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Abstract

In 1985 Borgen and Kowalski [DOI:10.1016/S0003-2670(00)84361-5] published their landmark paper onthe geo-
metric construction of feasible regions for nonnegative factorizations of spectral data matrices for three-component
systems. These geometric constructions are called Borgen plots. Borgen plots are principally restricted to nonnegative
data and are sometimes considered as analytical tool. Majorcontributions to this theory have been given by Rajkó.
In contrast to these geometric constructions, numerical methods to compute the so-called Area of Feasible Solutions
(AFS) have been studied by Golshan et al. [DOI: 10.1021/ac102429q] and by Sawall et al. [DOI: 10.1002/cem.2498].
These numerical methods can even treat spectral data which include slightly negative components.

In this work the concept ofGeneralized Borgen Plotsis introduced for spectral data which are polluted by small
negative entries. The analysis is not restricted to three-component systems, but can be applied to generals-component
systems. Generalized Borgen plots are identical to the classical Borgen plots for nonnegative data. The analysis in
this work also bridges the gap between the different scalings (Borgen norms) used for AFS computations.

The algorithmic procedure of generalized Borgen plots for three-component systems and its implementation in the
FAC-PACK software are described in the second part of this paper.

Key words: factor analysis, pure component decomposition, nonnegative matrix factorization, Borgen plot, tangent
algorithm, spectral recovery.

1. Introduction

The extraction of pure component information from
spectroscopic measurements on multicomponent chem-
ical reaction systems is an important problem of ana-
lytical chemistry. Chemometric methods are valuable
tools to determine not only the number of independent
components in the reaction system, but also to extract
the concentration profiles and spectra of the pure com-
ponents.

The starting point of such an analysis is thek×n spec-
troscopic data matrixD, whose rows contain a number
of k spectra and each spectrum containsn absorbance
values with respect to a fixed wavelength grid. The ma-
trix form of the Lambert-Beer lawD = CA states that
D, aside from small nonlinearities and measurement er-
rors, is a product of a concentration matrixC ∈ R

k×s

and a spectra matrixA ∈ R
s×n wheres is the number

of independent species. The columns ofC represent the
concentration profiles of the pure components along the
time axis and the rows ofA contain the pure component
spectra. Due to their physical meaning the components
of the three matricesD, C andA are nonnegative num-
bers.

Here we consider the reverse problem, namely to de-
termine for a given spectral data matrixD just the two
unknown factorsC andA. Unfortunately, the nonnega-
tive factorization ofD is not unique in most cases. This
fact is known as therotational ambiguityof nonnega-
tive factorizations ofD. Multivariate curve resolution
methods resolve this ambiguity problem by using soft
and hard constraints (e.g. unimodality, closure of con-
centrations, smoothness of spectra or solutions, kinetic
models and so on) which in many cases allow to extract



a single solution, see also [3].
However, an important question is to determine the

set of all feasible nonnegative factorsC andA so that
the productCA constructs the given spectral data ma-
trix D. In 1971 Lawton and Sylvestre [12] solved this
problem for a two-component systemby presenting the
so-called LS-plots. They showed that there is a one-
to-one relation between feasible rows ofA and certain
regions in the plane which represent admissible (mixing
or expansion) coefficients with respect to the basis of
singular vectors, see also [17]. A comparable relation
holds for the feasible columns ofC. In 1985 these ideas
were extended to three-component systems by Borgen
and Kowalski [5].

Together with a normalization condition the set of all
nonnegative factorizations ofD for a three-component
system can be represented by a bounded subset of the
plane. This low-dimensional representation of feasible
solutions of the factorization problem is called thearea
of feasible solutions(AFS). A typical example of an
AFS is shown in Figure 1, see [11]. In 1985 Borgen and
Kowalski described two geometric algorithms to con-
struct the AFS, namely the tangent algorithm and the
simplex rotation algorithm. In 2005 Rajkó and István
[18] introduced methods of computational geometry to
draw Borgen plots for three-component systems. A key
condition for these algorithms is the nonnegativity ofD
as well as ofC andA. Borgen plots were originally de-
veloped for ideal noise-free bilinear data and mainly for
principle-based research work.

The nonnegativity of spectral data is generally a nec-
essary prerequisite which is sometimes violated for ex-
perimental spectroscopic data. However, preprocessing
steps like background subtraction or the elimination of
known pure components from the spectral data can re-
sult in small negative elements.Further for spectro-
scopic measurements, perturbations increase the rank
of the spectral data matrix and the low rank approxi-
mation matrix can contain negative components. Then
the classical Borgen plots cannot be constructed. In ad-
dition to the geometric constructive approach by Bor-
gen and Kowalski two alternative numerical algorithms
have been developed to approximate the Borgen plots
by an AFS for three-component systems. First, the tri-
angle enclosure algorithm has been presented in 2011
[8]. Second, the polygon inflation algorithm has been
suggested in 2013 [21, 22]. These two numerical algo-
rithms are based on a different scaling compared to the
geometric construction in [18] so that the result can look
quite different. An important benefit of the triangle en-
closure algorithm and the polygon inflation algorithm is
that they can even work with spectral data which include

slightly negative components. The survey paper [7] con-
tains a comparative study of Borgen plots, numerical
AFS approximations and of the techniques [6, 26] to
compute ranges of feasible solutions.

This paper focuses on the nonnegativity constraint on
factorizations ofD. If further soft or even hard con-
straints on the solution are added, then the resulting con-
strained AFS will be smaller, see e.g. [19, 25]. In the
extreme case of an AFS which consists only of isolated
points, namely one for each component, a unique so-
lution has been found. There exists, however, for our
geometric construction of the AFS not always a possi-
ble translation of the constraint to associated geometric
conditions.

1.1. Topics and aims

The topics of this work are as follows:

1. A generalization of the classical Borgen plots is
presented, which allows that the geometric con-
structive Borgen plots can now be applied to exper-
imental spectroscopic data which is contaminated
with small negative components. These negative
components can be caused by data preprocessing,
low rank approximation or background subtrac-
tion. We call the resulting AFS approximations for
data with small negative components or for rank-
perturbed data thegeneralized Borgen plots. If the
perturbations or negative components tend to zero,
then the generalized Borgen plots tend to the clas-
sical Borgen plots.

2. The mathematical theory behind the classical Bor-
gen plots, which is based onconvex linear com-
binations, is generalized toaffine linear combina-
tions. These affine linear combinations empower
the geometric constructive approach to work suc-
cessfully with spectral data which includes nega-
tive entries.(The idea of considering slightly neg-
ative components within the factorization problem
has already been used in [6] to handle noisy data.)

3. The gap between the geometric constructive Bor-
gen plots [5, 15, 18] and the numerical AFS al-
gorithms in [8, 21, 22] with their different factor
scalings is bridged. An explicit transformation be-
tween row sum scaling and first singular vector
scaling is derived.

4. The mathematical theory is presented for general
s-component systems; there is no restriction tos=
3.
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The algorithmic procedure for the geometric construc-
tion of generalized Borgen plots for three component
systems is presented in part II of this paper. The new
algorithms have been implemented in theFAC-PACK

software.

1.2. Guideline for the reader

This paper reports on new concepts for the AFS and
the underlying mathematical analysis. The reader who
is mainly interested in concepts can skip all proofs. The
topics and aims of the paper are explained in Section
1.1. Throughout the paper verbal explanations precede
the mathematical theorems. Various figures and numer-
ical examples (e.g. in Sections 2.5 and 4) accompany
the discussion. In any case, a good starting point for the
reader might be experimenting with the (generalized)
Borgen plots by using the software provided at:

http://www.math.uni-rostock.de/facpack/

1.3. Organization of this paper

In Section 2 two commonly used factor scalings for
the AFS construction are discussed. The equivalence
of these representations is proved and formula for their
mutual transformation are presented. Section 3 contains
the core results of this paper. The mathematical funda-
mentals of the classical Borgen and Kowalski geomet-
ric construction is generalized to data which includes
small negative components. The theory is presented in
general form fors-component systems and provides the
mathematical basis for the geometric construction of the
AFS. We call these geometric constructionsgeneralized
Borgen plots. Finally, Section 4 contains generalized
Borgen plots for a model problem and for experimen-
tal FT-IR spectroscopic data. The new algorithms are
demonstrated for various parameter selections and the
results are compared with AFS results from independent
methods.

