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Abstract

In 1985 Borgen and Kowalski [DOI:10.10480003-2670(00)84361-5] published their landmark papethergeo-
metric construction of feasible regions for nonnegativetdezations of spectral data matrices for three-compbnen
systems. These geometric constructions are called Botgen Borgen plots are principally restricted to nonnegati
data and are sometimes considered as analytical tool. Majdributions to this theory have been given by Rajké.
In contrast to these geometric constructions, numeric#thous to compute the so-called Area of Feasible Solutions
(AFS) have been studied by Golshan et al. [DOI: 10.182102429q] and by Sawall et al. [DOI: 10.1062m.2498].
These numerical methods can even treat spectral data widlthde slightly negative components.

In this work the concept oGeneralized Borgen Plots introduced for spectral data which are polluted by small
negative entries. The analysis is not restricted to thoeeponent systems, but can be applied to gersecamponent
systems. Generalized Borgen plots are identical to theicksBorgen plots for nonnegative data. The analysis in
this work also bridges the gap between thealent scalings (Borgen norms) used for AFS computations.

The algorithmic procedure of generalized Borgen plotstioeé-component systems and its implementation in the
FAC-PACK software are described in the second part of this paper.

Key words: factor analysis, pure component decomposition, nonnegatatrix factorization, Borgen plot, tangent
algorithm, spectral recovery.

1. Introduction and a spectra matriA € R¥" wheres is the number

of independent species. The columnEakepresent the
concentration profiles of the pure components along the
_time axis and the rows @& contain the pure component
spectra. Due to their physical meaning the components
of the three matrice®, C andA are nonnegative num-
bers.

The extraction of pure component information from
spectroscopic measurements on multicomponent chem
ical reaction systems is an important problem of ana-
lytical chemistry. Chemometric methods are valuable
tools to determine not only the number of independent
components in the reaction system, but also to extract Here we consider the reverse problem, namely to de-
the concentration profiles and spectra of the pure com- termine for a given spectral data matfxjust the two
ponents. unknown factor<C andA. Unfortunately, the nonnega-

The starting point of such an analysis is then spec- tive factorization oD is not unique in most cases. This
troscopic data matrio, whose rows contain a number fact is known as theotational ambiguityof nonnega-
of k spectra and each spectrum containsbsorbance tive factorizations ofD. Multivariate curve resolution
values with respect to a fixed wavelength grid. The ma- methods resolve this ambiguity problem by using soft
trix form of the Lambert-Beer lalD = CA states that  and hard constraints (e.g. unimodality, closure of con-
D, aside from small nonlinearities and measurement er- centrations, smoothness of spectra or solutions, kinetic
rors, is a product of a concentration mat@xe RK*S models and so on) which in many cases allow to extract



a single solution, see also [3]. slightly negative components. The survey paper [7] con-
However, an important question is to determine the tains a comparative study of Borgen plots, numerical
set of all feasible nonnegative facta€sand A so that AFS approximations and of the techniques [6, 26] to
the productCA constructs the given spectral data ma- compute ranges of feasible solutions.
trix D. In 1971 Lawton and Sylvestre [12] solved this This paper focuses on the nonnegativity constraint on
problem for a two-component systdig presenting the  factorizations ofD. If further soft or even hard con-
so-called LS-plots. They showed that there is a one- straints on the solution are added, then the resulting con-
to-one relation between feasible rowsAfnd certain strained AFS will be smaller, see e.g. [19, 25]. In the
regions in the plane which represent admissible (mixing extreme case of an AFS which consists only of isolated
or expansion) cd&cients with respect to the basis of points, namely one for each component, a unigque so-
singular vectors, see also [17]. A comparable relation |ution has been found. There exists, however, for our
holds for the feasible columns 6f In 1985 these ideas  geometric construction of the AFS not always a possi-
were extended to three-component systems by Borgenble translation of the constraint to associated geometric
and Kowalski [5]. conditions.

Together with a normalization condition the set of all
nonnegative factorizations @ for a three-component

plane. This low-dimensional representation of feasible
solutions of the factorization problem is called #rea

of feasible solutiongAFS). A typical example of an
AFS is shown in Figure 1, see [11]. In 1985 Borgen and
Kowalski described two geometric algorithms to con-
struct the AFS, namely the tangent algorithm and the
simplex rotation algorithm. In 2005 Rajkd and Istvan
[18] introduced methods of computational geometry to
draw Borgen plots for three-component systems. A key
condition for these algorithms is the nonnegativityDof

as well as ofC andA. Borgen plots were originally de-
veloped for ideal noise-free bilinear data and mainly for
principle-based research work.

The nonnegativity of spectral data is generally a nec-
essary prerequisite which is sometimes violated for ex-
perimental spectroscopic data. However, preprocessing
steps like background subtraction or the elimination of
known pure components from the spectral data can re-
sult in small negative elementskFurther for spectro-
scopic measurements, perturbations increase the rank
of the spectral data matrix and the low rank approxi-
mation matrix can contain negative components. Then
the classical Borgen plots cannot be constructed. In ad-
dition to the geometric constructive approach by Bor-
gen and Kowalski two alternative numerical algorithms
have been developed to approximate the Borgen plots
by an AFS for three-component systems. First, the tri-
angle enclosure algorithm has been presented in 2011
[8]. Second, the polygon inflation algorithm has been
suggested in 2013 [21, 22]. These two numerical algo-
rithms are based on aftkrent scaling compared to the
geometric construction in [18] so that the result can look
quite diferent. An important benefit of the triangle en-
closure algorithm and the polygon inflation algorithm is
that they can even work with spectral data which include
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1.1. Topics and aims
system can be represented by a bounded subset of the

The topics of this work are as follows:

1. A generalization of the classical Borgen plots is
presented, which allows that the geometric con-
structive Borgen plots can now be applied to exper-
imental spectroscopic data which is contaminated
with small negative components. These negative
components can be caused by data preprocessing,
low rank approximation or background subtrac-
tion. We call the resulting AFS approximations for
data with small negative components or for rank-
perturbed data thgeneralized Borgen platsf the
perturbations or negative components tend to zero,
then the generalized Borgen plots tend to the clas-
sical Borgen plots.

2. The mathematical theory behind the classical Bor-
gen plots, which is based aronvex linear com-
binations is generalized t@ffine linear combina-
tions These &ine linear combinations empower
the geometric constructive approach to work suc-
cessfully with spectral data which includes nega-
tive entries.(The idea of considering slightly neg-
ative components within the factorization problem

has already been used in [6] to handle noisy data.)

3. The gap between the geometric constructive Bor-
gen plots [5, 15, 18] and the numerical AFS al-
gorithms in [8, 21, 22] with their dierent factor
scalings is bridged. An explicit transformation be-
tween row sum scaling and first singular vector

scaling is derived.

4. The mathematical theory is presented for general

s-component systems; there is no restrictios te
3.



The algorithmic procedure for the geometric construc-
tion of generalized Borgen plots for three component
systems is presented in part Il of this paper. The new
algorithms have been implemented in #&C-PACK
software.

