrounding the hole.

If the lock-mode has been used, see Section 3.5.6, then the results are saved in AFSLockMode1 and
LockPoint2 (case of one locked spectrum) as well as AFSLockMode2 and LockPoint1 (case of two
locked spectra).

The user can get access to all figures. Therefore click the right mouse button in the desired figure.
Then a separate MatLab figure opens. The figure can now be modified, printed or exported in the
usual way.

3.5.8 Cancellation of the program

Whenever the buttons Initial nmf (30), Compute AFS (43), no. 1 (57) or no. 2 (59) are pressed,
an external C-routine is called, see Section 3.3.4. The GUI does not respond to any activities during
the execution of the C-routine. Therefore, in case of any problems or in case of too long program
runtimes, the C-routine cannot be canceled from the GUI. The termination can be enforced by typing
CTRL + C in the MatLab command window. Time consuming processes can be avoided if all the
parameters are adjusted to reasonable (default) values.

3.5.9 How to get help

If the Help box (62) is checked and the mouse pointer is moved over a button, a text field or an axis,
then a short explanation appears right next to the Help field. Further, a small pop-up window opens
if the mouse pointer rests for more than one second on a button.

3.6 Complementarity & AFS module

This FAC-PACK module simultaneously shows the AFS for the spectral factor and the AFS for the
concentration factor. It demonstrates how the rotational ambiguity for a three-component system can
be reduced by means of the complementarity theory. For the complementarity theorem see [19, 20]
and for comparable results see [3]. Solutions can be selected and modified within a live-view mode.
Any changes in the spectral AFS are immediately mapped to changes in the concentrational AFS and
vice versa. This gives the user the full control over and a visualization of a the complete factorization
D = CA.

3.6.1 Initial steps

The Complementarity & AFS module module can be started by pressing the Complementarity &

AFS button on the FAC-PACK start window. Data loading by the Load button (18) is explained in
Section 3.3.2. The loading process is followed by a singular value decomposition (SVD) of the data
matrix. The dimensions of D are shown in the fields (69) and (70) together with the four largest
singular values in the fields (71-74). For this module the fourth singular value should be "small"
compared to the first three singular values so that the numerical rank of D equals 3. For noisy data
one might try to use a larger number of vectors in the field (78), see also Section 3.5.3.

In Figure 13 we consider the sample data example2.mat, cf. Section 3.3.3. The parameters in the fields
(75)-(77) control the AFS computation. The meaning of these parameters is explained in Section 3.5.4.
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3.6.2 AFS selection

In this module both the spectral AFS MA and the concentrational AFS MC are computed. It is also
possible to compute FIRPOL which includes the AFS. The user can select to compute

1. the two FIRPOL sets which contain MA and MC as subsets. For the spectral factor FIRPOL
is the set M+

A = {(α, β) : (1, α, β) · V T ≥ 0}; see also Equation (6) in [19]. Points in M+

A

represent only one nonnegative spectrum A(1, :). The concentrational set FIRPOL M+

C can be
described in a similar way. The FIRPOL computation is computationally cheaper and faster
since no optimization problems have to be solved.

2. the spectral AFS MA and the concentrational AFS MC . These computations are often time-
consuming.

FIRPOL as well as the AFS are computed by the polygon inflation method [18, 19]. Numerical
calculations are done by the C-routine AFScomputationSYSTEMNAME, see Section 3.3.4, immediately
after a selection is made in the checkbox (79). The results are shown in the windows (65) and (67).

Figure 21 shows FIRPOL M+

A and the AFS MA for the sample data example2. The trace of D, see
Section 3.6.2, is also shown. The triangle in MA represents a complete feasible factor A.
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Figure 21: Sample data example2. Left: FIRPOL M
+

A. Center: MA. Right: MA with the
trace of D marked by gray circles and a triangle representing a feasible factor A.

Traces of the spectral data matrix D The traces of spectral data matrix D can be drawn in MA

and MC . The traces in MA are the normalized expansion coefficients of the rows of D with respect
to the right singular vectors V (:, 2) and V (:, 3). The normalization is that the expansion coefficient for
V (:, 1) equals 1. Thus the trace MA is given by the k points

wi =

(
(DV )i2
(DV )i1

,
(DV )i3
(DV )i1

)

=

(
D(i, :) · V (:, 2)

D(i, :) · V (:, 1)
,
D(i, :) · V (:, 3)

D(i, :) · V (:, 1)

)

, i = 1, . . . , k.