1.4. Notation

The following notation is used in the paper. The ref-
erences apply to the first usage of the symbol.

D ∈ Rk×n spectral data matrix, see Sec. 1.
C ∈ Rk×s concentration matrix, see Sec. 1.
A ∈ Rs×n spectra matrix, see Sec. 1.
UΣVT singular value decomposition ofD,

see Sec. 2.3.
T ∈ Rs×s transformation matrix, see (9) and (10).

t ∈ Rs−1 low-dimensional representation of spectra
by t = T(1, 2 : s), see (10).

M the AFS, see Def. 2.4.
MεC,εA generalized AFS for slightly negative data,

see Def. 3.8.
D ∈ Rk×n spectral data matrix w.r.t. RS-scaling,

see Sec. 2.2
C ∈ Rk×s concentration matrix w.r.t. RS-scaling,

see Sec. 2.2.
A ∈ Rs×n spectra matrix w.r.t. RS-scaling,

see Sec. 2.2.
U ΣV singular value decomposition ofD,

see Sec. 2.2.
T ∈ Rs×s transformation matrix w.r.t. RS-scaling,

see Eq. (6).
t ∈ Rs−1 low-dimensional representation of spectra

w.r.t. RS-scaling witht = T(1, 2 : s),
see Sec. 2.2.

M the AFS w.r.t. RS-scaling, see Def. 2.3.
MεC,εA generalized AFS for slightly negative

data w.r.t. RS-scaling, see Def. 3.1.
Ω ∈ Rk×k scaling matrix, see Eq. (24).
D̂ ∈ Rk×s spectral data matrix w.r.t. FSV-scaling,

see Eq. (25).

2. On the representation of feasible factorizations

Let D be ak-by-n spectral data matrix as introduced
in Section 1. The number of active and independent
species is denoted bys. For the analytical part of the
paper the numbers is not restricted. For the numerical
examples we uses = 3. In any cases ≤ min (k, n). All
nonnegative factorizationsCAof D are to be determined
with C ∈ Rk×s andA ∈ Rs×n. If D = CA is a nonnegative
factorization, then for any diagonal matrixΘ ∈ R

s×s

with strictly positive diagonal elements the factorization

D = (CΘ−1) (ΘA) (1)

is also a nonnegative factorization. Equation (1) means
that theith row or spectrum ofA is scaled by the positive
factorΘi,i and that simultaneously theith column ofC
(concentration profile) is scaled by 1/Θi,i. Thus Equa-
tion (1) expresses a trivial scaling ambiguity. In Section
2.1 two commonly used standardizations of this scaling
are introduced and their implications are analyzed. We
still need the definition of the 1-norm.

Definition 2.1. The 1-norm of a vectorυ ∈ R
n is the
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sum of the absolute values [10]

‖υ‖1 =

n∑

i=1

|υi |. (2)

2.1. The row sum scaling and the first singular vector
scaling

The scaling of the spectral factorA according to (1)
has a significant effect on the shape of the AFS,see [15].
Sometimes the scaling is a normalization, e.g. with re-
spect to the 1-norm given by (2) [16]. However, the
FSV-scaling, which is introduced below, is just a scaling
by a proper positive constant (and is not a normalization
in the strict sense of a mathematical norm).

is not related to a normalization. Furthermore, our
scope is somewhat more general as we are interested
in working with data which include negative elements.
Then the 1-norm (2) is substituted by the simple sum
of the vector components without taking the absolute
values. For nonnegative data the row sum is identical to
the 1-norm of just this vector.

The following two scaling variants are commonly
used for AFS computations:

1. All rows of A are assumed to be normalized so that∑n
j=1 A(i, j) = 1 for i = 1, . . . , s. In the following

we call thisrow sum scaling theRS-scaling.

2. The rows ofA are scaled so that thecoefficients of
the linear combinationsof each row ofA with re-
spect to the first right singular vector ofD equals
1. For the singular value decomposition [10] of
the spectroscopic data matrixD see [14] and Sec-
tion 2.2. Theorem 2.2 in [22] proves that this co-
efficient is nonzero under a certain weak assump-
tion on D. In the following we call thisf irst right
singularvector scaling theFSV-scaling.

The RS-scaling is one of the scalings suggested in [5].
Later the RS-scaling is used, e.g., in [18]. This scaling
does not require a singular value decomposition ofD.
In contrast to this, the numerical algorithms to compute
the AFS work within the basis of left and right singular
vectors ofD, see [21]. With respect to this basis the
FSV-scaling can be used.In this paper we use the RS-
scaling and the FSV-scaling simultaneously.Bars are
added to all variables which refer to RS-scaling and bars
are skipped for variables which refer to FSV-scaling.

2.2. The AFS for RS-scaling

The termBorgen plot, which is coined by Rajkó and
István [18], is commonly used for the geometric con-
struction of the AFS which is computed by the algo-
rithm of Borgen and Kowalski [5]. Rajkó and István
primarily used a row normalization ofA with the 1-
norm (2) in order to construct the AFS.

The starting point is a row sum scaling ofD resulting
in D = ∆D where∆ ∈ Rk×k is the nonnegative diagonal
matrix with

∆(i, i) = ‖D(i, :)‖−1
1 = 1/(

n∑

ℓ=1

D(i, ℓ)). (3)

Next a nonnegative factorizationD = C A is wanted.
The factorization ofD instead ofD does not restrict the
generality of the approach sinceD = ∆−1C A. If addi-
tionally the row sums ofA are all equal to 1, then the
rows ofD can be interpreted geometrically as shown in
the next lemma.

Lemma 2.2. Let D ∈ R
k×n be a nonnegative matrix

whose row sums are all equal to 1. The factorization
D = C A with C ∈ Rk×s andA ∈ Rs×n is a nonnegative
matrix factorization with all row sums ofA being equal
to 1 if and only if each row ofD is a convex combination
of the rows ofA, A ≥ 0 and the rows ofC ≥ 0 are
the coefficients of the convex combination. Thus all row
sums ofC are equal to 1.

Proof. Let D = C A be a nonnegative matrix factoriza-
tion. Then the rowsD(i, :) of D are linear combinations
of the rows ofA, since

D(i, :) =
s∑

ℓ=1

C(i, ℓ)A(ℓ, :). (4)

The given row scaling ofD andA implies that

1 =
n∑

j=1

D(i, j) =
n∑

j=1

s∑

ℓ=1

C(i, ℓ)A(ℓ, j)

=

s∑

ℓ=1

C(i, ℓ)
n∑

j=1

A(ℓ, j)

︸      ︷︷      ︸
=1

=

s∑

ℓ=1

C(i, ℓ).
(5)

Thus all row sums ofC are equal to 1. This proves to-
gether with the nonnegativity of theC(i, ℓ) that Equation
(4) is not only a linear combination but even a convex
combination of the rows ofA. For the reverse direction
with C,A ≥ 0, Equation (5) proves the row sum condi-
tion for A and the convex combinations (4) prove that
D = C A is a nonnegative matrix factorization.
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The geometric construction of the AFS in the form of
Borgen plots and its generalization are explained in Sec-
tion 3. Next a mathematical description of the AFS with
respect to RS-scaling is given. Therefore let a nonneg-
ative matrixD ∈ Rk×n of the ranks be given. The trun-
cated rank-ssingular value decomposition (SVD) reads

D = U ΣV
T

with Σ ∈ R
s×s and orthogonalU ∈ R

k×s

andV ∈ R
s×n; see [10]. The key idea for the mathe-

matical representation of the rotational ambiguity is to
insert a regular matrixT ∈ R

s×s and its inverse in the
truncated (SVD)

D = U ΣV
T
= U ΣT −1
︸   ︷︷   ︸
=: C

T V
T

︸︷︷︸
=: A

. (6)

The representationA = T V
T

shows that the rows of
T are low-dimensional representations of the possible
solutions. Similarly to the identity matrixT −1T a per-
mutation matrix and its inverse (transposed matrix) can
be inserted in the truncated SVD. This shows that the
set of all feasible spectra is completely determined by
the set of all possible first rows toT [21]. Additionally,
theses degrees of freedom in the first row ofT can be
further reduced by one degree of freedom by the row
sum scaling condition forA [5, 18]. It holds that

1 =
n∑

i=1

A(1, i) =
s∑

j=1

n∑

i=1

T(1, j)V(i, j).