1.2. Guideline for the reader

This paper reports on new concepts for the AFS and
the underlying mathematical analysis. The reader who
is mainly interested in concepts can skip all proofs. The
topics and aims of the paper are explained in Section
1.1. Throughout the paper verbal explanations precede
the mathematical theorems. Various figures and numer-

ical examples (e.g. in Sections 2.5 and 4) accompany T

the discussion. In any case, a good starting point for the
reader might be experimenting with the (generalized)
Borgen plots by using the software provided at:

httpy/www.math.uni-rostock.décpack

1.3. Organization of this paper
In Section 2 two commonly used factor scalings for

the AFS construction are discussed. The equivalence

of these representations is proved and formula for their
mutual transformation are presented. Section 3 contains
the core results of this paper. The mathematical funda-
mentals of the classical Borgen and Kowalski geomet-
ric construction is generalized to data which includes
small negative components. The theory is presented in
general form fors-component systems and provides the
mathematical basis for the geometric construction of the
AFS. We call these geometric constructigeseralized
Borgen plots Finally, Section 4 contains generalized
Borgen plots for a model problem and for experimen-
tal FT-IR spectroscopic data. The new algorithms are

low-dimensional representation of spectra
byt=T(12:9), see (10).

M the AFS, see Def. 2.4.

Mecen generalized AFS for slightly negative data,
see Def. 3.8.

D eR*™"  spectral data matrix w.r.t. RS-scaling,
see Sec. 2.2

C e R*S  concentration matrix w.r.t. RS-scaling,
see Sec. 2.2.

AeR™"  spectra matrix w.r.t. RS-scaling,
see Sec. 2.2.

(VY] singular value decomposition &f,
see Sec. 2.2.

T e RS transformation matrix w.r.t. RS-scaling,
see Eq. (6).

te RS!  low-dimensional representation of spectra
w.r.t. RS-scaling with = T(1,2 : 9),
see Sec. 2.2.

M the AFS w.r.t. RS-scaling, see Def. 2.3.

HEC,EA generalized AFS for slightly negative
data w.r.t. RS-scaling, see Def. 3.1.

Q e Rk scaling matrix, see Eq. (24).

D € R*s spectral data matrix w.r.t. FSV-scaling,

see Eq. (25).

2. On the representation of feasible factorizations

Let D be ak-by-n spectral data matrix as introduced
in Section 1. The number of active and independent
species is denoted by For the analytical part of the
paper the numbesis not restricted. For the numerical
examples we uss = 3. In any cases < min (k, n). All
nonnegative factorizatior®Aof D are to be determined

demonstrated for various parameter selections and thewith C € R®*SandA € RS". If D = CAis a nonnegative

results are compared with AFS results from independent
methods.

1.4. Notation

The following notation is used in the paper. The ref-
erences apply to the first usage of the symbol.

D € R*" spectral data matrix, see Sec. 1.
C e RS concentration matrix, see Sec. 1.
A e R™" spectra matrix, see Sec. 1.

uzvT singular value decomposition &,

see Sec. 2.3.

T € RS transformation matrix, see (9) and (10).

factorization, then for any diagonal maté € R
with strictly positive diagonal elements the factorizatio
D = (CO™) (0A) 1)
is also a nonnegative factorization. Equation (1) means
that theith row or spectrum oA\ is scaled by the positive
factor ®;; and that simultaneously thith column ofC
(concentration profile) is scaled by@;;. Thus Equa-
tion (1) expresses a trivial scaling ambiguity. In Section
2.1 two commonly used standardizations of this scaling

are introduced and their implications are analyzed. We
still need the definition of the 1-norm.

Definition 2.1. The 1-norm of a vector € R" is the



sum of the absolute values [10] The termBorgen plot which is coined by Rajké and
Istvan [18], is commonly used for the geometric con-
d struction of the AFS which is computed by the algo-
il = Z i (2) rithm of Borgen and Kowalski [5]. Rajk6é and Istvan
primarily used a row normalization o& with the 1-
norm (2) in order to construct the AFS.
The starting point is a row sum scalingBfresulting
in D = AD whereA € R is the nonnegative diagonal

The scaling of the spectral factdraccording to (1) ~ Matrix with
has a significantféect on the shape of the AFS§ge [15] n
Sometimes the scaling is a normalization, e.g. with re- A(i, i) = ||D(i, :)||1l = 1/(2 D(i, £)). 3)
spect to the 1-norm given by (2) [16]. However, the
FSV-scaling, which is introduced below, is just a scaling _
by a proper positive constant (and is not a normalization Next a nonnegative factorizatidd = CA is wanted.
in the strict sense of a mathematical norm) The factorization oD instead ofD does not restrict the
is not related to a normalization. Furthermore, our generality of the approach sinée= A™'CA. If addi-
scope is somewhat more general as we are interestedionally the row sums of are all equal to 1, then the
in working with data which include negative elements. "ows ofD can be interpreted geometrically as shown in
Then the 1-norm (2) is substituted by the simple sum the nextlemma.
of the vector components without taking the absolute
values. For nonnegative data the row sum is identical to
the 1-norm of just this vector.
The following two scaling variants are commonly
used for AFS computations:

2.1. The row sum scaling and the first singular vector
scaling

Lemma 2.2. Let D € R be a nonnegative matrix
whose row sums are all equal to 1. The factorization
D = CAwithC € RS andA € R®" is a nonnegative
matrix factorization with all row sums &% being equal

to 1 if and only if each row dD is a convex combination
of the rows ofA, A > 0 and the rows ofC > 0 are
the cogficients of the convex combination. Thus all row
sums ofC are equal to 1.

1. Allrows of Aare assumed to be normalized so that
YI1AG, j) = 1fori = 1,...,s In the following
we call thisrow sum scaling theRS-scaling

Proof. Let D = C A be a nonnegative matrix factoriza-

tion. Then the row®(i, ;) of D are linear combinations
of the rows ofA, since

2. The rows ofA are scaled so that tfeeeficients of
the linear combinationsf each row ofA with re-
spect to the first right singular vector Bf equals
1. For the singular value decomposition [10] of _ s _
the spectroscopic data matiixsee [14] and Sec- D(i,:) = Z C(i, OAL, ). 4
tion 2.2. Theorem 2.2 in [22] proves that this co- =
efficient is nonzero under a certain weak assump-
tion onD. In the following we call thiffirst right
singularvector scaling th&SV-scaling

The given row scaling ob andA implies that

n n S
= > D(,])) = i, O)A(L,
The RS-scaling is one of the scalings suggested in [5]. ; JZ: (Z:;‘ WED
Later the RS-scaling is used, e.g., in [18]. This scaling s n s (5)
does not require a singular value decompositioof = ZC Z () = ZC(i,é’)
In contrast to this, the numerical algorithms to compute =1 =1 =1

the AFS work within the basis of left and right singular ——

vectors ofD, see [21]. With respect to this basis the

FSV-scaling can be usedh this paper we use the RS- Thus all row sums o€ are equal to 1. This proves to-

scaling and the FSV-scaling simultaneousBars are  gether with the nonnegativity of th&i, ¢) that Equation

added to all variables which refer to RS-scaling and bars (4) is not only a linear combination but even a convex

are skipped for variables which refer to FSV-scaling.  combination of the rows oA. For the reverse direction
with C, A > 0, Equation (5) proves the row sum condi-