Analogously, the traces of D in MC are the normalized expansion coefficients of the columns of D

with respect to the scaled left singular vectors σ−1

2 U(:, 2) and σ−1

3 U(:, 3)

uj =

(
(Σ−1UTD)2j
(Σ−1UTD)1j

,
(Σ−1UTD)3j
(Σ−1UTD)1j

)

=

(
σ1U(:, 2)T ·D(:, j)

σ2U(:, 1)T ·D(:, j)
,
σ1U(:, 3)T ·D(:, j)

σ3U(:, 1)T ·D(:, j)

)

for j = 1, . . . , n. If the checkbox trace (80) is activated, then the traces of D in MA and MC are
plotted by small gray circles.
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3.6.3 Live-view mode

The AFS can be explored in a live-view mode which allows an interactive representation of the factors
by moving the mouse pointer through the AFS. Points in MA and or MC can be locked by clicking
the left mouse button in the AFS. Any points can be unlocked and afterwards moved in the AFS. The
modification of a certain point in one AFS results in changes for the components in the other AFS.
All this is shown interactively. A unique factor C or A is represented by a triangle in the AFS. The
vertices of these triangles can be unlocked by the buttons (82)-(84) and (86)-(88). By a step-by-step
selection and modification of three vertices in the AFS for A (or three vertices in the AFS for C) the
user can construct two triangles and thus a complete factorization D = CA. Next an initial triangle is
constructed in MA; the whole procedure can also be applied to MC .

Initialization: Selection of a first point By activating the first-radio button (83) a first spec-
trum/point of the spectral AFS can be selected. If the mouse pointer is moved through the AFS
window (67), then the associated spectra are shown in the window (66) for the factor A. The com-
plementary concentration profiles are restricted by the complementarity theorem to a one-dimensional
affine space; the associated straight line is shown in the concentrational AFS simultaneously. By press-
ing the left mouse button a certain point in the AFS can be locked. All this is illustrated in Figure
22.

Initialization: Selection of a second point Next a second point can be selected in MA. Therefore
the second-radio button (84) can be activated and the mouse pointer can be moved through the AFS
MA. The following items are plotted simultaneously:

• the two selected points in the AFS MA,

• the two associated spectra in the factor window (66),

• the two complementary straight lines and the point of intersection in the AFS MC (65),

• the associated concentration profile for the uniquely determined complementary concentration
profile in the factor window (64).

By pressing the left mouse-button a certain point can be locked. The result is illustrated in Figure 23.

Initialization: Selection of a third point A third point can be added by activating the red third-
radio button (85) and moving the mouse pointer through the AFS MA. The following items are
plotted simultaneously:

• a triangle in the AFS MA whose vertices uniquely determine the factor A,

• the three associated spectra in the factor window (66),

• the three complementary straight lines which define a triangle in the AFS MC (65),

• the associated concentration profiles in the factor window C (64).

Once again a third point can be locked by clicking the left mouse button. Figure 24 illustrates this.

3.6.4 Modification of the solution

Once an initial solution has been selected, one can now modify the vertices of the triangles. This can
be done by activating the buttons
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Figure 22: A first point, marked by ×, is locked in the AFS MA (lower-right). This results in:
Upper-left: no concentration profile has uniquely been defined up to now. Upper-
right: a single pure component spectrum has been fixed. Lower-left: the blue
straight line is a restriction on the complementary concentration profiles C(:, 2 : 3)
in MC .

• (80)-(82) to modify the triangle in MC ,

• (84)-(86) to modify the triangle in MA.