Thus

T(1, 1) =
1−
∑s

j=2
∑n

i=1 T(1, j)V(i, j)
∑n

i=1 V(i, 1)
(7)

shows thatT(1, 1) is uniquely determined byT(1, 2 : s)
andV. Hence the AFS is fully determined by the set of
all feasible row vectorst := T(1, 2 : s). All this results
in the following definition.

Definition 2.3. Let D be a rank-s matrix whose row
sums are all equal to 1. LetD = U ΣV

T
be the SVD of

D. The AFS with respect to RS-scaling is the set of row
vectorst ∈ R1×s−1, for which a regular matrixT ∈ Rs×s

exists withT(1, 2 : s) = t so thatC = U ΣT −1 and

A = T V
T

are nonnegative matrices. Thus the AFS with
respect to RS-scaling, equivalently the Borgen plot, is
the set

M :=
{
t ∈ R1×s−1 : exists regularT, T(1, 2 : s) = t,

U ΣT −1 ≥ 0,T V
T
≥ 0, ‖T(i, :)V

T
‖1 = 1 ∀i

}
.

(8)

2.3. The AFS for FSV-scaling

The genuinely numerical procedures to compute the
AFS in [1, 2, 8, 9, 21] do not require aninitial row scal-
ing for D prior to the computation of the AFS.Instead
the starting point is a truncated rank-s singular value
decomposition ofD = UΣVT with U ∈ Rk×s, Σ ∈ Rs×s

andV ∈ R
n×s. It is important to note, that the SVD of

the row scaled matrixD is very different from the SVD
of D; there is no simple or even linear transformation
between the singular values or singular vectors of these
two SVDs. HenceU andU are very different. The same
holds forΣ, Σ as well as forV, V.

Similarly, a regular matrixT ∈ R
s×s is used in order

to define the factors

C = UΣT−1 and A = TVT . (9)

Under some weak assumption onD, namely the irre-
ducibility of DTD, the matrixT can be restricted to have
the all-ones vector in its first column, see [21]. In other
words the coefficient of the first (normalized) right sin-
gular vector equals 1 for each spectrum or row ofA.
ThusT has the form

T =



1 t1 · · · ts−1

1
... S
1


, (10)

wheret = (t1, . . . , ts−1) ∈ R
1×s−1 is a row vector and

with S ∈ R(s−1)×(s−1). The counterpart of Definition 2.3
for FSV-scaling is:

Definition 2.4. Let D ∈ R
k×n be a rank-s matrix with

irreducible DT D let D = UΣVT be the SVD of D. The
AFSM with respect to FSV-scaling is the set of all row
vectors t∈ R

1×s−1 in (10) with regular T so that C=
UΣT−1 and A= TVT are nonnegative matrices. The set
M reads

M =
{
t ∈ R1×s−1 : exists regular T, T(1, :) = (1, t),

UΣT−1 ≥ 0,TVT ≥ 0
}
.

2.4. Relation between the AFS for RS-scaling and the
AFS for FSV-scaling

The Borgen plot, that is the AFS with respect to RS-
scaling, looks different from the Borgen plot with re-
spect to FSV-scaling [16].This fact makes it difficult to
compare the results of the geometric constructive Bor-
gen plots with numerically computed AFS. To close the
gap, the following theorem provides a point-by-point
nonlinear transformation between these two AFS rep-
resentations.

5



Theorem 2.5. For a rank-s matrix D∈ R
k×n with ir-

reducible DTD letM be the AFS with respect to RS-
scaling andM the AFS with respect to FSV-scaling.
Then there is a one-one mapping betweent ∈ M and
t ∈ M so that these points represent the same spectrum
or row of A.

The explicit form of this one-one mapping is as fol-
lows. For the given t, t ∈ R1×s−1 let

x := (1, t),

x := (γ, t) with γ =
1−
∑s

j=2
∑n

i=1 t j−1V(i, j)
∑n

i=1 V(i, 1)
.

(11)

Then the relations

x =
xVTV
‖xVT‖1

, (12)

x =
xV

T
V

xV
T
V(:, 1)

(13)

allow to transform the AFSM toM and vice versa.

Proof. According to the definitions ofM andM, the
vectorst and t are associated with matricesT and T
and the first rows of these matrices have the form (11)
with γ from (7). Due to the Perron-Frobenius theory
[13] V(:, 1) is a sign-constant and nonzero vector [21].
Hence the denominator ofγ is not equal to zero. Thusγ
exists.

For given T the associated spectra matrix isA =
TVT ≥ 0 andC is also nonnegative withD = CA. To-
gether with∆ from (3) this results in a factorization of
D.

D = ∆D = ∆C︸︷︷︸
=:C̃

A. (14)

Nonnegativity of∆ impliesC̃ ≥ 0. The row sum scaling
for A can be achieved by the diagonal matrixR ∈ R

s×s

with the diagonal elementsR(i, i) = 1/‖T(i, :)VT‖1.
Hence

D = ∆CR−1
︸ ︷︷ ︸

C

RA︸︷︷︸
A

is a nonnegative factorization ofD with respect to RS-

scaling. Insertion ofA = T V
T

from (6) and its counter-
part (9) in the equalityA = RAresults in

T V
T
= RTVT (15)

or equivalently in

T = RTVTV.

The first row of this matrix equation is just (12).

To prove the other direction we rewrite (15) as

T = R−1T V
T
V (16)

with the diagonal matrixR. The diagonal matrixR−1

serves to scale all components of the first column ofT
to 1. Hence the diagonal elementsR(i, i) are equal to

(T V
T
V)i,1, i.e.

Ri,i = T(i, :)V
T
V(:, 1)

and thusR1,1 = xV
T
V(:, 1). The first row of (16) reads

T(1, :) = x = (1/R1,1)T(1, :)V
T
V = (1/R1,1)xV

T
V.

This proves (13). We note thatRi,i = T(i, :)V
T
V(:, 1) >

0 for all i ∈ {1, 2, . . . , s} if DT D is irreducible (cf. Theo-
rem 2.2 in [22]).

2.5. A numerical example
In Figure 1 the AFS with RS-scalingM and the

AFS with FSV-scalingM for an FT-IR data set from
the rhodium catalyzed hydroformylation, see [11], are
shown. Obviously the AFS segments look quite dif-
ferent. However, they represent the same set of feasi-
ble factorizations. For more details on the experimental
data set see Section 4. The AFSM has been computed
by using geometric algorithms implemented in Matlab
and C. The AFSM has been computed fromM with
Equation (13).

2.6. Boundedness of the AFS
A necessary prerequisite for the actual computation

of the AFS is its boundedness, i.e. its finite extension.
In [22] it has been shown thatM is a bounded set if
and only ifDTD is an irreducible matrix. In contrast to
this the boundedness ofM can be proved without any
further assumptions.