2.2. The AFS for RS-scaling tion for A and the convex combinations (4) prove that

= C Ais a nonnegative matrix factorization. [



The geometric construction of the AFS in the form of
Borgen plots and its generalization are explained in Sec-
tion 3. Next a mathematical description of the AFS with
respect to RS-scaling is given. Therefore let a nonneg-
ative matrixD € R¥" of the ranks be given. The trun-
cated ranks singular value decomposition (SVD) reads
D = USV' with T € R¥S and orthogonal € R~
andV € R>"; see [10]. The key idea for the mathe-
matical representation of the rotational ambiguity is to
insert a regular matri¥ € RS and its inverse in the
truncated (SVD)

D=UIV =UTT1TV .
—_—— ——

|
=l

(6)

ol
S|

The representatioA = TV' shows that the rows of
T are low-dimensional representations of the possible
solutions. Similarly to the identity matriX ~T a per-
mutation matrix and its inverse (transposed matrix) can
be inserted in the truncated SVD. This shows that the
set of all feasible spectra is completely determined by
the set of all possible first rows [21]. Additionally,
theses degrees of freedom in the first row fcan be
further reduced by one degree of freedom by the row
sum scaling condition foA [5, 18]. It holds that

n
2,

T(L V(L ).

1
iy

Thus

C1-TLEL TV )

T T, V(i 1)

(7)

shows thafl (1, 1) is uniquely determined by(1,2 : s)
andV. Hence the AFS is fully determined by the set of
all feasible row vectors:= T(1, 2 : ). All this results

in the following definition.

Definition 2.3. Let D be a rank-s mTatrix whose row
sums are allequalto 1. Léd = UXV be the SVD of

D. The AFS with respect to RS-scaling is the set of row
vectorst e R™S1, for which a regular matrixt € RS
exists withT(1,2 : s) = T so thatC = UXT ! and
A=TV' are nonnegative matrices. Thus the AFS with

respect to RS-scaling, equivalently the Borgen plot, is
the set
M= {te R™ : exists regulaT, T(1,2:9) =

i,
_ - (8
150, TV > 0,76V =1 Vi}.

2.3. The AFS for FSV-scaling

The genuinely numerical procedures to compute the
AFSin[1, 2, 8,9, 21] do not require anitial row scal-
ing for D prior to the computation of the AF$stead
the starting point is a truncated rasksingular value
decomposition 0D = UZVT with U € RS, £ € RS
andV € R™S, It is important to note, that the SVD of
the row scaled matriP is very diferent from the SVD
of D; there is no simple or even linear transformation
between the singular values or singular vectors of these
two SVDs. Henc&J andU are very diferent. The same
holds forZ,  as well as folV, V.

Similarly, a regular matrixd@ € R¥Sis used in order
to define the factors

C=UxT?! and A=TV". (9)

Under some weak assumption &y namely the irre-
ducibility of DT D, the matrixT can be restricted to have
the all-ones vector in its first column, see [21]. In other
words the cofficient of the first (normalized) right sin-
gular vector equals 1 for each spectrum or rowAof
ThusT has the form

1t ts 1
1
T=|" g , (10)
1
wheret = (ti,...,ts 1) € R™S1is a row vector and

with S € R-D*(-1) The counterpart of Definition 2.3
for FSV-scaling is:

Definition 2.4. Let D € R*" be a rank-s matrix with
irreducible D'D let D = UXV' be the SVD of D. The
AFS M with respect to FSV-scaling is the set of all row
vectors te R™S1 in (10) with regular T so that C=
UXT-!and A= TV are nonnegative matrices. The set
M reads

M= {t e R exists regular TT(L,2) = (1,1),
ULT 20TV >0}.

2.4. Relation between the AFS for RS-scaling and the
AFS for FSV-scaling

The Borgen plot, that is the AFS with respect to RS-
scaling, looks dierent from the Borgen plot with re-
spect to FSV-scaling [16]This fact makes it dficult to
compare the results of the geometric constructive Bor-
gen plots with numerically computed AFS. To close the
gap, the following theorem provides a point-by-point
nonlinear transformation between these two AFS rep-
resentations.



Theorem 2.5. For a rank-s matrix De R with ir- The first row of this matrix equation is just (12).
reducible DD let M be the AFS with respect to RS- To prove the other direction we rewrite (15) as
scaling and M the AFS with respect to FSV-scaling. T
Then there is a one-one mapping betw&en M and T=R'TVV (16)
t € M so that these points represent the same spectrum
or row of A.

The explicit form of this one-one mapping is as fol-

with the diagonal matribR. The diagonal matriR!
serves to scale all components of the first columit of
to 1. Hence the diagonal elemerR§, i) are equal to

i i Ixs-1 —
lows. For the given,t € R let T VTV)i,l. ie.
x:=(1,1), - T
s wn 5 Ri=T(@, )V V(1)
. . 1- Zj=2 Dis1 tj—lV(L ) @1y T
X:= (.0 with y = STVG 1) ' and thusRy 1 = XV V(;, 1). The first row of (16) reads
= =T _T
Then the relations T(L:) =x=(/R)T(L,:)V V = (/R )XV V.
- xVTV (12) This proves (13). We note th&; = T(i, WVE 1) >
XV Oforalli€{1,2,...,s}if DTDisirreducible (cf. Theo-
TV rem 2.2 in [22]). O
X= ——— (13) .
XV V(1) 2.5. A numerical example .
_ In Figure 1 the AFS with RS-scalingt and the
allow to transform the AF31 to M and vice versa. AFS with FSV-scalingM for an FT-IR data set from

Proof. According to the definitions oM and M, the ~ the rhodium catalyzed hydroformylation, see [11], are
vectorst andt are associated with matricds and T shown. Obviously the AFS segments look quite dif--
and the first rows of these matrices have the form (11) ferent. However, they represent the same set of feasi-
with y from (7). Due to the Perron-Frobenius theory ble factorizations. For more deEuIs on the experimental
[13] V(:, 1) is a sign-constant and nonzero vector [21]. data set see Section 4. The AR§has been computed
Hence the denominator gfis not equal to zero. Thus by using geometric algorithms implemented in Matlab
exists. and C. The AFSM has been computed from with

For givenT the associated spectra matrix As = Equation (13).
TV' > 0 andC is also nonnegative witB = CA. To-

gether withA from (3) this results in a factorization of 2.6. Boundedness of the AFS

D. A necessary prerequisite for the actual computation
_ of the AFS is its boundedness, i.e. its finite extension.
D=AD= AC A (14) In [22] it has been shown tha¥l is a bounded set if
—— T . . .
& and only if D" D is an irreducible matrix. In contrast to