The selection and re-positioning of the vertices has to follow the rule that all six vertices are within
the segments of MA and MC . Otherwise, negative components can be seen in the factor windows
(64) and (66). In general a vertex in one AFS is associated with a line segment in the other AFS;
see [17] for the complementarity theorem and [3, 19, 20] for applications to three-component systems.
Any vertex in one AFS and the associated line segment in the other AFS are plotted in the same color
in order to express their relationship. By changing one vertex of a triangle, two vertices of the other
triangle are affected.

3.6.5 Contour plots on factor properties

The Complementarity & AFS module can help the user to select pure components in the AFS which
have certain desired properties. Sometimes it might help to know where in an AFS monotone con-
centration profiles or exponentially decaying profiles (of a reactant) can be found. Smoothness of a
pure component profile or a small integral of a spectrum might also be valuable selection criteria. In
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Figure 23: A second point, marked by ×, is locked in the AFS MA (lower-right). This results
in: Upper-left: one complementary concentration profile is uniquely determined.
Upper-right: the two locked pure component spectra. Lower-left: the blue straight
line restricts the complementary concentration profiles C(:, 2 : 3) and the green
straight line restricts the complementary concentration profiles C(:, 1) and C(:, 3)
in MC . One concentration profile marked by ◦ is now uniquely determined.

the Complementarity & AFS module any point in the (α, β)-plane can be evaluated with respect to
various constraint functions which estimate the smoothness, monotonicity, exponential decay and so
on. The result in form of a contour plot is then shown in the AFS.

By using the radio buttons (90)-(92) for the factor C and by using the radio buttons (94) and (95) for
the factor A the contour plots are shown. These plots can be removed from the AFS by clicking the
buttons (89) and (93). The numerical evaluation of the constraint function may take some time.

Contour plots for the following constraint functions are available:

• monotone concentration profiles (90): monotonously increasing or decreasing profiles are fa-
vored and are shown in light gray or white in the contour plot,

• smooth concentration profiles (91): profiles with a small Euclidean norm of the discrete second
derivative are favored (91) (shown white in the contour plot),

• exponentially decaying concentration profiles (92): for every point of a grid in the (α, β)-
plane the approximation error for an exponentially decaying function (with an optimized decay
constant) is calculated. This allows to favor reactants decaying exponentially, which can be
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Figure 24: Three locked points in MA uniquely define the factor A represented by a feasible
triangle (lower-right). This results in: Upper-left: three complementary concentra-
tion profiles. Upper-right: three pure component spectra. Lower-left: a triangle in
the AFS MC .

found in the light gray or white areas in MC ,

• smooth spectra (94): spectra with a small Euclidean norm of the discrete second derivative are
favored,

• small norm spectra: spectra with a small Euclidean norm of the representing vector are favored.
Thus spectra with few isolated and narrow peaks are shown in light gray compared to those with
wide absorbing peaks (shown in darker gray).

Figure 25 shows two examples.

3.6.6 Import of spectra and concentration profiles

If the user can provide one or more pure component spectra or certain concentration profiles for the
reaction system under consideration, then these data can be loaded into the Complementarity & AFS
module. After pressing the Import spectra-button (98) one, two or three pure component spectra
can be loaded. These should be stored in a MatLab variable named a being an ℓ×n vector in case of ℓ
pre-given spectra. (Linear interpolation should be used if a known spectrum does not fit the dimension
n.) Any loaded spectrum is marked in the spectral AFS MA by a ∗.
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Figure 25: Contour plots for two soft constraints. Left: Contour evaluating the closeness to an
exponentially decaying function. The right lower vertex (marked by ◦) represents an
exponentially decaying concentration profile. Right: Contour plot for the Euclidean
norm of the spectrum for example2.mat.

Analogously, known concentration profiles can be loaded by pressing the Import concentration

profiles (96) button. The data must be provided in a ∗.mat file containing the variable c; columns
with k components determine pre-given concentration profiles.

3.6.7 Save data and extract axes

In order to export the solutions press the Save-button (97). Then

• the variables determining the geometry of FIRPOL and of the AFS,

• the initial spectral data, the SVD,

• and, if available, the locked points in AFS MA and MC , the associated spectra plus concentra-
tion profiles and transformation matrix T determining a unique factorization CA

are saved in a MatLab file.