Lemma 2.6. The AFSM for an s-component system is
a subset of the unit ball of theRs−1 with respect to the
Euclidean vector norm‖ · ‖2. This means that‖t‖2 ≤ 1
for all t ∈ M.

Proof. Let t ∈ M. By reason of Equation (8) a matrix

T ∈ Rs×s exists whose first row is (γ, t) andA = T V
T

is
its associated spectra matrix. The row sum normaliza-
tion for A together with the norm inequality‖x‖1 ≥ ‖x‖2,
see [10], lead to

1 = ‖A(1, :)‖21 ≥ ‖A(1, :)‖22 = ‖T(1, :)V
T
‖22 = ‖T(1, :)‖22

=

s∑

i=1

T(1, i)2 ≥

s∑

i=2

T(1, i)2 = ‖t‖22,
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AFSM with RS-scaling AFSM with FSV-scaling
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Figure 1: AFSM with RS-scaling (left) andM with FSV-scaling (right) for FT-IR spectroscopic data fromrhodium catalyzed hydroformylation
process [11]. Each AFS consists of three isolated segments.The gray curves are the polygons FIRPOL and INNPOL.

which proves the proposition. The last equation in the
first row follows from the orthogonal invariance of the
Euclidean norm.

Lemma 2.6 proves that a finite AFS with respect to
FSV-scaling can be computed irrespectively of whether
DTD is an irreducible matrix. Then the transforma-
tion formula of Theorem 2.5 cannot be applied. How-
ever, the reducibility ofDTD is nothing which can be
expected for practical data aside from the trivial case
of completely separated reaction subsystems with sepa-
rated signal groups in the spectra and concentration pro-
files.

3. A generalization of Borgen plots

The classical Borgen plots [5] are geometric con-
structions which can be executed for nonnegative spec-
troscopic data. The algorithm fails if the data contain
negative components which is a disadvantage of the
classical Borgen plots. In fact, practical spectral data
sets can include small negative elements due to data pre-
processing or background subtraction. Further a low
rank approximation of a given perturbed spectral data
matrix often has negative entries. The truncation of neg-
ative elements and their substitution by zero is a possi-
ble, but not the best way. Further, measurement errors
and noise can be responsible for the non-existence of a
nonnegative matrix factorization ofD. If small negative
entries inC andA can be accepted, then a factorization
is more likely to exist.

Here we present a generalization of the Borgen plots
which can be applied to spectral data with small neg-
ative elements. The meaning and interpretation of the
generalized Borgen plots is very similar - however small
negative elements in the factors are accepted. We call
this generalization of a nonnegative matrix factoriza-
tion (NMF) analmost nonnegative matrix factorization.
However, for nonnegative data the generalized algo-
rithm is identical to the classical method of Borgen and
Kowalski.

The starting point of the classical Borgen plots for
three-component systems is the definition of the two
polygons INNPOL and FIRPOL from which the AFS
for a given rank-3-matrix can be constructed.FIRPOL
is also called theouter polygon, see [18].The following
analysis is not restricted tos = 3. For s > 3 compo-
nents the two-dimensional polygons INNPOL and FIR-
POL turn to bes− 1-dimensional polytopes with com-
parable properties as in the three-component case. Next
the classical polygons INNPOL and FIRPOL and the
respective higher dimensional polytopes are denoted as
INNPOL-RS and FIRPOL-RS in order to express that
they refer to the row sum scaling. We also use these
polytopes with respect to FSV-scaling. Then these poly-
topes are called INNPOL-FSV and FIRPOL-FSV.

3.1. The AFS with respect to RS-scaling and for data
including negative entries

A spectral data matrixD is considered which may
contain small negative matrix elements. These negative
elements can origin from a rank-sapproximation of the
original spectral data or by background subtraction from
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the measured spectral data. However, the row sums of
D must still be positive so that

∆(i, j) =


1/(
∑n
ℓ=1 D(i, ℓ)) i = j,

0 i , j
(17)

is a nonnegative and regular matrix. This definition of∆
uses row sums. A row sum is different from the 1-norm,
see (3), of the same row if the row contains negative
entries. In the following we work with the row sum
scaled matrixD = ∆D.

Next the aim is to compute a factorizationD = C A,
in which the factors fulfill the componentwise inequal-
ities C ≥ −εC andA ≥ −εA for fixed εC, εA > 0. This
is what we call an approximate NMF. Further, the RS-
scaling requires that all row sums ofA are equal to 1.
These bounds on the factorsC andA are similar to those
used in [6] and the lower bounds for the relative nega-
tive portion of the matrix elements ofC andA as used
in Section 3.4 of [22]. However, in [22] the maximum
norm is used in the denominator whereas here the row
sum scaling is used in a comparable fashion.

The AFSMεC,εA for almost nonnegative matrix fac-
torizations is defined as follows:

Definition 3.1. Let D ∈ Rk×n be a rank-s matrix, whose
row sums equal 1. For the truncated rank-s singular

value decompositionD = U ΣV
T

and fixedεC, εA ≥ 0
the spectral factor AFS is the set

MεC,εA =
{
t ∈ R1×s−1 : exists regularT,T(1, 2 : s) = t,

U ΣT −1 ≥ −εC, T V
T
≥ −εA, (18)

s∑

j=1

n∑

ℓ=1

T(i, j)V(ℓ, j) = 1 for i = 1, . . . , s

 .

3.2. Limiting polytopes of the AFS for RS-scaling

For a nonnegative matrixD and a nonnegative fac-
torizationD = C A with all row sums ofA being equal
to 1, Lemma 2.2 states that the rows ofD are convex
combinations of the rows ofA. The following Lemma
3.3 provides a similar result by usingaffine combina-
tionsinstead of convex combinations. In words an affine
combination is a convex combination in which the sign
restriction for the coefficients is omitted.

Definition 3.2. A vector w∈ R
n is anaffine combina-

tion of the vectorsυ1, υ2, . . . , υℓ ∈ R
n with α1, . . . , αℓ ∈

R, if

w =
ℓ∑

i=1

αiυi and 1 =
ℓ∑

i=1

αi .

The key message of the next lemma is that Lemma
2.2 remains valid forC and A having negative matrix
elements.

Lemma 3.3. Let D ∈ R
k×n be a rank-s matrix, whose

row sums equal1. ThenD = C A is a factorization
with C ∈ R

k×s, A ∈ R
s×n and componentwise bounds

C ≥ −εC, A ≥ −εA for εC, εA ≥ 0 with all row sums ofA
being equal to1 if and only if each row ofD is an affine
combination of the rows ofA with C ≥ −εC being the
matrix of the coefficients and all row sums ofC being
equal to 1.

Proof. The proof follows the lines of the proof of
Lemma 2.2. The inequalitiesC,A ≥ 0 are substituted
by C ≥ −εC andA ≥ −εA. In this way convex combina-
tions turn into affine combinations.

EquationA = T V
T
, see (6), can be interpreted as

a low dimensional representation of the rows ofA by
the rows ofT. The key point is that the components of
a row of T are the coefficients of the linear combina-
tions with respect to the basis of right singular vectors
given by the columns ofV. Thanks to Equation (11)
the first component of a row ofT is not important, since
T(i, 1) = γ can always be recovered fromT(i, 2 : s).
In other words only the coefficients with respect to the
column space ofV(:, 2 : s) are essential for the analysis.
The fundamental relation that the rows ofD are convex
or affine combinations of the rows ofA ≥ 0 also holds
for the coefficient vectors with respect to the columns
of V(:, 2 : s). All this gives rise to define two limiting
polytopes within this subspace.

Definition 3.4. The convex hull of the row vectors of
D V(:, 2 : s), that are the coefficient vectors of the rows
of D with respect to the right singular vectors inV(:, 2 :
s), is called INNPOL-RS.