_ this the boundedness ol can be proved without any
Nonnegativity ofA impliesC > 0. The row sum scaling  further assumptions.

for A can be achieved by the diagonal maffx R

with the diagonal elementB(i,i) = 1/|T(i,:)V . Lemma 2.6. The AFSM for an s-component system is

a subset of the unit ball of thRS-* with respect to the

Hence . .
_ Euclidean vector nornj - [l2. This means thdit|l < 1
D=ACR! RA forallt e M.
N—— ~—— -
[¢] A Proof. Lett € M. By reason of Equation (8) a matrix

_ = . . . — =T
is a nonnegative factorization & with respect to RS- | € R¥® exists whose firstrowis{f) andA=TV" is

. . = ==T . its associated spectra matrix. The row sum normaliza-
scaling. Insertion oA =TV from (6) and its counter-

. L= . tion for Atogether with the norm inequalityl; > [|Xl2,
part (9) in the equalityhA = RAresults in see [10], lead to
TV _ T — —T —
TV =RTV 19 1= A ) 2 1AL )IE = IT@ )V 12 = IT(L )13
or equivalently in S S -
B B = > Ty = Y T =I5,
T=RTV'V. i=1 i=2
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Figure 1: AFSM with RS-scaling (left) andW{ with FSV-scaling (right) for FT-IR spectroscopic data frohodium catalyzed hydroformylation
process [11]. Each AFS consists of three isolated segniEnésgray curves are the polygons FIRPOL and INNPOL.

which proves the proposition. The last equation in the  Here we present a generalization of the Borgen plots
first row follows from the orthogonal invariance of the which can be applied to spectral data with small neg-
Euclidean norm. O ative elements. The meaning and interpretation of the
generalized Borgen plots is very similar - however small
Lemma 2.6 proves that a finite AFS with respect to negative elements in the factors are accepted. We call
FSV-scaling can be computed irrespectively of whether this generalization of a nonnegative matrix factoriza-
DD is an irreducible matrix. Then the transforma- tion (NMF) analmost nonnegative matrix factorization
tion formula of Theorem 2.5 cannot be applied. How- However, for nonnegative data the generalized algo-
ever, the reducibility oDTD is nothing which can be  rithm is identical to the classical method of Borgen and
expected for practical data aside from the trivial case Kowalski.
of completely separated reaction subsystems with sepa- The starting point of the classical Borgen plots for
rated signal groups in the spectra and concentration pro-three-component systems is the definition of the two
files. polygons INNPOL and FIRPOL from which the AFS
for a given rank-3-matrix can be constructdddRPOL
is also called theuter polygonsee [18].The following
3. A generalization of Borgen plots analysis is not restricted t8 = 3. Fors > 3 compo-
nents the two-dimensional polygons INNPOL and FIR-
The classical Borgen plots [5] are geometric con- POL turn to bes — 1-dimensional polytopes with com-
structions which can be executed for nonnegative spec-parable properties as in the three-component case. Next
troscopic data. The algorithm fails if the data contain the classical polygons INNPOL and FIRPOL and the
negative components which is a disadvantage of the respective higher dimensional polytopes are denoted as
classical Borgen plots. In fact, practical spectral data INNPOL-RS and FIRPOL-RS in order to express that
sets can include small negative elements due to data prethey refer to the row sum scaling. We also use these
processing or background subtraction. Further a low polytopes with respect to FSV-scaling. Then these poly-
rank approximation of a given perturbed spectral data topes are called INNPOL-FSV and FIRPOL-FSV.
matrix often has negative entries. The truncation of neg-
ative elements and their substitution by zero is a possi- 3.1. The AFS with respect to RS-scaling and for data
ble, but not the best way. Further, measurement errors  including negative entries
and noise can be responsible for the non-existence of a A spectral data matriD is considered which may
nonnegative matrix factorization &f. If small negative contain small negative matrix elements. These negative
entries inC andA can be accepted, then a factorization elements can origin from a rardapproximation of the
is more likely to exist. original spectral data or by background subtraction from
7



the measured spectral data. However, the row sums of The key message of the next lemma is that Lemma
D must still be positive so that 2.2 remains valid folC and A having negative matrix
elements.

(17) Lemma 3.3. LetD € R*" be a rank-s matrix, whose
row sums equal. ThenD = CA is a factorization

is a nonnegative and regular matrix. This definitiomof ~ With C € RS, A € R¥" and componentwise bounds
USes row sums. A row sum isfEérent from the 1-norm, ~ C = —¢c, A > —en for ec, ea > Owith all row sums oA
see (3), of the same row if the row contains negative Peing equal td if and only if each row oD is an gfine
entries. In the following we work with the row sum combination of the rows o& withC > —&c being the
scaled matrisD = AD. matrix of the coficients and all row sums a& being
Next the aim is to compute a factorizatiGn= C A, equalto 1.

in which the factors fulfill the componentwise inequal-
itiesC > —ec andA > —gp for fixed ec, ea > 0. This

is what we call an approximate NMF. Further, the RS-
scaling requires that all row sums éfare equal to 1.
These bounds on the fact@sandA are similar to those
qsed in [6] and the Iow'er bounds for the relative nega- EquationA = TV
tive portion of the matrix elements & andA as used
in Section 3.4 of [22]. However, in [22] the maximum
norm is used in the denominator whereas here the TOW 5 row of T are the coficients of the linear combina-

sum scaling is used in a comparable fashion. tions with respect to the basis of right singular vectors
The AFSM;. ., for almost nonnegative matrix fac-  gjven by the columns of. Thanks to Equation (11)
torizations is defined as follows: the first component of a row df is not important, since

Definition 3.1. LetD € R*" be a rank-s matrix, whose T(i,1) = y can always be recovered from(i,2 : s).

value decomposmoﬁ _ U3V and fixedee. £x > 0 column space o¥(;, 2 : s) are essential for the analysis.
the spectral factor AFS is the set G oA = The fundamental relation that the ro_wslbfare convex
or afine combinations of the rows & > 0 also holds

Proof. The proof follows the lines of the proof of
Lemma 2.2. The inequalitieS, A > 0 are substituted
by C > —gc andA > —ga. In this way convex combina-
tions turn into &ine combinations. O

, see (6), can be interpreted as
a low dimensional representation of the rows/oby
the rows ofT. The key point is that the components of

Mecep = {f e R™!: exists regulafm,T(1,2:9) =1, for the codficient vectors with respect to the columns
TST- TVT > en (18) of V(;,2 : s).' AII th!s gives rise to define two limiting
polytopes within this subspace.
S n
Z [Z; SV ) =L fori = 1. } Definition 3.4. The convex hull of the row vectors of
J: =

DV( 2 : 9), that are the cofficient vectors of the rows
of D with respect to the right singular vectors W(:, 2 :
s), is called INNPOL-RS.

INNPOL-RS is a subset of tHe™st, For s = 3
INNPOL-RS is identical to the classical polygon IN-
NPOL by Borgen and Kowalski [5] in the case of non-
negativeD if all weighting factors w in [5] are set
equalto 1.