Any figure window in the GUI can be accessed by clicking the right mouse button in the desired figure.
Then a separate MatLab figure opens. The figure can now be modified, printed or exported in the
usual way.

3.6.8 Program abortion

The AFS & complementarity module calls an external C-routine if FIRPOL or the AFS is computed
through the check fields (79). The GUI does not respond to any commands during the execution of
the C-routine. In case of any problems or in case of too long program runtimes, the C-routine cannot
be canceled from the GUI. Program abortion can be enforced by typing CTRL + C in the MatLab

command window.
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3.7 Screen shots & description of operation panels

I: Screen shot of the Baseline-correction module:
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The GUI buttons, data fields and figures:

1 Load data matrix D
2 Transpose D
3 # rows of D
4 # columns of D
5 Cut spectra as marked by mouse
6 Reset spectral cutting
7 Reset selected intervals
8 Raw spectra window
9 Select type of baseline correction

10 Status of data consistency
11 Status of band selection consistency
12 Apply baseline correction
13 Computing time for data wrapping
14 Computing time for baseline correction
15 Save button
16 Corrected spectra window
17 Name of data file
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II: Screen shot of the AFS computation module:
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The GUI buttons, data fields and figures:

18 Load button
19 Transpose button
20 # rows of data matrix D
21 # columns in D
22 Singular value 1 of D
23 Singular value 2 of D
24 Singular value 3 of D
25 Singular value 4 of D
26 File name
27 Initial spectra window
28 Input # components
29 # of singular values used

for initial NMF
30 Compute NMF
31 Plot factors C and A
32 Plot factor C
33 Plot factor A
34 Minimal matrix elements of

C in the NMF
35 Minimal matrix elements of

A in the NMF
36 NMF window

37 Acceptable negativeness for
the NMF

38 Precision at the boundary
39 Stopping precision
40 Maximal # calls of the tar-

get function
41 Maximal # of edges
42 Select type of polygon infla-

tion
43 Compute AFS
44 # edges
45 # calls of target function
46 No. used function calls for

the boundary-precision
47 Output on the numerical

computation
48 AFS window
49 # of boundary points for

the factor representation
50 Step size x direction for the

factor representation

51 Step size y direction for the
factor representation

52 Plot factors for segment 1
of the AFS

53 Plot factors for segment 2
of the AFS

54 Plot factors for segment 3
of the AFS

55 Activate live-view mode
56 Compute AFS for 1 se-

lected point
57 Reset 1. restricted AFS
58 Compute AFS for 2 se-

lected points
59 Reset 2. restricted AFS
60 Save button (AFS)
61 Save button (all)
62 Help field
63 Factor window
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III: Screen shot of the Complementarity & AFS module:
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The GUI buttons, data fields and figures:

64 Factor C
65 AFS for C
66 Factor A
67 AFS for A
68 Load spectral data matrix

D
69 # rows of D
70 # columns of D
71 Singular value 1 of D
72 Singular value 2 of D
73 Singular value 3 of D
74 Singular value 4 of D
75 Acceptable negativeness for

the NMF
76 Precision at the boundary
77 Stopping precision
78 # of singular vectors used

for initial NMF

79 Select AFS (FIRPOL
and/or full AFS)

80 Mark mixed spectra (rows
of D) in the AFS

81 Live-view mode C off
82 Live-view mode C(:, 1) on
83 Live-view mode C(:, 2) on
84 Live-view mode C(:, 3) on
85 Live-view mode A off
86 Live-view mode A(1, :) on
87 Live-view mode A(2, :) on
88 Live-view mode A(3, :) on
89 Contour mode C off

90 Contour mode for C -
monotone profiles

91 Contour mode for C -
smooth profiles

92 Contour mode for C - ex-
ponential decay

93 Contour mode for A off
94 Contour mode for A -

smooth spectra
95 Contour mode for A - spec-

tra with a small norm
96 Import external concentra-

tion profiles
97 Save the results
98 Import external spectra
99 Computing time

100 Name of data file
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