INNPOL-RS is a subset of theR1×s−1. For s = 3
INNPOL-RS is identical to the classical polygon IN-
NPOL by Borgen and Kowalski [5] in the case of non-
negativeD if all weighting factors wk in [5] are set
equal to 1.

INNPOL is an abbreviation which stands forin-
ner polygon. A second polygon (or polytope in the
case of higher dimensions) is FIRPOL forfirst poly-
gon. FIRPOL-RS is a larger polytope which includes
INNPOL-RS, see Figure 2. FIRPOL-RS encloses the
AFSMεC,εA and a part of its boundary is a part of the
boundary of the AFS.

The starting point for the definition of FIRPOL-RS is
the nonnegativity constraintA ≥ 0. For the definition of
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FIRPOL-RS this condition is generalized toA ≥ −εA so
that for its first row the componentwise inequality

A(1, :) =
s∑

i=1

T(1, i)(V(:, i))T ≥ −εA (19)

holds. The normalization constraint

1 =
n∑

i=1

A(1, i) =
n∑

i=1

s∑

j=1

T(1, j)V(i, j)

allows to writeT(1, 1) in the form

T(1, 1) =
1−
∑n

i=1
∑s

j=2 T(1, j)V(i, j)
∑n

i=1 V(i, 1)
. (20)

Inequality (19) is equivalent to

s∑

i=2

T(1, i)(V(:, i))T ≥ −εA − T(1, 1)(V(:, 1))T.

By substitution ofT(1, 1) with (20) we get

s∑

i=2

T(1, i)(V(:, i))T

≥ −εA −


1−
∑n

i=1
∑s

j=2 T(1, j)V(i, j)
∑n

i=1 V(i, 1)

 (V(:, 1))T .

This equation can be simplified to

s∑

i=2

T(1, i)

(V(:, i))T −

∑n
j=1 V( j, i)(V(:, 1))T

∑n
j=1 V( j, 1)



≥ −εA −
(V(:, 1))T
∑n

j=1 V( j, 1)
.

(21)

Each component of the vector inequality (21) defines
an affine half-space inR1×s−1 since the first sum on the
left side of (21) is an inner product of the vectorT(1, 2 :
s) with a function depending onV. (In order to support
the understanding of the last argument, the definition
of an affine half-space is recapitulated: For a column
vectorυ and a real numberα an affine half-space is the
set of row vectorst so thattυ ≥ α.) The intersection of
all these half-spaces defines the polytope FIRPOL-RS.

Definition 3.5 (Generalized set FIRPOL-RS). The set
t ∈ R

1×s−1 :
s∑

i=2

ti−1

(V(:, i))T −

∑n
j=1 V( j, i)(V(:, 1))T

∑n
j=1 V( j, 1)



≥ −εA −
(V(:, 1))T
∑n

j=1 V( j, 1)



−0.04 −0.02 0 0.02
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

T(1, 2)

T
(1
,3

)

INNPOL-RS

FIRPOL-RS

Figure 2: INNPOL-RS and FIRPOL-RS for the AFSM for the FT-IR
spectral data, see Section 4, andεA = −1.1 ·min(min(D)) = 1.0054·
10−4. The gray lines are the boundaries of the half-planes defining
FIRPOL-RS. The blue points are the coefficient vectors of the rows of
D with respect to the right singular vectorsV(:, 2) andV(:, 3).

is called the polytope FIRPOL-RS. Thereinti is the i-th
component of the vectort. For εA = 0 and s= 3 the
polytope FIRPOL-RS is identical to the classical two-
dimensional polygon FIRPOL of Borgen and Kowalski
for the case that all weighting factors of the standard-
ization in [5] are set equal to 1.

By Lemma 2.6 the polytope FIRPOL-RS is bounded.
If D has negative matrix elements, thenD ≥ −εA is
a necessary condition which guarantees that the geo-
metric constructions work properly; otherwise at least
one vertex of INNPOL-RS would be located outside
FIRPOL-RS. In Figure 2 INNPOL-RS and FIRPOL-RS
are shown forεA = 1.0054· 10−4 and for FT-IR spectro-
scopic data from [11], see Section 4 for details.

3.3. Geometric characterization of the AFSMεC,εA

Theorem 3.6. The existence of nonnegative matrix fac-
torizations (see case I) and of almost nonnegative ma-
trix factorizations (see case II) for an s-component sys-
tem is related to a geometric property of s points in
FIRPOL-RS.

I: Let D be a nonnegative matrix whose row sums are
all equal to 1. ThenD = C A is a nonnegative
matrix factorization with RS-scaled factorA if and
only if for s pointst(ℓ) ∈ R

1×s−1 in FIRPOL-RS

with A = T V
T

and with T(ℓ, 2 : s) = t(ℓ) for
ℓ = 1, . . . , s the convex hull of these s pointst(ℓ)
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(being a simplex)includes the polytope INNPOL-
RS.

II: Let D be a matrix with negative entries so that
D ≥ −εA for a proper εA ≥ 0. The row sums
of D are all equal to 1. ThenD = C A is a ma-
trix factorization withC ≥ −εC andA ≥ −εA and
with a RS-scaled factorA if and only if for s points

t(ℓ) ∈ R
1×s−1 in FIRPOL-RS withA = T V

T
and

T(ℓ, 2 : s) = t(ℓ) for ℓ = 1, . . . , s the affine hull
of these s pointst(ℓ) includes INNPOL-RS. Therein
the affine hull is based on coefficients that are all
equal to or greater than−εC.

Proof. Only case II is to be proved. Then the proof of
case I follows by settingεA = εC = 0.

In order to prove the forward implication the starting
point is the matrix factorization

D = U ΣT −1
︸   ︷︷   ︸

C

T V
T

︸︷︷︸
A

with C ≥ −εC andA ≥ −εA. Each of thes rows ofT is
related to one point in FIRPOL-RS asA ≥ −εA is satis-
fied. According to Lemma 3.3 each row ofD is an affine
combination of the rows ofA. The same property holds
for the coefficient vectors with respect to the columns of
V(:, 2 : s), which is shown next. These coefficient vec-
tors of the rowsD(i, :) are the vectorsD(i, :)V(:, 2 : s).
Similarly A(i, :)V(:, 2 : s) = T(i, 2 : s) are these coef-
ficient vectors of the rows ofA. From the affine com-
binationD(i, :) =

∑s
j=1 C(i, j)A( j, :) right multiplication

with V(:, 2 : s) yields

D(i, :)V(:, 2 : s) =
s∑

j=1

C(i, j)A( j, :)V(:, 2 : s). (22)

The coefficientsC(i, j) of this affine combination are
still all greater than or equal to−εC. Equation (22)
shows that representative vectors of the rows ofD are
just affine combinations of the representative vectors
of the rows ofA. This guarantees that convex hull
INNPOL-RS of the rows ofD(i, :)V(:, 2 : s) is also con-
tained in the affine hull of the rows ofA( j, :)V(:, 2 : s).

For the backward implication we consider thes
points t(ℓ) in R

1×s−1 with the given properties. To-
gether with the RS-scaling constraint for the factorA,
Equation (11) allows to compute a matrixT ∈ R

s×s

which is unique aside from permutations of its rows and

from which A = T V
T

can be gained. By definition of

FIRPOL-RS the inequalityA = T V
T
≥ −εA holds; oth-

erwise at least one point would be located outside of

FIRPOL-RS. The matrixT is regular sinceD is a rank-

s-matrix andD andT V
T

span the same column space.
As INNPOL-RS is contained in the affine sums of the

t(ℓ), the rows ofD V(:, 2 : s) can be written as affine
combinations of the rows ofAV(:, 2 : s) with expansion
coefficients which form the matrixC ≥ −εC. Analo-
gously, the same holds for the row vectors ofD and the
row vectors ofC. Lemma 3.3 proves that this implies a
matrix factorizationD = C A with the componentwise
lower bounds for the matricesC andA.