3.2. Limiting polytopes of the AFS for RS-scaling

For a nonnegative matri® and a nonnegative fac-
torizationD = C A with all row sums ofA being equal
to 1, Lemma 2.2 states that the rowsDfare convex
combinations of the rows o&. The following Lemma
3.3 provides a similar result by usirafine combina-
tionsinstead of convex combinations. In words diiree
combination is a convex combination in which the sign  |INNPOL is an abbreviation which stands fam-

restriction for the cofficients is omitted. ner polygon A second polygon (or polytope in the
case of higher dimensions) is FIRPOL ffirst poly-
gon FIRPOL-RS is a larger polytope which includes
INNPOL-RS, see Figure 2. FIRPOL-RS encloses the
AFS M. ., and a part of its boundary is a part of the

¢ ¢ boundary of the AFS.
W= Z aivi and 1= Z aj. The starting point for the definition of FIRPOL-RS is

i i the nonnegativity constrait > 0. For the definition of
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Definition 3.2. A vector we R" is anaffine combina-
tion of the vectorssy, vo, ..., v, € R"Withaq,...,ar €
R, if



FIRPOL-RS this condition is generalizedAo> —&a SO
that for its first row the componentwise inequality

Al = ZS:T(L DVE T > —ea (19)
i=1

holds. The normalization constraint
n —
1= Z AL
i=1

allows to writeT (1, 1) in the form
1 - Zin:]_ Z?:Z T(la J)v(|5 J)
V(1) '

Inequality (19) is equivalent to

=), > TLHVG. )

s
i=1 j=1

T@,1)=

(20)

D TV = —ea—T(L DOV D)
i=2

By substitution ofT (1, 1) with (20) we get
D TV
i=2
1- 30 25, T VA, j)

—ep— z_ V(e 1)
[ YV, 1)
This equation can be simplified to
S _ "L V3G DVE )T
ZT(l,i) i1 n(J _)(.( ) ]
i=2 -1 V(. 1) 21)
(V)T

Z?:]_ V(J, 1)

Each component of the vector inequality (21) defines
an dfine half-space iR since the first sum on the
left side of (21) is an inner product of the vectod, 2 :

s) with a function depending o¥. (In order to support
the understanding of the last argument, the definition
of an dfine half-space is recapitulated: For a column
vectorv and a real number an dfine half-space is the

set of row vectors so thattv > «.) The intersection of
all these half-spaces defines the polytope FIRPOL-RS.

Definition 3.5 (Generalized set FIRPOL-RSYhe set

>

[(V(i, i)' -

] s ztﬂu,i)(v(:,l)f]
Te R N1, (Vi) - 2 —
{ ) Zz H VD) " V(3. 1)
o VCD)T }
- ZT:IV(J’]-)
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0.04¢
0.03

0.02
FIRPOL-RS

& 0.01

-0.01

-0.02

-0.03
-0.02
T(12)

- -004 0.02

Figure 2: INNPOL-RS and FIRPOL-RS for the AP for the FT-IR
spectral data, see Section 4, and= —1.1 - min(min(D)) = 1.0054-
104, The gray lines are the boundaries of the half-planes definin
FIRPOL-RS. The blue points are the dgent vectors of the rows of
D with respect to the right singular vectov§:, 2) andV(:, 3).

is called the polytope FIRPOL-RS. Thergiis the i-th
component of the vectdr For e = 0 and s= 3 the
polytope FIRPOL-RS is identical to the classical two-
dimensional polygon FIRPOL of Borgen and Kowalski
for the case that all weighting factors of the standard-
ization in [5] are set equal to 1.

By Lemma 2.6 the polytope FIRPOL-RS is bounded.
If D has negative matrix elements, thBn> —g, is
a necessary condition which guarantees that the geo-
metric constructions work properly; otherwise at least
one vertex of INNPOL-RS would be located outside
FIRPOL-RS. In Figure 2 INNPOL-RS and FIRPOL-RS
are shown foea = 1.0054- 10~* and for FT-IR spectro-
scopic data from [11], see Section 4 for details.

3.3. Geometric characterization of the AR, .,

Theorem 3.6. The existence of nonnegative matrix fac-
torizations (see case I) and of almost nonnegative ma-
trix factorizations (see case Il) for an s-component sys-
tem is related to a geometric property of s points in
FIRPOL-RS.

I: Let D be a nonnegative matrix whose row sums are
all equal to 1. TherD = CA is a nonnegative
matrix factorization with RS-scaled factérif and
only if for s pointst® e R™s! in FIRPOL-RS
with A = T V' and withT(6,2 : 9 = T© for
¢ = 1,...,s the convex hull of these s poirte



(being a simplex)ncludes the polytope INNPOL-
RS.

Il: Let D be a matrix with negative entries so that
D > —¢a for a properea > 0. The row sums
of D are all equal to 1. TheD = CA is a ma-
trix factorization withC > —sc andA > —ea and
with a RS-scaled factok if and only if for s points
0 € R in FIRPOL-RS witA = T V' and
T(,2 : 9 =19 for ¢ = 1,...,s the gine hull
of these s point§? includes INNPOL-RS. Therein
the gfine hull is based on cgfcients that are all
equal to or greater thar-sc.

Proof. Only case Il is to be proved. Then the proof of
case | follows by settinga = ec = 0.

In order to prove the forward implication the starting
point is the matrix factorization
~UST TV

< K

D

with C > —sc andA > —ga. Each of thesrows of T is
related to one point in FIRPOL-RS &s> —&, is satis-
fied. According to Lemma 3.3 each rowDfis an dfine
combination of the rows oh. The same property holds
for the codficient vectors with respect to the columns of
V(:,2 : ), which is shown next. These diieient vec-
tors of the rowsD(i, :) are the vector®(i, )V(:, 2 : 9).
Similarly A, )V(;,2 : s) = T(i,2 : ) are these coef-
ficient vectors of the rows oh. From the &ine com-
binationD(i,:) = 35, C(i, ))A(j, :) right multiplication
with V(:, 2 : s) yields

D(i. V(. 2:9 = Y ClL DAG V(. 2:9.  (22)
=1

The codficientsC(i, j) of this afine combination are
still all greater than or equal tesc. Equation (22)
shows that representative vectors of the row®adre
just dfine combinations of the representative vectors
of the rows of A. This guarantees that convex hull
INNPOL-RS of the rows oD(i, :)V(:, 2 : s) is also con-
tained in the #ine hull of the rows ofA(j, )V(;, 2 : 9).