Obviously a change ofεC orεA changes the AFS. The
following lemma proves the monotonicity principle that
an increasingεC or εA also increases the AFS.

Lemma 3.7. If 0 < εC ≤ ε̃C and0 < εA ≤ ε̃A, then the
AFSMεC,εA is a subset of the AFSMε̃C,ε̃A, i.e.

MεC,εA ⊆ Mε̃C,ε̃A.

Proof. According to Definition 3.1 a pointt ∈ MεC,εA is
associated with a matrixT ∈ Rs×s. ThisT results in the
factorizationD = C A with the element-wise inequali-
tiesC ≥ −εC andA ≥ −εA. ThenC ≥ −ε̃C andA ≥ −ε̃A

are also valid. Thust ∈ Mε̃C,ε̃A holds. This proves the
proposition.

3.4. The AFS with respect to FSV-scaling and for data
including negative entries

Next the geometric construction principles of the
AFS are formulated with respect to FSV-scaling. Our
goal is to build a bridge from the geometric-constructive
Borgen plots to the numerical algorithms for AFS com-
putations. The latter algorithms typically work within
the basis of the left and right singular vectors ofD where
the FSV-scaling is the natural choice. We show that the
geometric construction of the AFS can be adapted to a
singular vector basis representation. Additionally a gen-
eralization is presented for the AFS construction with
respect to FSV-scaling and data including small nega-
tive entries.

Let D = CA be a nonnegative factorization and
D = UΣVT be a singular value decomposition (SVD)
of the rank-s matrix D with C,U ∈ R

k×s, A,V ∈ R
s×n

andΣ ∈ R
s×s. ThenA = TVT andC = UΣT−1 for

a suitable regular matrixT ∈ R
s×s. Here we assume

that D is a nonnegative matrix and thatDTD is an ir-
reducible matrix. Then the first right singular vector
V(:, 1) and the first left singular vectorU(:, 1) are sign-
constant vectors, i.e. all components are either strictly
positive or strictly negative; see [22] for the mathemat-
ical background and [13] for the Perron-Frobenius the-
ory. Without loss of generality the SVD can be assumed
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to deliverU(:, 1) > 0 andV(:, 1) > 0; otherwise the two
componentwise negative vectors are multiplied by−1
which again results in an SVD.

The SVD ofD allows to write the rows ofD as linear
combinations of the right singular vectors

D(i, :) =
s∑

j=1

wi, jV
T( j, :) (23)

with the coefficientswi, j = (UΣ)i, j. Then the first coef-
ficientswi,1 for i ∈ {1, 2, . . . , s} are positive since with
nonzeroD(:, i) ≥ 0 andV(:, 1) > 0 one gets

0 < D(i, :)V(:, 1) =
( s∑

j=1

wi, jV
T( j, :)

)
V(:, 1)

=

s∑

j=1

wi, jδ j,1 = wi,1.

Thereinδi, j is the Kronecker delta (which is 0 fori , j
and 1 fori = j). If D is only slightly polluted by neg-
ative elements, then a continuity argument shows that
wi,1 > 0 still holds if the perturbation is small enough.
The diagonal matrixΩ with the diagonal elements

Ω(i, i) = w−1
i,1 , i = 1, . . . , k, (24)

or in short formΩ = (diag(W(:, 1)))−1, is used to define
the scaled data matrix

D̂ = ΩD = RVT . (25)

Therein the matrixR ∈ Rk×s satisfies thatR(i, 1) = 1 for
all i ∈ {1, 2 . . . , k}.

Definition 3.8. Let D ∈ R
k×n be a rank-s matrix with

the truncated rank-s singular value decomposition D=
UΣVT . Further letεC, εA ≥ 0 be given so that the ma-
trix Ω ∈ R

k×k in (24) has positive diagonal elements.
Then the spectral factor AFS for FSV-scaling is the set

MεC,εA =
{
t ∈ R1×s−1 : exists regular T, T(1, :) = (1, t),

ΩUΣT−1 ≥ −εC,TVT ≥ −εA

}
.

3.5. Limiting polytopes of the AFS for FSV-scaling

The counterpart of Definition 3.4 for FSV-scaling
reads as follows.

Definition 3.9. The convex hull of the row vectors of
ΩDV(:, 2 : s) is called the polytope INNPOL-FSV.
(These row vectors are the vectors of expansion coef-
ficients of the rows of̂D = ΩD by (25) with respect to
the columns of V(:, 2 : s).)

In order to define the polytope FIRPOL-FSV we con-
sider the constraintA = TVT ≥ −εA on acceptable neg-
ative entries ofA. This inequality together with the scal-
ing conditionT(:, 1) = e(s) yields fori = 1, . . . , s

s∑

j=2

T(i, j)(V(:, j))T ≥ −V(:, 1)T − εAe(s). (26)

Thereine(s) = (1, . . . , 1) is the all-ones vector inRs. As
explained after Lemma 2.2 only all possible first rows
of T for i = 1 must be recorded in order to construct the
AFS. The resulting set of feasible first rows is identical
to the set of all possible rows ofT. This fact can be
proved by means of a permutation argument. The set of
row vectorst = T(1, 2 : s) ∈ R

1×s−1 which satisfy (26)
defines the polytope FIRPOL-FSV.

Definition 3.10. Let D ≥ −εA and let DTD be an irre-
ducible matrix. Then the polytope

{t ∈ R1×s−1 :
s∑

i=2

ti−1(V(:, i))T ≥ −(V(:, 1))T − εAe(s)}

is an intersection of k half-spaces and is called
FIRPOL-FSV. Therein t1, . . . , ts−1 are the components of
t ∈ R1×s−1.

A proof for the boundedness of FIRPOL-FSV is
given in [22]; this proof uses the irreducibility ofDTD.
If at least one inequality of the matrix inequalityD ≥
−εA is violated, then at least one vertex of INNPOL-
FSV is outside of FIRPOL-FSV and the geometric al-
gorithm for the AFS construction cannot work.

3.6. Geometric characterization of the AFSMεC,εA

Theorem 3.6 shows how the AFSMεC,εA can be
geometrically constructed by means of the polytopes
INNPOL-RS and FIRPOL-RS. The following theorem
shows that analogous relations hold for the geometric
construction ofMεC,εA with the polytopes INNPOL-
FSV and FIRPOL-FSV.

Theorem 3.11. The existence of a nonnegative matrix
factorization (see case I) or of a matrix factorization
which can include small negative components (see case
II) for an s-component system is related to a geometric
property of s point in FIRPOL-FSV.

I: Let D be a nonnegative matrix. Then D= CA is
a nonnegative matrix factorization with an FSV-
scaled factor A if and only if for s points t(ℓ) ∈

R
1×s−1 in FIRPOL-FSV with A= TVT with T(ℓ, 2 :

s) = t(ℓ) for ℓ = 1, . . . , s the convex hull of these
s points(being a simplex)includes the polytope
INNPOL-FSV.
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II: Let D be a matrix with negative entries so that D≥
−εA for a properεA ≥ 0. Let the diagonal matrix
Ω be given according to(24). Then D= CA is a
matrix factorization withΩC ≥ −εC and A≥ −εA

and with a FSV-scaled factor A if and only if for s
points t(ℓ) ∈ R1×s−1 in FIRPOL-FSV with A= TVT

and T(ℓ, 2 : s) = t(ℓ) for ℓ = 1, . . . , s the affine
hull of these s points t(ℓ) includes INNPOL-FSV.
Therein the affine hull is based on coefficients that
are all equal to or greater than−εC.

Proof. Only the second case is to be proved. From this
the proof for the case I follows by settingεA = εC = 0.