For the backward implication we consider thse
points 1@ in R™s1 with the given properties. To-
gether with the RS-scaling constraint for the factor
Equation (11) allows to compute a matfix € RS
which is unique aside from permutations of its rows and

from whichA = TV' can be gained. By definition of
FIRPOL-RS the inequalith= TV' > —&, holds; oth-

FIRPOL-RS. The matriX is regular sincé is a rank-

smatrix andD andT V' span the same column space.
As INNPOL-RS is contained in theffne sums of the
@, the rows ofDV(;,2 : ) can be written asffine
combinations of the rows &&V(;, 2 : s) with expansion
codficients which form the matri€ > —sc. Analo-
gously, the same holds for the row vectordoénd the
row vectors ofC. Lemma 3.3 proves that this implies a
matrix factorizationD = C A with the componentwise
lower bounds for the matric&s andA. O

Obviously a change af; or e changes the AFS. The
following lemma proves the monotonicity principle that
an increasingc or gp also increases the AFS.

Lemma 3.7. If 0 < ec < &c and0 < ea < &a, then the
AFSM,_ ., is a subset of the ARS8z 7, i.e.

EC,EA

Mecen © Mgz 5

Proof. According to Definition 3.1 a poirtte mm is
associated with a matrik € RS, ThisT results in the
factorizationD = C A with the element-wise inequali-
tiesC > —ec andA > —ga. ThenC > —&¢c andA > —&a
are also valid. Thus € Mgz 5 holds. This proves the
proposition. O

3.4. The AFS with respect to FSV-scaling and for data
including negative entries

Next the geometric construction principles of the
AFS are formulated with respect to FSV-scaling. Our
goal is to build a bridge from the geometric-constructive
Borgen plots to the numerical algorithms for AFS com-
putations. The latter algorithms typically work within
the basis of the left and right singular vectoré&ofvhere
the FSV-scaling is the natural choice. We show that the
geometric construction of the AFS can be adapted to a
singular vector basis representation. Additionally a gen-
eralization is presented for the AFS construction with
respect to FSV-scaling and data including small nega-
tive entries.

Let D = CA be a nonnegative factorization and
D = UxXVT be a singular value decomposition (SVD)
of the ranks matrix D with C,U € R®S, AV € R™"
andX € RS, ThenA = TV' andC = UXT! for
a suitable regular matri¥ € RS, Here we assume
that D is a nonnegative matrix and thBX' D is an ir-
reducible matrix. Then the first right singular vector
V(:, 1) and the first left singular vectdf(;, 1) are sign-
constant vectors, i.e. all components are either strictly
positive or strictly negative; see [22] for the mathemat-
ical background and [13] for the Perron-Frobenius the-

erwise at least one point would be located outside of ory. Without loss of generality the SVD can be assumed
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to deliverU(;,1) > 0 and/(;, 1) > O; otherwise the two
componentwise negative vectors are multiplied-dy
which again results in an SVD.

The SVD ofD allows to write the rows ob as linear
combinations of the right singular vectors

D(i,) = Y wiV' (i) (23)
=1

with the codficientsw; ; = (UZ); ;. Then the first coef-
ficientsw;y fori € {1,2,..., s} are positive since with
nonzeroD(;,i) > 0 andV(;, 1) > 0 one gets

0< D@, )V(, 1) = (Z wi VT (j. )V 1)
=1

S
= ) Wijdj1 =Wy
=1

Thereing; j is the Kronecker delta (which is O forz j

and 1 fori = j). If D is only slightly polluted by neg-
ative elements, then a continuity argument shows that
w1 > O still holds if the perturbation is small enough.
The diagonal matrif2 with the diagonal elements

Q(,i) = wifll, i=1...,k (24)
or in short formQ = (diagW(:, 1)))™%, is used to define
the scaled data matrix

D=QD=RV". (25)
Therein the matriR e R¥S satisfies thaR(i, 1) = 1 for
allie{1,2...,k.

Definition 3.8. Let D € R*" be a rank-s matrix with
the truncated rank-s singular value decompositios: D
UxVT. Further letec, ea > 0 be given so that the ma-
trix Q € R in (24) has positive diagonal elements.
Then the spectral factor AFS for FSV-scaling is the set

Mg {t e R™1: exists regular TT(1,:) = (1,1),

QUST 1> —gc, TV' > —sA}.

3.5. Limiting polytopes of the AFS for FSV-scaling

The counterpart of Definition 3.4 for FSV-scaling
reads as follows.

Definition 3.9. The convex hull of the row vectors of
QDV(;,2 : 9) is called the polytope INNPOL-FSV.
(These row vectors are the vectors of expansion coef-
ficients of the rows ob = QD by (25) with respect to
the columns of {,2 : 9).)

11

In order to define the polytope FIRPOL-FSV we con-
sider the constraimh = TVT > —g, on acceptable neg-
ative entries ofA. This inequality together with the scal-
ing conditionT(;, 1) = €9 yields fori = 1,...,s

ZS: TEDVE D) 2 -V DT —2ae. (26)
j=2

Thereinel = (1,...,1) is the all-ones vector iRS. As
explained after Lemma 2.2 only all possible first rows
of T fori = 1 must be recorded in order to construct the
AFS. The resulting set of feasible first rows is identical
to the set of all possible rows df. This fact can be
proved by means of a permutation argument. The set of
row vectorst = T(1,2 : s) € R™S! which satisfy (26)
defines the polytope FIRPOL-FSV.

Definition 3.10. Let D > —&a and let D' D be an irre-
ducible matrix. Then the polytope

S
(teRYH: D (VD) 2 ~(V( 1) - eae)
i=2
is an intersection of k half-spaces and is called
FIRPOL-FSV. Thereint. .., ts 1 are the components of
teRlXS_l.

A proof for the boundedness of FIRPOL-FSV is
given in [22]; this proof uses the irreducibility @' D.
If at least one inequality of the matrix inequaliy >
—gp is violated, then at least one vertex of INNPOL-
FSV is outside of FIRPOL-FSV and the geometric al-
gorithm for the AFS construction cannot work.

3.6. Geometric characterization of the ARS8, .,

Theorem 3.6 shows how the AFS1,.., can be
geometrically constructed by means of the polytopes
INNPOL-RS and FIRPOL-RS. The following theorem
shows that analogous relations hold for the geometric
construction of M, ., with the polytopes INNPOL-
FSV and FIRPOL-FSV.

Theorem 3.11. The existence of a nonnegative matrix
factorization (see case 1) or of a matrix factorization
which can include small negative components (see case
II) for an s-component system is related to a geometric
property of s pointin FIRPOL-FSV.

I: Let D be a nonnegative matrix. Then ® CA is
a nonnegative matrix factorization with an FSV-
scaled factor A if and only if for s point§t e
R>*s-1in FIRPOL-FSV with A= TVT with T(¢,2 :
9 =t for ¢ = 1,..., s the convex hull of these
s points(being a simplexjncludes the polytope
INNPOL-FSV.



II: Let D be a matrix with negative entries so thatD
—ep for a properea > 0. Let the diagonal matrix
Q be given according t§24). Then D= CAis a
matrix factorization withQC > —gc and A> —gp
and with a FSV-scaled factor A if and only if for s
points t9 € R™*s1 in FIRPOL-FSV with A= TVT
and T(¢,2 : 9) = tO for ¢ = 1,..., s the gfine
hull of these s points4 includes INNPOL-FSV.
Therein the gine hull is based on cggcients that
are all equal to or greater tharec.

Proof. Only the second case is to be proved. From this
the proof for the case | follows by setting = ec = 0.

For the forward implication the starting point is a fac-
torization

D=UST TV
N— " N——
C A

with A > —gp andQC > —&c according to Definition
3.8 so that the first row df has the fornT(1,:) = (1,t)
for the givert. ThisT is the source for therow vectors
t) =T(,2:9,¢=1,...,s Al theset? are elements
of FIRPOL-FSV asA > —gp is satisfied. In order to
show the &ine hull condition, théth row of the identity
D = QCAfrom (25) is written in the form

B(i.) = 0. )CA= > Q(.IC(. ) A.).  (27)
=1 ~

=C(i.J)

This is a linear combinatioof theith row of D by the
rows of A. The sum with respect tpof the codficients
C(i, j) is equal to 1 which is shown next. Equation (25)
guarantees that2 D(i, ))V(;, 1) so that

1=D(,:)V(, 1) = C(i,:)AV(, 1) = C(i,)TV'V(, 1)

=C(i,)Te =C@,)(L,....1)" = Zé(i, i).
=1

This proves together with (27) that the rows Dfare
affine combinations of the rows &. An analogous
relation holds for the vectors of expansion fiagents
of the rows ofD with respect to the singular vectors
V(;,2),...,V(;, 9. By right multiplication of (27) with
V(;, 2 : s) we obtain

D(i,:)V(,2:9) = Z C(i, )AG, )V(,2:9.  (28)
j=1

According to Definition 3.9 the vectoB(i, :)V(;, 2 : 9)
are just the vertices of the convex polytope INNPOL-
FSV. Further, for the vectora(j,:)V(:,2 : 9) it holds
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that
A, IVG,2:9 =T, )VTV(,2:9=T(j,2:9)

which are the AFS representatives of the rowsAof
Thus (28) shows that each vertex of INNPOL-FSV can
be represented as affine combination of th& (j,2 : s)
with codficients QD); j > —ec.

In order to prove the reverse direction theow vec-
tors t@® e RS 1 are written in the rows ,1..,s of
T € R¥S, The first column ofT is the all-ones vec-
tor. ThenA = TVT > —ga holds since all thes vectors
are from FIRPOL-FSV. Each point of INNPOL-FSV is
a feasible fine combination of the given points and
hence this is also true for the rows Bf = WD, see
Equation (27).The associated cfiecients of the fiine
combinations are the elements of the ma@ix= QC.
This completes the proof. O

Lemma 3.7 states how a variation ef and a
changes the AFSM,..,. An analogous statement is
true for Mgz,

Lemma 3.12. If &¢ < &c andea < &p, then the AFS
M., is @ subset of the ARSI 5, i.e.

Mecen € Mz -

The proofis more or less a simple transcription of the
proof of Lemma 3.7.

4. Numerical Results

The mathematical fundamentals of generalized Bor-
gen plots in Sections 2 and 3 are now supplemented by
a study of sample problems. The practical implemen-
tation of these geometric constructions in the form a
tangent- and line-moving-algorithm are the topic of part
Il of this paper. Next a model problem with variable
amounts of noise, see Section 4.1, and experimental FT-
IR data set from the hydroformylation process, see Sec-
tion 4.2, are investigated. Bérent methods are applied
to compute the AFS and the results are compared.

4.1. Data set I: A model problem
We consider the concentration profiles
ci(t) = exp(=(t — 20)?/150)
co(t) = exp((t — 50%/200)
ca(t) = exp((t — 70%/250)



and pure component spectra

ay(x) = e (*50F/500 | 5er(x-125/500 1
ap(X) = e *-100F/750 |  e-(x-1007/1500 4 0 15

ag(x) = @ (x-150£/1000 | ( 3 (x-75F/2500 3 o

with 0 <t < 100 and 0< x < 200. The discretization

a number ok = 1045 FT-IR spectra each with= 664
spectral channels. The reaction subsystem consists of
three independent components, namely the olefin, the
acyl complex and the hydrido complex.

In order to illustrate the influence of the parameters
gc andep the AFS for the spectral factor and for RS-
scaling is shown in Figure 6 for six parameter settings.
We explicitly emphasize that the parametegsandea

parameters along the time axis and along the frequencycannot be set arbitrarily. However, these test calcula-

axisare each equdb 0.5. This results in a 20 401
spectral data matriy. Figure 3 shows the;(t) and
a()fori=1,...,3.

Standard normal distributed noises added tdDq

D(i, j) := max((1+ o)Dofi, j), 0) (29)

with noise levelsr € {0,0.05,0.15}. The spectral and
the concentrational AFS, i.e. the AFS for the facfor
and the factoC, are computed with the polygon infla-
tion algorithm from theFAC-PACK software. These
AFS approximations are compared with the classical

Borgen plot and with the generalized Borgen plots, see
Figures 4 and 5. The three pure components are marke

in all these figures by small black circles. The noise
model (29) guarantees that the spectral data matbces

are always nonnegative. However, the rank of these ma-

trices is in general larger than 3df > 0. The classical
Borgen plots can still be constructed for these matrices
but for o > 0 the pure components are partly not in-

cluded in the AFS segment, see e.g. the concentrational.

AFS in Figure 5 foro- = 0.15. Hence the “true” solu-
tion is not contained within the AFS. This is a serious
deficiency of the classical Borgen plots. The Haufidor
distances of the ffierent AFS sets are listed in Table 1.
The AFS by the polygon inflation algorithm #AC-
PACK is not completely identical to the generalized
Borgen plot due to the ffierent approaches to bound the
acceptable negative entriesGrandA. On the one hand,
FAC-PACK uses a bound for row-wise relative portion

of negative entries while, on the other hand, the gener-

alized Borgen plot uses the absolute bou@ds —&c
andA > —ea. This explains why the AFS generated
by the polygon inflation algorithm is slightly fiierent

from the generalized Borgen plot. Therefore the Haus-

dorff distances should be interpreted with caution. In
any case the generalized Borgen plot&igures 4 and
5 show the correct positions of the pure components.

4.2. Data set Il: FT-IR data from hydroformylation

tions demonstrate how increasing or decreasigr ea
changes the form of the AFS. In Figure 6 the three black
circles in each AFS represent the positions of the final
pure component spectra which have been determined
by means of a kinetic model in [11]. The smallest el-
ement ofD is -0.000101. Negative matrix elements are
caused by data preprocessing. For this problem, a back-
ground spectrum of the solvent n-hexane has been sub-
tracted and a rank-3 approximation of the spectral data
matrix has been computed. Due to this smallest nega-
tive matrix element oD the control parametess has

to be equal or greater thanmin(D) = 0.000101. Oth-

d;3rwise INNPOL-RS would have at least one vertex out-

side of FIRPOL-RS. Then Theorem 3.6 would not allow
even a single matrix factorizatiob = C A which ful-
fills the given lower bounds for the matrix factd@sand

A. In Figure 2 the top red arrow indicates that decreas-
ing ea is prohibited. Further for all AFS sets in Figure

' 2 the polygons INNPOL-RS and FIRPOL-RS are also

drawn. The outer polygon FIRPOL-RS increasesaif
increases; this can best be seen in the right lower part
of the AFS. For increasingc the AFS grows asfiine
combinations with smallerfane codficients, that are
the matrix elements d), are acceptable. The polygon
INNPOL-RS remains always unchanged as its defini-
tion does not depend asr andea. See also Lemma
3.7 and Lemma 3.12 for the growth of the AFS with
increasing:a andec.