For the forward implication the starting point is a fac-
torization

D = UΣT−1
︸  ︷︷  ︸

C

TVT
︸︷︷︸

A

with A ≥ −εA andΩC ≥ −εC according to Definition
3.8 so that the first row ofT has the formT(1, :) = (1, t)
for the givent. ThisT is the source for thes row vectors
t(ℓ) = T(ℓ, 2 : s), ℓ = 1, . . . , s. All theset(ℓ) are elements
of FIRPOL-FSV asA ≥ −εA is satisfied. In order to
show the affine hull condition, theith row of the identity
D̂ = ΩCA from (25) is written in the form

D̂(i, :) = Ω(i, :)CA=
s∑

j=1

Ω(i, i)C(i, j)︸        ︷︷        ︸
=:Ĉ(i, j)

A( j, :). (27)

This is a linear combinationof the ith row of D̂ by the
rows ofA. The sum with respect toj of the coefficients
Ĉ(i, j) is equal to 1 which is shown next. Equation (25)
guarantees that 1= D̂(i, :)V(:, 1) so that

1 = D̂(i, :)V(:, 1) = Ĉ(i, :)AV(:, 1)= Ĉ(i, :)TVTV(:, 1)

= Ĉ(i, :)Te1 = Ĉ(i, :)(1, . . . , 1)T =
s∑

j=1

Ĉ(i, j).

This proves together with (27) that the rows ofD̂ are
affine combinations of the rows ofA. An analogous
relation holds for the vectors of expansion coefficients
of the rows ofD̂ with respect to the singular vectors
V(:, 2), . . . ,V(:, s). By right multiplication of (27) with
V(:, 2 : s) we obtain

D̂(i, :)V(:, 2 : s) =
s∑

j=1

Ĉ(i, j)A( j, :)V(:, 2 : s). (28)

According to Definition 3.9 the vectorŝD(i, :)V(:, 2 : s)
are just the vertices of the convex polytope INNPOL-
FSV. Further, for the vectorsA( j, :)V(:, 2 : s) it holds

that

A( j, :)V(:, 2 : s) = T( j, :)VTV(:, 2 : s) = T( j, 2 : s)

which are the AFS representatives of the rows ofA.
Thus (28) shows that each vertex of INNPOL-FSV can
be represented as an affine combination of theT( j, 2 : s)
with coefficients (ΩD)i, j ≥ −εC.

In order to prove the reverse direction thes row vec-
tors t(ℓ) ∈ R

1×s−1 are written in the rows 1, . . . , s of
T ∈ R

s×s. The first column ofT is the all-ones vec-
tor. ThenA = TVT ≥ −εA holds since all thes vectors
are from FIRPOL-FSV. Each point of INNPOL-FSV is
a feasible affine combination of the given points and
hence this is also true for the rows of̂D = WD, see
Equation (27).The associated coefficients of the affine
combinations are the elements of the matrixĈ = ΩC.
This completes the proof.

Lemma 3.7 states how a variation ofεC and εA

changes the AFSMεC,εA. An analogous statement is
true forMεC,εA.

Lemma 3.12. If εC ≤ ε̂C and εA ≤ ε̂A, then the AFS
MεC,εA is a subset of the AFSMε̂C,ε̂A

, i.e.

MεC,εA ⊆ Mε̂C,ε̂A
.

The proof is more or less a simple transcription of the
proof of Lemma 3.7.

4. Numerical Results

The mathematical fundamentals of generalized Bor-
gen plots in Sections 2 and 3 are now supplemented by
a study of sample problems. The practical implemen-
tation of these geometric constructions in the form a
tangent- and line-moving-algorithm are the topic of part
II of this paper. Next a model problem with variable
amounts of noise, see Section 4.1, and experimental FT-
IR data set from the hydroformylation process, see Sec-
tion 4.2, are investigated. Different methods are applied
to compute the AFS and the results are compared.

4.1. Data set I: A model problem

We consider the concentration profiles

c1(t) = exp(−(t − 20)2/150)

c2(t) = exp(−(t − 50)2/200)

c3(t) = exp(−(t − 70)2/250)
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and pure component spectra

a1(x) = e−(x−50)2/500+ 0.5e−(x−125)2/500+ 0.1

a2(x) = e−(x−100)2/750+ 0.4e−(x−100)2/1500+ 0.15

a3(x) = e−(x−150)2/1000+ 0.3e−(x−75)2/2500+ 0.2

with 0 ≤ t ≤ 100 and 0≤ x ≤ 200. The discretization
parameters along the time axis and along the frequency
axisare each equalto 0.5. This results in a 201× 401
spectral data matrixD0. Figure 3 shows theci(t) and
ai(t) for i = 1, . . . , 3.

Standard normal distributed noiseσ is added toD0

D(i, j) := max
(
(1+ σ)D0(i, j), 0

)
(29)

with noise levelsσ ∈ {0, 0.05, 0.15}. The spectral and
the concentrational AFS, i.e. the AFS for the factorA
and the factorC, are computed with the polygon infla-
tion algorithm from theFAC-PACK software. These
AFS approximations are compared with the classical
Borgen plot and with the generalized Borgen plots, see
Figures 4 and 5. The three pure components are marked
in all these figures by small black circles. The noise
model (29) guarantees that the spectral data matricesD
are always nonnegative. However, the rank of these ma-
trices is in general larger than 3 ifσ > 0. The classical
Borgen plots can still be constructed for these matrices,
but for σ > 0 the pure components are partly not in-
cluded in the AFS segment, see e.g. the concentrational
AFS in Figure 5 forσ = 0.15. Hence the “true” solu-
tion is not contained within the AFS. This is a serious
deficiency of the classical Borgen plots. The Hausdorff

distances of the different AFS sets are listed in Table 1.
The AFS by the polygon inflation algorithm ofFAC-
PACK is not completely identical to the generalized
Borgen plot due to the different approaches to bound the
acceptable negative entries inC andA. On the one hand,
FAC-PACK uses a bound for row-wise relative portion
of negative entries while, on the other hand, the gener-
alized Borgen plot uses the absolute boundsC ≥ −εC
and A ≥ −εA. This explains why the AFS generated
by the polygon inflation algorithm is slightly different
from the generalized Borgen plot. Therefore the Haus-
dorff distances should be interpreted with caution. In
any case the generalized Borgen plots inFigures 4 and
5 show the correct positions of the pure components.

4.2. Data set II: FT-IR data from hydroformylation

An experimental spectral data set is considered from
the rhodium catalyzed hydroformylation process; see
[11] for experimental details. This data set comes with

a number ofk = 1045 FT-IR spectra each withn = 664
spectral channels. The reaction subsystem consists of
three independent components, namely the olefin, the
acyl complex and the hydrido complex.

In order to illustrate the influence of the parameters
εC andεA the AFS for the spectral factor and for RS-
scaling is shown in Figure 6 for six parameter settings.
We explicitly emphasize that the parametersεC andεA

cannot be set arbitrarily. However, these test calcula-
tions demonstrate how increasing or decreasingεC orεA

changes the form of the AFS. In Figure 6 the three black
circles in each AFS represent the positions of the final
pure component spectra which have been determined
by means of a kinetic model in [11]. The smallest el-
ement ofD is−0.000101. Negative matrix elements are
caused by data preprocessing. For this problem, a back-
ground spectrum of the solvent n-hexane has been sub-
tracted and a rank-3 approximation of the spectral data
matrix has been computed. Due to this smallest nega-
tive matrix element ofD the control parameterεA has
to be equal or greater than−min(D) = 0.000101. Oth-
erwise INNPOL-RS would have at least one vertex out-
side of FIRPOL-RS. Then Theorem 3.6 would not allow
even a single matrix factorizationD = C A which ful-
fills the given lower bounds for the matrix factorsC and
A. In Figure 2 the top red arrow indicates that decreas-
ing εA is prohibited. Further for all AFS sets in Figure
2 the polygons INNPOL-RS and FIRPOL-RS are also
drawn. The outer polygon FIRPOL-RS increases ifεA

increases; this can best be seen in the right lower part
of the AFS. For increasingεC the AFS grows as affine
combinations with smaller affine coefficients, that are
the matrix elements ofC), are acceptable. The polygon
INNPOL-RS remains always unchanged as its defini-
tion does not depend onεC andεA. See also Lemma
3.7 and Lemma 3.12 for the growth of the AFS with
increasingεA andεC.

The computation times for the tangent- and line-
moving-algorithms are listed in Table 2. We have used
a standard PC with a 2.93GHz Intel CPU and with 8
GB RAM. The program code is written in C and uses
the Matlab graphical user interface of theFAC-PACK
software. ForεC = 0 and varyingεA there is only a mi-
nor variation of the computation times. With increasing
εA the area of FIRPOL increases, but this does not com-
plicate the tangent- or line-moving-algorithm. IfεC > 0
the line-moving-algorithm is used. Then the computa-
tion time increases with a growing area of FIRPOL.

4.3. FAC-PACK software for AFS computation
The geometric algorithms for the construction of Bor-

gen plots are a part of the revision 1.2 (appeared in
13



0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

time
co

n
ce

n
tr

at
io

n

0 50 100 150 200
0

0.5

1

1.5

2

frequency

ab
so

rp
tio

n

Figure 3: The model problem. Left: Concentration profiles. Right: Pure component spectra. (1,2,3)=(Blue, Green, Red).
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Figure 4: The spectral AFS of the model problem for three noise levels.First row: σ = 0, second row:σ = 0.05, third row: σ = 0.15. First
column: The spectral AFS computed by the polygon inflation algorithm of theFAC-PACK software, second column: classical Borgen plot with
εC = εA = 0, third column: generalized Borgen plot withεC andεA as listed in Table 1. In each AFS the three pure components aremarked by
small black circles. Forσ > 0 not all pure components are located within the AFS segmentsof the classical Borgen plots.
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Figure 5:The concentrational AFS of the model problem for three noiselevels. First row:σ = 0, second row:σ = 0.05, third row:σ = 0.15. First
column: The spectral AFS computed by the polygon inflation algorithm of theFAC-PACK software, second column: classical Borgen plot with
εC = εA = 0, third column: generalized Borgen plot withεC andεA as listed in Table 1. In each AFS the three pure components aremarked by
small black circles. Forσ = 0.15 all three pure components are not located within the AFS segments of the classical Borgen plots.

σ PI εneg. entr. gBp parameters Hausdorff PI-gBp Hausdorff Bp–gBp Hausdorff PI–Bp
0 0 εC = 0, εA = 0 0.0059 0.0 0.0059

0.05 0.01 εC = 0.01,εA = 0.002 0.1273 0.1400 0.0833
0.15 0.0275 εC = 0.01,εA = 0.005 0.1487 0.1473 0.1532

0 0 εC = 0, εA = 0 0.0342 0.0 0.0342
0.05 0.01 εC = 0.01,εA = 0.005 0.1816 0.1826 0.0632
0.15 0.0275 εC = 0.02,εA = 0.012 0.1729 0.2121 0.1697

Table 1:Hausdorff distances for three noise levelsσ for the spectral AFS, i.e. the matrix factorA, in the rows 2–4 and for the concentrational AFS,
i.e. the matrix factorC, in the rows 5–7. Column 1: Noise level. Column 2:FAC-PACK polygon inflation (PI) parameterεneg. entr.. Column 3:
Generalized Borgen plot (gBp) control parameters. Column 4: Hausdorff distances of the AFS computed by polygon inflation (PI) and generalized
Borgen plot (gBp). Column 5: Hausdorff distances of classical Borgen plot (Bp) and the generalizedBorgen plot (gBp). Column 6: Hausdorff
distances of of the AFS computed by polygon inflation (PI) andthe generalized Borgen plot (gBp).
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Figure 6: Parameter analysis for varyingεC andεA for the FT-IR spectroscopic data from the hydroformylationprocess. The AFS is shown for for
εA = 0.000101 in the first row andεA = 0.00017 in the second row. With the minimal entry min(D) = −0.000101 the parameterεA must be equal
or greater than−min(D) = 0.000101; otherwise the geometric construction of the AFS is impossible. The parameterεC is set as follows. First
column: εC = 0. Second column:εC = 0.003. Third column:εC = 0.015. The three black circles in each AFS indicate the positions of the true
component spectra. These are the spectra of the olefin component, of the acyl complex and of the hydrido complex.

εC = 0 εC = 0.003 εC = 0.015
εA = 0.000101 5.03s 5.44s 5.67s
εA = 0.00015 4.46s 5.39s 6.13s
εA = 0.0002 4.33s 5.52s 6.00s

Table 2: Computation times for the generalized Borgen plotsapplied
to the hydroformylation spectral data from [11]. Further parameters
areφ = 0.1◦ andd = 0.001, see part II of this paper.

December 2014) of theFAC-PACK software [22, 23].
The homepage of this software is

http://www.math.uni-rostock.de/facpack/

TheFAC-PACK software allows to compute the AFS
for two- and three-component systems. The core of this
program code are implementations of the polygon in-
flation algorithm and the inverse polygon inflation al-
gorithm [21]. The program includes also functionali-
ties for the reduction of the AFS by the complemen-
tarity theorem, see [4, 20, 24]. The polygon infla-
tion algorithm is an efficient tool for AFS computations
for three-component systems. The new revision 1.2
of FAC-PACK includes the tangent- and line-moving
algorithms for the construction of generalized Borgen
plots for three component systems. The AFS can be

computed with respect to the RS- or to the FSV-scaling.
All results can easily be exported and can be compared
with the purely numerical algorithm of polygon infla-
tion.

5. Conclusion

So far the geometric-constructive Borgen plotsfor
three-component systemswere to some extent limited
to model data and were not able to respond to the chal-
lenges of experimental spectroscopic data sets. Per-
turbed spectral data, low rank approximations and spec-
tral data with small negative entries, e.g. from back-
ground subtraction, were not in the scope of Borgen
plots. Generalized Borgen plots overcome these limita-
tions. The mathematical fundamentals of such general-
ized Borgen plots have been presented - the pivotal point
is the weakening of convex combinations towards affine
combinations.New algorithms of computational geom-
etry for the construction of generalized Borgen plots for
three-component systems have been developed. These
algorithms have already been published in the Borgen
plot module of theFAC-PACK software. The detailed
explanation of these geometric constructions is con-
tained in a forthcoming second part of this paper. An
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extension of these algorithms to four-component sys-
tems appears to be possible but can require very high
computational times. Additional work on this is under
progress.

We hope that the now enlarged range of applications
of Borgen plots stimulates future developments of such
global methods in chemometrics. These global meth-
ods make available the whole range of feasible solutions
with a minimum of additional assumptions on the reac-
tion system.
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[4] S. Beyramysoltan, R. Rajkó, and H. Abdollahi. Investigation of
the equality constraint effect on the reduction of the rotational
ambiguity in three-component system using a novel grid search
method.Anal. Chim. Acta, 791(0):25–35, 2013.

[5] O.S. Borgen and B.R. Kowalski. An extension of the multivari-
ate component-resolution method to three components.Anal.
Chim. Acta, 174:1–26, 1985.

[6] P.J. Gemperline. Computation of the range of feasible solu-
tions in self-modeling curve resolution algorithms.Anal. Chem.,
71(23):5398–5404, 1999.

[7] A. Golshan, H. Abdollahi, S. Beyramysoltan, M. Maeder,
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[16] R. Rajkó. Studies on the adaptability of different Borgen norms
applied in self-modeling curve resolution (SMCR) method.J.
Chemom., 23(6):265–274, 2009.

[17] R. Rajkó. Additional knowledge for determining and inter-
preting feasible band boundaries in self-modeling/multivariate
curve resolution of two-component systems.Anal. Chim. Acta,
661(2):129–132, 2010.
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