The computation times for the tangent- and line-
moving-algorithms are listed in Table 2. We have used
a standard PC with a 2.93GHz Intel CPU and with 8
GB RAM. The program code is written in C and uses
the Matlab graphical user interface of tRAC-PACK
software. Foec = 0 and varyingsa there is only a mi-
nor variation of the computation times. With increasing
ea the area of FIRPOL increases, but this does not com-
plicate the tangent- or line-moving-algorithmelf > 0
the line-moving-algorithm is used. Then the computa-
tion time increases with a growing area of FIRPOL.

An experimental spectral data set is considered from 4.3. FAC-PACK software for AFS computation

the rhodium catalyzed hydroformylation process; see

[11] for experimental details. This data set comes with
13

The geometric algorithms for the construction of Bor-
gen plots are a part of the revision 1.2 (appeared in



Figure 3: The model problem. Left: Concentration profilegh® Pure component spectra. (1,%®Ilue, Green, Red).
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Figure 4: The spectral AFS of the model problem for three noise levElsst row: o = 0, second rowo = 0.05, third row: o = 0.15. First
column: The spectral AFS computed by the polygon inflatigqgoathm of theFAC-PACK software, second column: classical Borgen plot with
ec = ea = 0, third column: generalized Borgen plot with andep as listed in Table 1. In each AFS the three pure componentarieed by
small black circles. Fos- > 0 not all pure components are located within the AFS segnuittee classical Borgen plots.
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Figure 5:The concentrational AFS of the model problem for three niggels. First row:o = 0, second rowo- = 0.05, third row: o = 0.15. First
column: The spectral AFS computed by the polygon inflatigoathm of theFAC-PACK software, second column: classical Borgen plot with
ec = ea = 0, third column: generalized Borgen plot with andea as listed in Table 1. In each AFS the three pure componentsaried by
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o | Pléneg. ent. gBp parameters Hausdoff PI-gBp | Hausdoff Bp—gBp | Hausdoff PI-Bp

0 0 ec=0,ea=0 0.0059 0.0 0.0059
0.05 0.01 &c = 0.01,e5 = 0.002 0.1273 0.1400 0.0833
0.15 0.0275 | &c =0.01,e4 = 0.005 0.1487 0.1473 0.1532

0 0 ec=0,ea=0 0.0342 0.0 0.0342
0.05 0.01 &c = 0.01,&5 = 0.005 0.1816 0.1826 0.0632
0.15 0.0275 | &c =0.02,e5 = 0.012 0.1729 0.2121 0.1697

Table 1:Hausdoff distances for three noise levetsfor the spectral AFS, i.e. the matrix factdr in the rows 2—4 and for the concentrational AFS,
i.e. the matrix factoC, in the rows 5-7. Column 1: Noise level. ColumnBAC-PACK polygon inflation (PI) parametefheg. ent. Column 3:
Generalized Borgen plot (gBp) control parameters. Colurmdatisdoft distances of the AFS computed by polygon inflation (P1) antegalized
Borgen plot (gBp). Column 5: Hausdbdistances of classical Borgen plot (Bp) and the generalBeden plot (gBp). Column 6: Hausdbr
distances of of the AFS computed by polygon inflation (P1) #redgeneralized Borgen plot (gBp).
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Figure 6: Parameter analysis for varying andep for the FT-IR spectroscopic data from the hydroformylatwocess. The AFS is shown for for
£a = 0.000101 in the first row anda = 0.00017 in the second row. With the minimal entry nii(= —0.000101 the parametep must be equal
or greater than- min(D) = 0.000101; otherwise the geometric construction of the AF$njsassible. The parameteg is set as follows. First
column: ec = 0. Second columngc = 0.003. Third column:ec = 0.015. The three black circles in each AFS indicate the posstiof the true
component spectra. These are the spectra of the olefin cenpaf the acyl complex and of the hydrido complex.

| 6c=0 & =0003 & =0015 computed with respect to the RS- or to the FSV-scaling.
ea = 0.000101 | 5.03s 5.44s 5.67s All results can easily be exported and can be compared
€a = 000015 | 4.46s 0.39s 6.13s with the purely numerical algorithm of polygon infla-
egp = 0.0002 4.33s 5.52s 6.00s tion

Table 2: Computation times for the generalized Borgen @pfsdied
to the hydroformylation spectral data from [11]. Furthergmaeters
are¢ = 0.1° andd = 0.001, see part Il of this paper. 5. Conclusion

So far the geometric-constructive Borgen pléds
three-component systemgere to some extent limited
to model data and were not able to respond to the chal-
lenges of experimental spectroscopic data sets. Per-
turbed spectral data, low rank approximations and spec-
tral data with small negative entries, e.g. from back-
The FAC-PACK software allows to compute the AFS  ground subtraction, were not in the scope of Borgen
for two- and three-component systems. The core of this plots. Generalized Borgen plots overcome these limita-
program code are implementations of the polygon in- tions. The mathematical fundamentals of such general-
flation algorithm and the inverse polygon inflation al- ized Borgen plots have been presented - the pivotal point
gorithm [21]. The program includes also functionali- is the weakening of convex combinations towarfiima
ties for the reduction of the AFS by the complemen- combinationsNew algorithms of computational geom-
tarity theorem, see [4, 20, 24]. The polygon infla- etry for the construction of generalized Borgen plots for
tion algorithm is an ficient tool for AFS computations  three-component systems have been developed. These
for three-component systems. The new revision 1.2 algorithms have already been published in the Borgen
of FAC-PACK includes the tangent- and line-moving plot module of theFAC-PACK software. The detailed
algorithms for the construction of generalized Borgen explanation of these geometric constructions is con-
plots for three component systems. The AFS can be tained in a forthcoming second part of this papan
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December 2014) of thEAC-PACK software [22, 23].
The homepage of this software is

httpy/www.math.uni-rostock.décpack



extension of these algorithms to four-component sys-
tems appears to be possible but can require very high

computational times. Additional work on this is under
progress.
We hope that the now enlarged range of applications [17]

of Borgen plots stimulates future developments of such
global methods in chemometrics. These global meth-

resolution-alternating least squares (MCR-ALS) algonith J.
Chemom.23(4):172-178, 2009.

] R. Rajkd. Studies on the adaptability offérent Borgen norms

ods make available the whole range of feasible solutions [1g]
with a minimum of additional assumptions on the reac-
tion system.
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